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ion QSAR model of fathead
minnow acute toxicity based on a radial basis
function neural network and its consensus
modeling†

Yukun Wang ab and Xuebo Chen*b

Acute toxicity of the fathead minnow (Pimephales promelas) is an important indicator to evaluate the

hazards and risks of compounds in aquatic environments. The aim of our study is to explore the

predictive power of the quantitative structure–activity relationship (QSAR) model based on a radial basis

function (RBF) neural network with the joint optimization method to study the acute toxicity mechanism,

and to develop a potential acute toxicity prediction model, for fathead minnow. To ensure the symmetry

and fairness of the data splitting and to generate multiple chemically diverse training and validation sets,

we used a self-organizing mapping (SOM) neural network to split the modeling dataset (containing 955

compounds) characterized by PaDEL-descriptors. After preliminary selection of descriptors via the mean

decrease impurity method, a hybrid quantum particle swarm optimization (HQPSO) algorithm was used

to jointly optimize the parameters of RBF and select the key descriptors. We established 20 RBF-based

QSAR models, and the statistical results showed that the 10-fold cross-validation results (Rcv10
2) and the

adjusted coefficients of determination (Radj
2) were all great than 0.7 and 0.8, respectively. The Qext

2 of

these models was between 0.6480 and 0.7317, and the Rext
2 was between 0.6563 and 0.7318.

Combined with the frequency and importance of the descriptors used in RBF-based models, and the

correlation between the descriptors and acute toxicity, we concluded that the water distribution

coefficient, molar refractivity, and first ionization potential are important factors affecting the acute

toxicity of fathead minnow. A consensus QSAR model with RBF-based models was established; this

model showed good performance with R2 ¼ 0.9118, Rcv10
2 ¼ 0.7632, and Qext

2 ¼ 0.7430. A frequency

weighted and distance (FWD)-based application domain (AD) definition method was proposed, and the

outliers were analyzed carefully. Compared with previous studies the method proposed in this paper has

obvious advantages and its robustness and external predictive power are also better than Xgboost-based

model. It is an effective QSAR modeling method.
1. Introduction

Toxic chemicals may be damaging to the environment and
human health.1 With the globalization of industrial develop-
ment, more and more new compounds are being synthesized
and can easily enter the water environment via industrial
production and human actions. These compounds can
contaminate the water and become toxicants for aquatic species
or other living beings via the trophic chain.2 The risk assess-
ment of compounds in the aquatic environment has been an
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increasing focus of governments. Toxicity measurement exper-
iments based on animals are accurate but expensive, time-
consuming, and ethically questionable. Quantitative struc-
ture–activity relationship (QSAR) models are ideal alternatives
because of their higher efficiency and lower cost. In the eld of
aquatic toxicology, QSARs have been developed as scientically
credible models for predicting the toxicity of chemicals when
little or no empirical data are available.3 The fathead minnow
(Pimephales promelas) is important as a biological model in
aquatic toxicology studies as it represents one top trophic level
of the aquatic food chain.4 In previous studies,2–19 the acute
toxicity to the fathead minnow has become an important indi-
cator to evaluate the hazards and risks of compounds in the
aquatic environment. The published QSARmodels for the acute
toxicity of fathead minnow can mainly be divided into three
types: (1) local models based on modes of acute toxic action,3–7

(2) global models based on non-congeneric
This journal is © The Royal Society of Chemistry 2020
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compounds,2–5,7–13,15–19 and (3) consensus models composed of
multiple global or local models.4,7,14

The advantage of local models is that they usually have
better statistical performance and offer a better interpretation
of the mechanism. The disadvantage of local models is that,
for newly synthesized compounds, the toxic mode of action
(MOA) may be unknown, which creates difficulties in the
application of the models.5 Netzeva et al. reviewed various
local fathead minnow (Q)SAR models based on MOA and
analyzed the advantages and disadvantages of local models.4

Russom et al. proposed a QSAR model that relates the modes
of acute toxic action in fathead minnow to chemical structures
and properties.3 Approximately 600 chemicals were classied
as narcotics (three distinct groups), oxidative phosphorylation
uncouplers, respiratory inhibitors, electrophiles/
proelectrophiles, acetylcholinesterase inhibitors, or central
nervous system seizure agents. In the literature,5 Wu et al.
divided the toxicity data (contains 963 compounds) into two
groups according to anesthetic toxicity and excess toxicity and
obtained two local prediction models of high quality. In the
narcosis toxicity model, Radj

2 ¼ 0.762 (Radj
2 is the adjusted

square correlation coefficients of tting), Rcv
2 ¼ 0.758 (Rcv

2 is
the correlation coefficients of tting in cross validation), and
Qext

2 ¼ 0.798 (Qext
2 is the square correlation coefficients for

external validation set), and, in the excess toxicity model, Radj
2

¼ 0.850, Rcv
2 ¼ 0.841, and Qext

2 ¼ 0.752. In the study of Yuan
et al.,6 MOA-based local QSAR models were established by
partial least squares (PLS) regression for each subset with
a single MOA, such as narcosis I, narcosis II, or reactive. The
performance of the MOA-based model was performance than
that of the global model established in the literature.6 Lozano
et al. studied a consensus QSAR related to global or MOA
models and applied those models to acute toxicity for sh.7

Although the local model based on MOA showed better
performance than that of global models, the authors also
noted that the identication of chemical categories may be
problematic because chemicals usually show different chem-
ical components, thereby confusing efforts to achieve mean-
ingful classication.

As mentioned above, the development of local models
based on MOA is limited by their own characteristics. The
global modeling method is still a common method used to
establish QSAR models. Global models do not consider the
MOA of the compounds, making them easy to establish and
apply. So far, many global predictive models for fathead
minnow have been published.1–5,7–13,15–19 In these studies,
a variety of algorithms, such as Random Forest (RF),1 Multiple
Linear Regression (MLR),2,5 a Support Vector Machine (SVM),9

and an Articial Neural Network (ANN)15 were used to develop
the models. Although some models achieved good statistical
results in some aspects of model performance (R2 ¼ 0.89–0.99
(R2 is the square correlation coefficients of tting)15 and the
best value of Qext

2 of models established in ref. 16 was 0.77),
there were still some shortcomings. Some models lacked
a validation set or had a small validation set,15,18 some models
were not cross-veried,15,16 and some models lacked applica-
tion domain (AD).15,19
This journal is © The Royal Society of Chemistry 2020
In the study of Wu et al.,5 a prediction model of the acute
toxicity to fathead minnow with 963 compounds was estab-
lished; this model combined the genetic algorithm (GA) and
MLR. This model strictly follows OECD principles, and its
prediction accuracy is the best currently obtained with such
a big data set. The performance of the model is Radj

2 ¼ 0.701,
Rcv

2 ¼ 0.700, and Qext
2 ¼ 0.641 (less than 0.7). Although the

model's tting ability and robustness meet the requirements
of the QSAR model, the external predictive power of the model
is still poor. The main reason for the poor external predictive
power of the MLR model is the complex nonlinearity between
its descriptors and acute toxicity. MLR lacks a nonlinear tting
ability, which limits improvements to the model's perfor-
mance. We found consensus modeling of fathead minnow
acute toxicity in this literature.4,7,14 Consensus modeling is
a potential method to improve the external prediction ability
of these QSAR models.

Our study uses a data set (contains 955 molecules) and
simpler 0–2D PaDEL-descriptors20 to establish a QSAR model
with better tting ability, robustness, and external predictive
power, as well as a wide AD. Meanwhile, the mechanism of
acute toxicity and causes of outliers are explained reasonably.

In previous studies,5,9,10,15,21–26 machine learning methods,
such as SVM9,10,22 and ANN,10,15,23,25 and intelligent optimization
algorithms, such as GA,5,21,26 ant colony optimization algorithm
(ACO),24 and particle swarm optimization (PSO),22 have been
widely used in QSAR modeling. The nonlinear tting ability of
the machine learning algorithm and the powerful optimization
ability of the intelligent optimization algorithm signicantly
improved the performance of the QSAR model. In our study, we
employ an RBF neural network and a hybrid quantum particle
swarm optimization (HQPSO) algorithm27 to capture the
nonlinear relationship between the molecular structure and
acute toxicity in fathead minnow. The RBF neural network has
a strong nonlinear tting ability and has been successfully
applied to different QSAR problems. The HQPSO algorithm is
an improved quantum particle swarm optimization algorithm
proposed by our research team, which has successfully solved
the complex problem of Au cluster structure optimization.27

In the QSAR modeling process, the selection of the
descriptor and parameters of the QSARmodel belong to discrete
optimization and continuous optimization problems, respec-
tively. A joint optimization of the descriptors and model
parameters is difficult to implement. Although the “Selecting
descriptors rst, and then modeling” method is usually used to
establish a QSAR model, it remains difficult to guarantee that
both descriptors and model parameters will be optimized at the
same time. This limit further improvement of the QSARmodel's
performance. In this paper, the HQPSO algorithm with a new
tness function and a new parameter encoding method were
employed to jointly optimize the molecular descriptors and the
QSAR model parameters to ensure that the most appropriate
molecular descriptors were selected under the optimal model
parameters. To our knowledge, this jointly optimized method
has never before been used in QSAR modeling for the acute
toxicity prediction of fathead minnow.
RSC Adv., 2020, 10, 21292–21308 | 21293
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Through the primary selection of descriptors and joint
optimization of the model parameters and descriptors, we
established 20 RBF-based models. Under the established QSAR
models, we evaluated the importance of the descriptors by the
mean decrease impurity method28 and concluded that the water
distribution coefficient, molar refractivity, and rst ionization
potential are important factors affecting the acute toxicity of
fathead minnow. Aer that, we established a consensus model
to improve the external predictive power of RBF-based models.
The statistical results showed that the performance of the
consensus model was greatly improved. Finally, a frequency-
weighted and distance (FWD)-based AD denition method
was proposed, and the outliers were analyzed carefully.
2. Data acquisition and computing
resources
2.1. Data acquisition

In this paper, the fathead minnow acute toxicity data were ob-
tained from the literature.5 In ref. 5, these data have been rigor-
ously screened, and the outliers have been eliminated. The data
set contains 963 organic compounds, including aldehyde,
carboxylic acid, esters, amines, alkanes, alkenes, alkyne, alco-
hols, nitrobenzene, halohydrocarbon, ketones, phenols, ethers,
nitriles, and heterocycles. In these data,�log LC50 (mol l�1) (LC50

is the 96 h 50% lethal concentration) was chosen as the endpoint.
Aer data collection, we used CAS code for each compound to
query its SMILES code29 and then used these SMILES codes to
Fig. 1 Flowchart of the radial basis function (RBF)-based method.

21294 | RSC Adv., 2020, 10, 21292–21308
calculate the descriptors of compounds online through the
PaDEL soware.30 To construct a more stable QSAR model, we
only calculated 1544 0–2D descriptors to avoid the uncertainty
caused by molecular structure optimization when calculating 3D
descriptors. In the collected data set, 8 compounds cannot
calculate their descriptors, among which the CAS codes of seven
may have errors, and their SMILES can't be queried; the SMILES
of the other one cannot be used to calculate descriptors using the
PaDEL soware. A detailed information of the deleted
compounds is listed in Table S1 in the ESI.† Finally, we obtained
a modeling data set containing 955 compounds.

2.2. Computing resources

In the QSAR modeling process, the program code of the data
splitting, SOM neural network, HQPSO algorithm, internal and
external validation, AD, outlier analysis, RBF-based QSARmodel
and its consensusmodel in this paper were completed using the
MATLAB 2014 soware (MathWorks, Natick, Massachusetts,
USA). PyCharm 2020.1(Contain python3.7) was used to imple-
ment Xgboost-based model. The computer's operating system
was WIN10.

3. RBF-based QSAR modeling with
the joint optimization method
3.1. The general idea of the modeling process

From data acquisition, data segmentation, descriptor selection,
and model parameter optimization to performance evaluation,
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Clustering results of the self-organizing mapping (SOM) neural
network.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

1/
7/

20
25

 8
:1

5:
50

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the QSAR model we established was completely under the
constraints of the OECD principle.

In this paper, a total of 955 compounds (1544 descriptors)
were prepared for our QSAR model. For the rst approach,
descriptors with constant or null values were excluded. In
addition, if the descriptors were found to be correlated pairwise
(greater than 0.85), then the descriptor that has the least
correlation with acute toxicity (�log LC50) was excluded in
a preliminary step to reduce redundancy. In total, 317 PaDEL
descriptors were reserved and used to develop the QSAR
models. The dataset with 317 descriptors is listed in the ESI
(Data_317Descriptors and Acute Toxicity.xls).†

Next, the modeling data set was split into training and vali-
dation sets using the self-organizing mapping (SOM) neural
network,31 and the preliminary selection of descriptors based on
the mean decrease impurity method was implemented to
simplify the model structure. To improve the performance of
the model, we employed the HQPSO algorithm to jointly opti-
mize the descriptors and parameters of the RBF-based QSAR
model. Lastly, internal validation, external validation, AD
analysis, and outlier (compounds with a large forecast devia-
tion) analysis were implemented. The RBF-based QSAR model-
building workow is shown in Fig. 1.
3.2. Splitting the modeling data set into training and
validation sets

In the OECD principle, external validation is the only way to
conrm the true predictive power of a QSAR model. The real
predictive power of a QSAR model must be characterized by the
predictive accuracy of the activity of the compounds not used in
model development. This type of assessment requires the use of
an external validation set. It can be seen from previous
studies31,32 that the predictive power of a QSAR model for
different structural compounds will be better if diverse training
data are obtained.

The data splitting method proposed in this paper is an
improvement of literature.5 In literature,5 they sorted the data in
ascending order according to their acute toxicity values
(�log LC50) and picked one out of every ve to constitute the
validation set. They only considered the diversity and unifor-
mity of toxicity values in training and validation set, but not the
structural diversity of compounds.

To ensure the diversity of the training and validation sets
from structures and toxicity values, we introduced the idea of
“clustering rst and then classifying”.

Firstly, we used the SOM neural network to divide the data
set into several groups and each group of data had structural
similarity. Self organizing maps (SOM), a self organizing map
neural network, can be used for unsupervised learning clus-
tering of data. It's a kind of neural network with only input layer
and hidden layer. A node in the hidden layer represents a class
that needs to be aggregated. During the training, the method of
“competitive learning” is adopted. Each input sample nds
a node that best matches it in the hidden layer, which is called
its activation node, or “winning neuron”. Then the parameters
of the active node are updated by the gradient descent method.
This journal is © The Royal Society of Chemistry 2020
At the same time, the points close to the active node update the
parameters according to their distance from the active node.33

At present, it is widely used in data clustering analysis. The
hidden layer of SOM with 9 nodes was selected to divide the
compounds into 9 or less than 9 groups according to their
structural similarity. The number of groups is selected accord-
ing to our experience. If the selected groups are too small, even
if, there is only one group, it tends to select training and vali-
dation sets according to literature.5 If there are too many
groups, the selection tends to randomly select training and
validation sets.

The SOM neural network was generated by the MATLAB
toolbox, including 317 inputs and 9 nodes in hidden layer. The
clustering results of the modeling data aer 300 iterations of
training are shown in Fig. 2.

Then, for each group of data, we sorted the data in ascending
order according to their acute toxicity values (�log LC50) and
picked one out of every ve to constitute the validation set.
Finally, we obtained a training set containing 759 compounds
and a validation set containing 196 compounds. A detailed
classication is listed in the ESI (Data splitting to Training and
Validation Set.xls).†

Although random selection may also be able to achieve the
structural diversity of training and validation compounds, it
can't guarantee the uniformity distribution of toxicity values.

It can be seen from Fig. 3, the random method and method
used in this paper has some difference. Fig. 3(a) used random
method and Fig. 3(b) used the proposed method. We can see
that in Fig. 3(a), the uniformity of compounds with various
toxicity values in training and validation sets was worse than
that in Fig. 3(b)

In this study, the chemical space distribution was analyzed
using principal component analysis (PCA).34 As shown in the
PCA plot of the compounds based on the 317 selectedmolecular
descriptors (Fig. 4(a)), the compounds in the validation set were
basically distributed within the chemical space of the training
set. The Euclidian distance metrics of the two datasets were
calculated using 317 PaDEL descriptors to further evaluate the
RSC Adv., 2020, 10, 21292–21308 | 21295
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Fig. 4 Chemical diversity distribution of the training and validation
sets. (a) The chemical space was analyzed using principal component
analysis (PCA) method. (b) A heat map of molecular similarity plotted
by normalized Euclidian distancemetrics for the training and validation
sets.

Fig. 3 Distribution of compounds with various toxicity values in
training and validation set. (a) Random method. (b) Method proposed
in this paper.
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chemical diversity of the compounds. A larger Euclidian
distance metric means a more diverse data set.35 The training
and validation sets were compared with each other, and the
heat map of the normalized Euclidian distance metrics is
shown in Fig. 4(b).

As can be seen from Fig. 4(b), the colors of regions A and B
are similar with each other. It is obvious that the diversity of
training and validation sets are similar. The color between the
training set and validation set (region C, which has only a few
bright lines) also illustrated that most compounds in the
training and validation sets shared a similar chemical space.

Therefore, on the one hand, compared with the methods in
literature,5 the training and validation set produced by our
method may have more structural diversity. On the other hand,
compared with the random method, the toxicity distribution of
the compounds in the training and validation sets was more
uniform. So, we think our method can improve the effect of data
splitting to a certain extent.
3.3. Preliminary selection of descriptors

In QSARs, using fewer descriptors helps to avoid over-tting and
to establish meaningful models whose chemical mechanisms
are easy to explain. At the same time, deleting the unimportant
21296 | RSC Adv., 2020, 10, 21292–21308
descriptors will reduce the computational complexity of the
joint optimization algorithm. We implemented the importance
evaluation and preliminary selection of descriptors based on
the mean decrease impurity method with the RBF neural
network.

The RBF neural network consists of three layers, each of
which has a completely different role. The input layer is
composed of some perceptual units, which connect the network
with the external environment; the second layer is the only
hidden layer in the network, whose function is to make
nonlinear transformation from the input space to the hidden
layer space. In most cases, the hidden layer space has a higher
dimension; the output layer is linear, which provides response
for the activation mode acting on the input layer.

It has a powerful nonlinear tting ability and a fast training
speed. The structure of a network with p inputs, k hidden nodes,
and 1 output is shown in Fig. 5.

The output of the network is as follows:

y ¼
Xk
i¼1

ui exp

 
� kx� cik2

2d2

!
(1)
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Structure of the RBF neural network.
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where x is a p-dimensional input vector, and ci is the center
vector of the ith hidden layer node, d is the spread of the radial
basis function (activation function), and ui is the weight from
the ith hidden layer node to the output node.36 The parameters
affecting the performance of the RBF model are d and 3 (the
mean squared error of the experimental and calculated
responses of the training object). The smaller the value of 3 is,
the stronger the tting ability of the trained model will be. But
too small 3 will lead to over tting of the model. d and 3 affect
the tting and generalization ability of the model,
respectively.36

The implementation steps of mean decrease impurity
method are as follows:

Step 1: Dividing the training set, we randomly obtained two
parts: Data A and Data B. Data A contains 90% of the training
set, and Data B contains the other 10%.

Step 2: We constructed an RBF model with 317 inputs (317
descriptors) and 1 output (�log LC50) using Data A.

Step 3: Using data B to test the accuracy of the model, we
calculated R0

2, R0
2 is written in eqn (2).

R0
2 ¼ 1�

PNi

i¼1

ðyi � ŷiÞ2

PNi

i¼1

ðyi � yiÞ2
(2)

where �y is the average response of the testing objects, while yi
and ŷi are the experimental and predicted responses of the ith
testing object, respectively. Ni is the number of test samples in
the ith model.

Step 4: We randomly shuffled the descriptor values of each
column of data B in turn (only one column is shuffled at a time)
Fig. 6 Descriptor importance ranking and the results of the descriptor s

This journal is © The Royal Society of Chemistry 2020
to form new data sets B1(i), (i ¼ 1, 2, ., 317). The prediction
accuracy of the RBF model against the 317 data sets was tested
and recorded as R1

2(i), (i ¼ 1, 2, ., 317).
Step 5: We calculated the decrease in the impurity value of

each descriptor, recorded as Ir(i). Ir(i) is dened as eqn (3).

IrðiÞ ¼
����R0

2 � R1
2ðiÞ

R0
2

���� (3)

Step 6: We repeated step 1 to step 5 50 times, and then the
value of the mean decrease impurity (IrðiÞ) was calculated. The
importance of each descriptor was evaluated by IrðiÞ.

When using the above method to evaluate the importance of
descriptors, the maximum number of neurons in the RBF
neural network was set to 500 (greater than the number of
descriptors). There are too many descriptors, so computing
power cannot meet the requirements of the joint optimization
of RBF neural networks and descriptors. To avoid the inuence
of RBF neural network parameters on the importance evalua-
tion of the descriptors, we randomly selected 100 sets of
different parameters for the RBF neural network (3 ˛ [10�3,
10�1] and d ˛ 1, 5) and repeated the above evaluation method
100 times.

The mean value of the 100 evaluation results was used to
judge the importance of each descriptor. In our study, descriptors
with an evaluation value greater than 0.01 were retained and
graphically shown in Fig. 6. Finally, the 56 descriptors shown in
Fig. 6 were selected to establish our QSAR model. The results of
the descriptor preliminary selection and detailed information on
the 56 selected descriptors are listed in the ESI (Preliminary
selection of 56 Descriptors.xls and Table S2).†
3.4. Establishment of joint optimization method

In essence, the mean decrease impurity method is a single
factor analysis method. Although the number of descriptors is
reduced, the selected descriptors may still have multi-
collinearity, which will affect the performance of the QSAR
model.

Only the joint optimization of the descriptors and model
parameters can guarantee that the most appropriate molecular
descriptors are selected under the optimal model parameters to
improve the performance of the QSAR model. In this paper,
election.
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HQPSO algorithm was used to jointly optimize the hyper
parameters and input variables (descriptors) of RBF model.

HQPSO is a variant of Quantum-behaved particle swarm
optimization (QPSO). QPSO is an improved particle swarm opti-
mization (PSO) algorithm with quantum behavior, it was
proposed in 2004 by Sun.37 According to the basic principle of
quantum mechanics, QPSO uses wave function instead of posi-
tion and velocity to describe the state of particles. It has many
advantages, such as few parameters, simple operation and strong
convergence ability. However, for complex multi-modal optimi-
zation problems, similar to other algorithms, the QPSO algo-
rithm still suffers from premature and poor precision. The
HQPSO algorithm was proposed to enhance diversity of the
population, balance the exploration and exploitation abilities
and improve the precision of QPSO algorithm. In HQPSO, new
global, local and enhanced search strategy, Lévy ight and
hopping operation technology, and new convergence speed
control method were introduced. Combined with the advantages
of quantum behavior of QPSO and hybrid operation strategy, the
performance of HQPSO algorithm had been improved. The
numerical test results had demonstrated that HQPSO is of better
performance than PSO, QPSO and some other comparison
algorithms. This algorithm has been successfully applied to the
optimization of ground state structure of Aun (n ¼ 12–30) cluster
in chemistry (a typical NP problem).

In this paper, we focused on the application of HQPSO
algorithm. The detailed implementation steps and mathemat-
ical equation of HQPSO algorithm can be found in literature.27

The selection of the descriptors and the optimization of the
parameters of the QSAR model belong to discrete and contin-
uous optimization problems, respectively. In intelligent opti-
mization algorithms, it is difficult to solve the joint
optimization problem with traditional binary coding or real
coding methods. In this paper, we propose a new coding
method, which achieves the coding of descriptors in two steps;
this process uses real coding and binary decoding. In the
HQPSO algorithm, we adopt a real coding strategy. To realize
the discrete optimization of the descriptors, we need to trans-
form the real code of the descriptors into binary code.

Next, we will explain in detail the encoding methods of the
descriptors and the model parameters of the RBF neural
network. In our model, 56 descriptors and two parameters (3
and d) of the RBF neural network need to be optimized. For the
HQPSO algorithm, we dene an 8-dimensional initial pop-
ulation. The rst two dimensions represent the parameters of
the RBF neural network, with a value range [10�4, 5], that is, 3 ˛
[10�4, 5], and d˛ [10�4, 5]. The last six dimensions represent the
descriptors, with a value range [0, 1023]. In the last six dimen-
sions, each dimension represents 10 descriptors. A value of
0 (expressed in binary as ‘0000000000’) means that no
descriptor was selected, 1023 (expressed in binary as
‘1111111111’) means that all descriptors were selected, and 563
(expressed in binary as ‘1000110011’) means that the 1st, 2nd,
5th, 6th, and 10th descriptors were selected.

Here, we assume that the initial solution randomly gener-
ated by the HQPSO algorithm is Pop ¼ [0.01, 0.25, 515.6, 511.9,
91.0, 0.15, 400.3, 43.7]. Obviously, this is a real coding strategy.
21298 | RSC Adv., 2020, 10, 21292–21308
Therefore, we need to do the following to transform the initial
solution for the implementation of joint optimization:

(1) Obtain the parameters of the RBF neural network from
the 1st and 2nd dimensions of Pop: 3 ¼ 0.01 and d ¼ 0.25.

(2) For the last six dimensions of Pop, round rst and then
decode it into binary:

[515.6, 511.9, 91.0, 0.15, 400.3, 43.7] / 0, 44, 91, 400,
512,516/ [1000000100, 1000000000, 0001011011, 0000000000,
0110010000, 0000101100]

From the binary decoding results, we can see that the 3rd,
10th, 20th, 21st, 22nd, 24th, 25th, 27th, 45th, 48th, 49th, 52nd,
53rd, and 55th descriptors were selected as the input variables
of the RBF neural network. Aer decoding, we can use these
descriptors and parameters of RBF to establish an RBF-based
QSAR model.

RBF neural network has strong tting ability, but it is easy to
over tting. For an RBF model, the larger the value of R0

2, the
stronger the tting ability of the model; the larger the value of
Rcv10

2, the stronger the robustness of the model. Our aim is to
establish a robust QSAR model with good tting ability. During
the experiment, we found that when the value of R0

2 is too large,
which will cause the value of Rcv10

2 to become smaller; the value
of Rcv10

2 is too large, which also causes the value of R0
2 to be

smaller (the values of R0
2 and Rcv10

2 can be adjusted by
adjusting the parameters of RBF neural network). That is to say,
if the tting ability of the model is too strong, the robustness of
the model will be worse, and if the robustness of the model is
too strong, the tting ability of the model will be worse. Only
choosing the reciprocal of R0

2 or Rcv10
2 as the tness can't make

the model get good performance. To balance the tting ability
and robustness of the model, the tness function of the HQPSO
algorithm is dened as eqn (4):

Fitness ¼ 1

R2Rcv10

(4)

R2 and Rcv10
2 are dened as eqn (5) and (6), respectively.

R2 ¼ 1�
PNTr

i¼1

ðyðiÞ � ŷðiÞÞ2

PNTr

i¼1

ðyðiÞ � yTÞ2
(5)

Rcv10
2 ¼ 1�

PNTr

i¼1

ðycv10ðiÞ � ŷcv10ðiÞÞ2

PNTr

i¼1

ðycv10ðiÞ � yTÞ2
(6)

where NTr is the number of compounds in the training set, �yT is
the average response of the training objects, and y(i) and ŷ(i) are
the experimental and the predicted responses of the ith training
object, respectively. ycv10(i) and ŷcv10(i) are, respectively, the
experimental and predicted responses of the ith training object
in 10-fold cross validation. To avoid illegal value of tness, when
the value of R2 or Rcv10

2 is not great than 0, we set their value to
0.0001.

The ow chart for the joint optimization of the QSAR model
by the HQPSO algorithm is shown in Fig. 7.
This journal is © The Royal Society of Chemistry 2020
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Table 1 Statistical results of the Y-randomization test

No. R2_yrand RCV10
2_yrand

1 0.0014 �1.0940
2 0.0015 �1.3021
3 0.0014 �1.3484
4 0.0039 �1.1477
5 0.0001 �1.3669
6 0.0011 �1.1941
7 0.0002 �1.3974
8 0.0009 �1.2096
9 0.0004 �1.1710
10 0.0017 �1.5953
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Considering the actual requirements of joint optimization
and our computing power, the parameters of the HQPSO algo-
rithm are set as follows: the population size is 30, the number of
maximum iterations is 1000, and the internal parameters are
l ¼ 1 and L ¼ 10 (the values of l and L are selected according to
ref. 27). To avoid over-tting, we set the following constraints in
the optimization process: 0 < R2 � Rcv10

2 < 0.3.

3.5. Development and validation of the RBF-based QSAR
model

Aer joint optimization, an optimized RBF-based QSAR model
(No. 1) for acute toxicity in fathead minnow was obtained with
the training set (containing 759 compounds), and 22 molecular
descriptors were selected in the model. The optimized param-
eters of the RBF neural network were 3 ¼ 0.0096 and d ¼ 1.1189.

In the OECD principle, QSAR model validation becomes an
essential step in developing a statistically valid and predictive
model because the real utility of a QSAR model lies in its ability
to accurately predict the modeled properties for new
compounds. The following two approaches were used to vali-
date the established RBF-based QSAR model:

(1) Internal validation
Decision coefficient: The value of R2 is 0.9001, and the

adjusted decision coefficient Radj
2 is 0.8973.

Cross-validation test: The value of the 10-fold cross-
validation of Rcv10

2 is 0.7074. According to the literature,38 the
cross-validation result must be greater than 0.5 in a robust
QSAR model.

Over tting: R2 � Rcv10
2 < 0.3, there is no over-tting in the

model.
Y-randomization test: In this test, the dependent-variable

vector (Y-vector) was randomly shuffled, and a new QSAR
model was developed using the original independent variable
Fig. 7 Flow chart of the joint optimization algorithm.

This journal is © The Royal Society of Chemistry 2020
matrix. It was expected that the resulting QSAR models would
have low R2 and Rcv10

2 values.39 This process was repeated 10
times, and the statistical results for 10 runs are listed in Table 1.

Topliss ratio: The QSAR model also fullls the rule of thumb
condition (that is, the topliss ratio), whereby the chemical number
over the number of selected variables should be at least 5.40

(2) External validation
The external predictive power of the models was tested

through the validation set and evaluated by the Rext
2 and Qext

2.
We calculated Rext

2 (using eqn (7)) and Qext
2 (using eqn (8)), and

the values were 0.7043 and 0.7041, respectively.
The equation of Rext

2 is given as:

Rext
2 ¼ 1�

PNVa

i¼1

ðyðiÞ � ŷðiÞÞ2

PNVa

i¼1

ðyðiÞ � yVÞ2
(7)

where NVa is of the number of compounds in the validation set;
�yV is the average response of the validation objects, while y(i)and
RSC Adv., 2020, 10, 21292–21308 | 21299
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ŷ(i) are the experimental and predicted responses of the ith
validation object, respectively.

The equation of Qext
2 is given as:

Qext
2 ¼ 1�

PNVa

i¼1

ðyðiÞ � ŷðiÞÞ2

PNVa

i¼1

ðyðiÞ � yTÞ2
(8)

where NVa is of the number of compounds in the validation set;
�yT is the average response of the training objects, while y(i)and
ŷ(i) are the experimental and predicted responses of the ith
validation object, respectively.

Golbraikh and Tropsha criteria41 is also used to evaluate the
performance of the RBF-based QSAR model. k ¼ 0.9926 (k0 ¼
0.9696) and (R0ext

2 � R
02
0ext)/R0ext

2 ¼ 0.0067. k and k0 are the cor-
responding slopes of regression lines through the origin. R0ext

2

and R
02
0ext are calculated forcing the regression line to pass

through the origin; for acceptable QSAR predictive models, 0.85
< k, k0 < 1, 15 and (R0ext

2 � R
02
0ext)/R0ext

2 < 0.1.42,43

Therefore, the RBF-based QSAR model can pass the internal
and external validation successfully.

The relatively high quality of Radj
2, Rext

2 and Qext
2 indicate that

the model has a good tting ability, as well as a good external
prediction ability. The high value of Rcv10

2 in the cross-validation
test and the poor values of R2_yrand and RCV10

2_yrand in the Y-
randomization test ensure the robustness of the model.

The visual predictive performance of the RBF-based model is
shown in Fig. 8. The blue circles represent compounds in the
training set, and the red cross stars represent compounds in the
validation set. The solid line shows that the experimental and
predicted values are the same. Blue the circles and red cross
stars are distributed more-or-less symmetrically on both sides
of the solid line, which indicates the good predictive power of
the model.

The descriptors were sorted in descending order according
to the importance of the variables and are graphically shown in
Fig. 9. The importance of the descriptors was evaluated by the
Fig. 8 Visual predictive performance of the RBF-based quantitative
structure–activity relationship (QSAR) model No. 1.

21300 | RSC Adv., 2020, 10, 21292–21308
mean decrease impurity method under the optimized RBF
neural network.
3.6. Stability analysis of the RBF-based models

Intelligent optimization algorithms, such as GA and PSO, have
a certain randomness, and the HQPSO algorithm is no excep-
tion. Moreover, the joint optimization of the RBF-based QSAR
model in this paper is a very complex and time-consuming
optimization problem. Within the allowable range of
computing resources and time, the solution obtained by each
run of the HQPSO algorithm may only offer a different local
minima solution, which may affect the stability of the perfor-
mance of the QSARmodel. Therefore, we established another 19
models with the joint optimization algorithm and evaluated the
stability of the models. These models also passed internal
validation and external validation smoothly. The parameters of
the 20 RBF neural networks optimized by the HQPSO algorithm
and the performance of the 20 RBF-based QSAR models are
shown in Table 2.

Descriptors selected for models No. 2 and No. 3 are shown in
Fig. 10 and 11, respectively. The descriptors selected for other
models are graphically listed in the ESI (Fig. S1–S17).† As can
been seen from Fig. 9–11, the descriptors selected for RBF
neural networks are different in each model. Meanwhile, in
Table 2, we can see that the parameters of the RBF neural
networks are also different in each model. This illustrates that,
although the HQPSO algorithm cannot guarantee the optimi-
zation of the model to the global optimal solution in each run,
the robustness and tting quality of each model are relatively
high (in Table 2, the minimum Rcv10

2 of 20 RBF-based models
was greater than 0.7, and their minimum Radj

2 was greater than
0.8). Therefore, the joint optimization method adopted in this
paper can ensure that the RBF-based model has a good tting
ability and robustness.

In Table 2, we can also nd that the external predictive power
of the models was unstable, and only 30% of the models had
a value of Qext

2 greater than 0.7. However, the QSAR models
established by using 0–2D simple descriptors had a higher
tting ability and external predictive power than those of the
global model established by using 0–3D descriptors in the
literature.5 Although Qext

2 was less than 0.7 in other models, the
predictive performance was also satisfactory considering the
bigger validation set and uncertainties in the modeling data.
Fig. 9 Molecular descriptors selected in QSAR model No. 1.

This journal is © The Royal Society of Chemistry 2020
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Table 2 The parameters and performance of the 20 RBF-based QSAR
models

No.

Parameters Performance

3 d R0
2 Radj

2 Rcv10
2 Rext

2 Qext
2

1 0.0096 1.1189 0.9001 0.8973 0.7074 0.7043 0.7041
2 0.0100 1.8090 0.8957 0.8913 0.7026 0.7318 0.7317
3 0.0138 1.9633 0.8560 0.8513 0.7163 0.6778 0.6754
4 0.0130 2.2170 0.8643 0.8583 0.7099 0.7281 0.7257
5 0.0147 1.5330 0.8473 0.8432 0.7063 0.6756 0.6750
6 0.0129 1.7091 0.8657 0.8604 0.7024 0.6861 0.6846
7 0.0152 1.7533 0.8415 0.8356 0.7214 0.7029 0.7017
8 0.0876 1.9164 0.9093 0.9047 0.7008 0.6871 0.6862
9 0.0143 3.6643 0.8526 0.8459 0.7030 0.7284 0.7267
10 0.0115 1.5703 0.8809 0.8772 0.7200 0.6590 0.6551
11 0.0066 1.1717 0.9312 0.9290 0.7072 0.7081 0.7079
12 0.0136 1.3718 0.8588 0.8539 0.7062 0.6828 0.6820
13 0.0139 1.6444 0.8559 0.8512 0.7189 0.6973 0.6956
14 0.0130 2.4622 0.8639 0.8585 0.7011 0.6921 0.6889
15 0.0134 2.6968 0.8605 0.8553 0.7102 0.6591 0.6480
16 0.0128 2.7330 0.8668 0.8615 0.7347 0.6563 0.6507
17 0.0145 2.8846 0.8484 0.8418 0.7099 0.6815 0.6736
18 0.0110 2.1840 0.8851 0.8802 0.7143 0.6962 0.6879
19 0.0139 2.5180 0.8554 0.8504 0.7066 0.6617 0.6555
20 0.00732 1.9213 0.9237 0.9200 0.7065 0.6684 0.6612

Fig. 10 Molecular descriptors selected for QSAR model No. 2.

Fig. 11 Molecular descriptors selected for QSAR model No. 3.
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3.7. Toxicity mechanism interpretation

In the OECD principle, it is necessary to analyze the mechanism
of the QSAR model. To study the relationships between various
This journal is © The Royal Society of Chemistry 2020
descriptors and the acute toxicity of compounds on fathead
minnow, we performed the following preparation steps:

(1) We found six descriptors with obvious correlations to
acute toxicity through data visualization. The curves between
the value of the descriptor and toxicity are shown in Fig. 12.

(2) We counted the frequencies for 56 descriptors used in 20
QSAR models. The statistical results are shown graphically in
Fig. 13.

We explained the toxicity mechanisms combined with the
times of the descriptors used in the models (Fig. 13), the
importance of the descriptors in each model (Fig. 8–10, S1–S17
in the ESI),† and the correlation between the descriptors and
acute toxicity (Fig. 12); then, we made the following inferences:

(1) “Xlog P” is the most important descriptor affecting acute
toxicity. “Xlog P” appears in all 20 QSAR models and is the most
important descriptor in all models except model No. 5 (“Xlog P”
is the second most important). “Xlog P” is an octanol–water
partition coefficient that expresses the lipophilicity of a mole-
cule, and lipophilicity represents the driving force of narcosis
toxicity.1,5 Molecular toxicity will increase with lipophilicity as
a consequence of the enhanced ability of toxicants to enter the
organism.1 As can be seen from Fig. 12(a), there is a positive
correlation between “Xlog P” and toxicity, but this is not
a simple linear relationship. This relationship illustrates that
the acute toxicity of fathead minnow not only results from
narcosis toxicity.

(2) “Crippen log P” is a water distribution coefficient ob-
tained by another calculation method. It also has an obvious
positive correlation with acute toxicity (Fig. 12(b)). Moreover,
both the frequency (it appeared 15 times in 20 models) of its
occurrence and its importance ranking in the models were
relatively high. Therefore, it can also reect acute toxicity.

(3) “AMR” is molar refractivity. AMR can be used as
a measure of electron polarizability in molecules. Previous
studies have shown that, for aquatic organisms, the stronger the
polarizability, the greater the toxicity of the molecules.1 Based
on its positive correlation with acute toxicity (Fig. 12(c)), the
frequency (it appeared 13 times in 20 models) of its occurrence,
and its importance ranking in the models, “AMR” is the same as
“Crippen log P”. Therefore, AMR is another indicator that
reects acute toxicity.

(4) “AATS4v” is the average Broto–Moreau autocorrelation-
lag 4 (weighted by van der Waals volumes), which has an
obvious positive correlation with acute toxicity (Fig. 12(d)).
“GATS1v” is the Geary autocorrelation-lag 1 (weighted by van
der Waals volumes), but it has an obvious negative correlation
with acute toxicity (Fig. 12(f)). These two descriptors are related
to the van der Waals volumes of molecules. This illustrates that
the van der Waals volume of the molecule is not signicant
when analyzing the acute toxicity of fathead minnow. Although
“AATS4v” and “GATS1v” have no clear chemical signicance,
they can still be used as a reference for the changing trends of
acute toxicity.

(5) “GATS1i” is Geary autocorrelation-lag 1 (weighted by rst
ionization potential), which has an obvious negative correlation
with acute toxicity (Fig. 12(e)). This descriptor is related to the
rst ionization potential. The rst ionization potential is the
RSC Adv., 2020, 10, 21292–21308 | 21301
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Fig. 12 Descriptors with an obvious correlation to acute toxicity. (a) The correlation between Xlog P and acute toxicity, (b) correlation between
Crippen log P and acute toxicity, (c) correlation between AMR and acute toxicity, (d) correlation between AATS4v and acute toxicity, (e)
correlation between GATS1i and acute toxicity, and (f) correlation between GATS1v and acute toxicity.
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energy required for a gaseous atom in the ground state to lose
one electron in its outermost layer. The larger the initial ioni-
zation energy, the harder it is for an atom to lose an electron.
Thus, the larger the “GATS1i”, the greater the initial ionization
energy, and the less likely the compound will both react and
produce toxicity. Therefore, “GATS1i” is also one of the indi-
cators that reects acute toxicity.

(6) The relatively frequent appearance of “khs.dsch”,
“MATS1c”, “AATS4v”, “GATS6i”, “GATS1m”, “MlogP”, and “nN”
21302 | RSC Adv., 2020, 10, 21292–21308
in the models illustrates that these factors may have a certain
inuence on acute toxicity. However, there is no obvious
correlation between them and acute toxicity, so it is difficult to
use them to analyze the toxicity mechanism.

(7) The mechanism of the acute toxicity of organic
compounds in fathead minnow is very complex and cannot be
simply described by using several descriptors. Although the
water distribution coefficient, molar refractivity, and rst ioni-
zation potential are essential factors affecting the acute toxicity
This journal is © The Royal Society of Chemistry 2020
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Fig. 13 Frequency of the descriptors used in the 20 RBF-based models.
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of fathead minnow, there is a complex nonlinear relationship
between the descriptors and toxicity. Therefore, it is necessary
to establish a toxicity prediction model by using a neural
network with nonlinear abilities.
Fig. 14 R2 statistical results of the consensus models.
4. The consensus RBF-based QSAR
model
4.1. Sub-model selection and consensus modeling

From Table 2, we can see that the external prediction ability of
the RBF-based models was unstable (the range of Qext

2 is from
0.6480 to 0.7317). To improve the performance of the estab-
lished QSAR models, we employed a consensus modeling
approach. The idea of consensus modeling is to integrate
several weak learners into a strong learner to improve the
stability and generalization performance of the QSAR
model.44–46 To establish a reasonable consensus model, we
studied the inuence of the several sub-models used in the
consensus model. A total of 2–20 RBF-based QSAR models were
selected as sub-models to establish a consensus model, and the
average output of each sub-model was used as the output of the
consensus model.

For the consensus models with N (N ¼ 2, 3, ., 19) sub-
models, we established 1000 consensus models with sub-
models randomly selected. Then, we calculated the R2, Rcv10

2,
and Qext

2 of each consensus model. The statistical results of the
consensus models with N sub-models are shown in the form of
boxplots in Fig. 14–16.

In Fig. 14–16, the “Number” on the X-axis indicates the
number of sub-models used in the consensus model.

When the value of “Number” on the X-axis is 1, “R2”, “Rcv10
2”,

and “Qext
2” on the Y-axis represents the statistical results of each

RBF-based model (sub-model); when the value of “Number” is
20, “R2”, “Rcv10

2”, and “Qext
2” on the Y-axis represent the results

of the consensus model, including all the 20 sub-models. When
the value of “Number” is 2 to 19, “R2”, “Rcv10

2”, and “Qext
2” on

the Y-axis represents the results of the consensus model,
including the corresponding number of sub-models.

It can be seen from Fig. 14–16 that the minimum R2, Rcv10
2,

and Qext
2 of established consensus models increased gradually

with an increase of the sub-model, while the maximum R2, Rcv10
2,
This journal is © The Royal Society of Chemistry 2020
and Qext
2 of established consensus models increased rst and

then decreased. Meanwhile, the performance of the consensus
model also became increasingly more stable with an increase in
sub-models. Unlimited increases in the sub-models have little
effect in improving the performance of the consensus model.

In the OECD principle, the external validation set cannot
participate in the modeling process, so we cannot use the best
Qext

2 to choose the sub-models for a consensus model. The sub-
models can only be chosen according to the performance of R2,
Rcv10

2, or the stability of the consensus model. We used 4
methods to select the sub-models, and the comparison results
are shown in Table 3.

From Table 3, we can see that method D has the best Qext
2.

Meanwhile, it can be seen from Fig. 16 that the values of Qext
2 are

all greater than methods A, B, and C when the number of
randomly selected sub-models is greater than 16. As mentioned
in studies38 and,47 a strong internal predictive power does not
indicate good external predictive power. A high R2 and Rcv10

2 is
only a necessary, but not sufficient condition for a QSARmodel to
have good external predictive power. Our aim was to obtain
a stable model with good performance, so we selected method D
to establish the consensusmodel. The performance of thismodel
is as follows: R2 ¼ 0.9118, Rcv10

2 ¼ 0.7632 and Qext
2¼ 0.7430. The

robustness, tting ability, and external prediction ability of this
model are all better than those of RBF-based sub-models.
RSC Adv., 2020, 10, 21292–21308 | 21303
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Fig. 15 Rcv10
2 statistical results of the consensus models.

Fig. 16 Qext
2 statistical results of the consensus models.

Table 3 Different sub-model selection methods and the external
predictive power of the consensus modela

Method No. (sub-models) R2 Rcv10
2 Qext

2

A 7 0.9139 0.7692 0.7310
B 2 0.9422 0.7396 0.7183
C 6 0.9277 0.7667 0.7271
D 20 0.9118 0.7632 0.7430

a Methods A, B, and C: sub-models were selected according to the
maximum Rcv10

2, maximum R2, and maximum R2 � Rcv10
2 of the

consensus models (the maximum Rcv10
2, R2, and R2 � Rcv10

2 were
obtained by searching for the best combination of sub-models
through the HQPSO algorithm). D: sub-models were selected
according to the stability of the consensus model (the more sub-
models, the more stable the consensus model).
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The visual predictive performance of the consensus model is
shown in Fig. 17.
Fig. 17 Visual predictive performance of the consensus model.
4.2. Applicability domain of the consensus model

In the OECD principle, a standard QSARmodel must give its AD.
The AD indicates the applicable scope of the QSAR model and
also indicates the reliability of the prediction results of the
QSAR model for newly synthesized compounds.48–50 The
21304 | RSC Adv., 2020, 10, 21292–21308
denition methods for the AD mainly include geometric
methods, probability density distribution-based methods,
range-based methods, ensemble methods, and chemical simi-
larity distance-based methods.51,52 Leverage53 is a representative
and widely used distance-based AD denition method. It is
essentially a method based on the spatial distance information
between compounds in the training set, but it does not consider
the importance of each descriptor. In the consensus model of
this paper, the frequency of each descriptor used in the model is
different, which shows that different descriptors have different
contribution rates for the output of the model. Therefore, we
proposed an FWD-based method to dene the AD for the
consensus model and compared with the leverage method.

The denition and implementation step of the FWDmethod
are as follows:

Step 1: Calculate the frequency of each descriptor used in the
consensus model to form the weight vector F¼ [f1, f2,., fd]. fj is
written in eqn (9):

fj ¼ 1

N
nj ; j ¼ 1; 2;.; s (9)

where fj is the frequency of the jth descriptor, and s is the
number of descriptors used in the consensus model. N is the
number of sub-models, and nj is the number of the jth
descriptor used in the consensus model.

Step 2: The weighted operation for each compound is per-
formed: vij ¼ Aijfj. Aij is the value of the jth descriptor of the ith
compound, and vij is the weighted value of the jth descriptor of
the ith compound in the training set.

Step 3: Calculate the center point C ¼ [c1, c2, ., cs], and cj is
written in eqn (10).

cj ¼ 1

NTr

XNTr

i¼1

vij; j ¼ 1; 2;.; s (10)

where NTr is the number of compounds in the training set.
Step 4: Calculate the Euclidean distance of each weighted

compound to the center C using eqn (11).

di ¼ kvi � Ck; i ¼ 1; 2;.;NTr (11)
This journal is © The Royal Society of Chemistry 2020
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Fig. 19 Williams plot of the consensus model based on the FWD
method.
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Step 5: Calculate the mean value and standard deviation of d.
The mean value and standard deviation are expressed as u and
d, respectively. For the ith compound, if di > u + 3d, we consider
the compound outside the AD. Otherwise, it is inside the AD.

Fig. 18 and 19 show the difference between the leverage and
FWD methods. In Fig. 18 and 19 black circles represent
compounds in the training set, and blue crosses represent
compounds in the validation set. In Fig. 18 and 19, the trans-
verse dashed lines represent a �3 standard residual. In Fig. 18,
the vertical dashed line represents a warning leverage ¼
0.22134. In Fig. 19, the vertical dashed line represents a warning
FWD ¼ 2.4169. It can be seen from Fig. 18 and 19 that most
compounds in the validation set were predicted within �3
standardized residuals, which illustrates the good predictive
power of the consensus model.

Comparing Fig. 18 with Fig. 19, we can see that, regardless of
the AD denition method, the outliers were all in their respective
AD. There were more points with good performance outside the
AD in Fig. 18, so the AD of the leverage method can be expanded.

In the FWD method, the importance of the descriptors was
considered, and the expansion of the AD did not destroy the
performance of the consensus model. Therefore, the AD deni-
tion method for FWD is also reasonable. According to the FWD
method, the AD coverage rate of the consensus model is 99.34%
for the training set and 97.45% for the validation set. The
application scope of the consensus model is, therefore, wide.
4.3. Outlier analysis of the consensus model

For response variables, 13 compounds were identied as
outliers because their standardized residuals were outside the
range of �3 standardized residuals, as shown in Fig. 18 and 19.
The molecular structures of the outliers are shown in Fig. 20,
and detailed information for these outliers is listed in Table 4.

Based on the information listed in Table 4 and the correla-
tion between the descriptors and toxicity in Fig. 11, we make the
following inferences about the causes of outliers:

For 230a and 1b, the values of “Xlog P” are small. The values
of “AMR” and “AATS4v” are also relatively small, while those of
Fig. 18 Williams plot of the consensus model based on the leverage
method.

This journal is © The Royal Society of Chemistry 2020
“GATS1v” and “GATS1i” are relatively large. This means that the
outliers have low toxicity, which is consistent with their exper-
imental values. The reason for their large errors is that there are
few samples close to their toxicity levels in the training set, and
the model does not learn their toxicity mechanisms well.

For 620a, 680a, and 2b, the predicted results have large
positive errors. 620a and 2b have relatively large values of
“AATS4v”, and 620a and 680a have relatively large values of
“Xlog P”. This may be the reason for the larger prediction
results. This also shows that the toxicity mechanisms of these
three compounds are complex, which is different to most
compounds in the data set.

For 207a, 213a, 222a, 307a, 314a, 280a, 720a, and 80b, the pre-
dicted results have large negative errors. They all have a relatively
small water distribution coefficient, which is the most important
variable that affects the output of the model, which may be the
reason for the small output of themodel. This also shows that the
acute toxicity of these compounds is determined not only by their
lipophilicity but also by other factors. Therefore, to better predict
the toxicity of each compound, we need to use a larger number of
representative compound structures as a training set to build
a more accurate QSAR model.
4.4. Comparison of the consensus model with other
published models and xgboost-based model

To better illustrate the superiority of the QSAR model estab-
lished in this paper, we developed a detailed comparative
analysis between the model in this paper and the main pub-
lished models. The results of this comparison can be found in
Table 5. Our interest was only on models established with
a training set NTr > 700 because using models with small
training sets makes it difficult to collect sufficient and diverse
molecular information to develop a QSAR model with superior
performance and a wide AD.

As can been seen in Table 5, the MLR,5 PNN,15 and GA-KNN16

algorithms were used to develop models with a training set that
NTr > 700. Only the model proposed in this paper and the MLR
in5 strictly follow the OECD principle. The other algorithms
RSC Adv., 2020, 10, 21292–21308 | 21305
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Fig. 20 Molecular structures of the outliers. aOutliers in the training set; boutliers in the validation set.
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have some disadvantages. PNN and GA-KNN have not been
cross-veried; thus, the robustness of these models cannot be
guaranteed. PNN does not report AD, which limits its applica-
tions. GA-KNN has a poor tting ability and an unstable external
predictive power. Although PNN has a good tting ability, it
cannot illustrate whether the model is over-tted or not because
there is no cross-validation. Meanwhile, its validation set is
much smaller than that of the other models, and its external
predictive power is unstable.

Under the OECD principle, only MLR can make a fair
comparison with the RBF-based consensus model proposed
this paper. Compared with MLR, the tting ability and external
predictive power of the RBF-based consensus model have been
greatly improved, and the robustness of the model has also
been enhanced. Although the number of descriptors used is
greater than that of the MLR, this model satises the “Topliss
ratio” condition, and there is no over-tting. Meanwhile, the
importance of the descriptors and the toxicity mechanisms are
explained reasonably.
Table 4 Information on the outliers in the consensus model

No. CAS Experiment Predict Xlog

207a 93-91-4 5.1700 3.8313 1.29
213a 30 030-25-2 5.69 4.2496 1.86
222a 107-02-8 6.52 4.9657 0.29
230a 57-55-6 0.24 1.6503 �0.
307a 818-72-4 5.49 3.7873 2.36
314a 1204-21-3 6.5900 5.0223 1.66
380a 107-98-2 3.6400 2.2181 �0.
620a 72-54-8 4.86 6.2549 3.40
680a 138-86-3 2.15 4.2357 3.72
720a 22104-62-7 4.18 2.7058 0.16
1b 87-72-9 0.6 3.5020 �1.
2b 94-75-7 2.0500 4.4881 1.59
80b 123-31-9 6.4000 3.6475 0.65

a Outliers in the training set. b Outliers in the validation set.

21306 | RSC Adv., 2020, 10, 21292–21308
To further illustrate the superiority of the RBF-based
consensus model, we developed a Xgboost-based model with
the same training and validation set and compared their
performance.

Xgboost is an open source machine learning project devel-
oped by Chen and his partners. It has effectively implemented
DGBT algorithm and made many improvements in algorithm
and engineering.54 It has been widely used in Kaggle competi-
tion and many other machine learning competitions and ach-
ieved good results. It is a very potential machine learning
algorithm.

Firstly, the initial parameters range of Xgboost-based model
were selected as follows:

learning_rate ¼ [0.01, 0.03, 0.05, 0.07, 0.1]
n_estimators ¼ [700, 900, 1000, 1100, 1300, 1500]
max_depth ¼ [6, 8, 10, 12, 14]
Then, we used grid search method to determine the appro-

priate parameters of Xgboost.
Finally, when Rcv10

2 gets the maximum value, the parameters
of xgboost algorithm are as follows:
P AMR AATS4v GATS1v GATS1i

00 50.4031 161.0016 0.9795 1.05
70 40.0635 129.5252 0.8473 0.9904
30 16.3660 56.5487 1.1915 1.3333
7480 19.1380 49.8783 1.4849 1.7348
00 31.2718 108.9875 1.3134 1.3418
60 61.5298 209.2464 0.9431 1.2976
2290 23.8892 75.6174 1.6168 2.0028
30 87.8586 226.7365 0.685 0.9153
90 46.0152 106.99 1.25 1.25
10 39.1281 95.6827 1.5601 2.0466
4540 29.9609 96.8514 1.1029 1.5242
20 53.1163 222.2119 0.7181 1.1085
40 34.1668 101.8955 0.7759 0.8136

This journal is © The Royal Society of Chemistry 2020
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Table 5 Comparison of the current models with previous models (NTr > 700)a

Reference Method NTr NVa Nde R2 Rcv
2 Qext

2 AD

5 MLR 771 192 8 0.704 0.700 0.641 Yes
15 PNN 800 86 76 0.89–0.99 — 0.52–0.78 No
16 GA-KNN 726 182 6 0.62–0.73 — 0.61–0.77 Yes
Present RBF-based consensus model 759 196 56 0.9118 0.7632 0.7430 Yes
Present Xgboost-based model 759 196 56 0.9960 0.7255 0.7235 No

a NTr is the number of compounds in the training set, NVa is the number of compounds in the validation set, and Nde is the number of descriptors
used in each model.
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learning_rate ¼ 0.05
n_estimators ¼ 1000
max_depth ¼ 6
The performance of established Xgboost-based model is as

follows:
R2 ¼ 0.9960, Rcv10

2 ¼ 0.7255 and Qext
2 ¼ 0.7235.

The detailed information was also listed in Table 5.
Compared with Xgboost, our RBF-based consensus model

has better robustness and external prediction ability, even if the
tting performance is worse than Xgboost, it is also satisfactory.

Therefore, according OECD principles, the proposed model
in this paper is a reliable model that can be used to predict the
acute toxicity of fathead minnow for compounds in an aquatic
environment.
5. Conclusions

In this study, we developed a fathead minnow acute toxicity
model based on an RBF neural network under the OECD prin-
ciple. A 0–2D descriptor was used to establish a QSAR model to
avoid the uncertainty caused by molecular structure optimiza-
tion when calculating 3D descriptors. The SOM neural network
was used to split the dataset to ensure symmetry and fairness of
data splitting and generate multiple chemically diverse training
and validation sets. The importance evaluation of descriptors
and their primary selection based on the mean decrease
impurity method was used to simplify the model structure. The
HQPSO algorithm with a new tness function and a new
parameter encoding method was employed to jointly optimize
the molecular descriptors and parameters of the RBF model to
ensure that the most appropriate molecular descriptors were
selected under the optimal QSAR model parameters. Combined
with frequency and importance of the descriptors used in the
RBF-based models, as well as the correlation between the
descriptors and acute toxicity, we explained the toxicity mech-
anism and concluded that the water distribution coefficient,
molar refractivity, and rst ionization potential are important
factors affecting the acute toxicity of fathead minnows. To
improve the external prediction ability of the RBF-based
models, a consensus model was established, and a new FWD-
based AD was dened to illustrate the application scope of
the consensus model. The comparison results showed that the
model has a wide AD, good tting ability, good external
predictive power, and robustness. The proposed model shows
This journal is © The Royal Society of Chemistry 2020
good performance with R2¼ 0.9118, Rcv10
2¼ 0.7632, and Qext

2¼
0.7430 and can act as a reference in the study of aquatic toxicity
compounds.
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