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A coumarin-based novel 'AND’ logic fluorescent probe ROS-AHC has been developed for the simultaneous

detection of ONOO™ and biological thiols. ROS-AHC was shown to exhibit only a very small fluorescence
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Peroxynitrite (ONOO™) is a short-lived reactive oxygen and
reactive nitrogen species (ROS and RNS) produced intracellu-
larly by the diffusion-controlled reaction of nitric oxide (NO")
with superoxide (O, ~)."” Despite playing a key role as a physi-
ological regulator,* it is commonly known for its high reactivity
towards most types of biomolecules, causing deleterious effects
and irreversible damage to proteins, nucleic acids, and cell
membranes.>®* ONOO™ is therefore a central biological patho-
genic factor in a variety of health conditions such as strokes,
reperfusion injuries or inflammatory and neurodegenerative
diseases (Parkinson's disease, Alzheimer's disease).””
Conversely, biothiols such as glutathione and cysteine are
endogenous reducing agents, playing a central role in the
intracellular antioxidant defence systems.’*** Glutathione
(GSH), in particular, is the most abundant biothiol in
mammalian cells, and exists as both its reduced GSH form, and
as the oxidised disulphide form GSSG."*"** Peroxynitrite and
biothiols such as GSH are intimately linked, as abnormal levels
of highly oxidising ONOO™ can perturb the delicate GSH/GSSG
balance, causing irreversible damage to key processes such as
mitochondrial respiration.'® Thus, abnormal levels of GSH are
common in cells undergoing oxidative stress, in which the
regulation of and interplay between ONOO ™~ and GSH is closely
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response upon addition of a single GSH or ONOO™ analyte. Exposure to both analytes, however, resulted in
a significant fluorescence enhancement.

associated with physiological and pathological processes.'”'®
One such example is drug-induced liver injury (DILI), in which
upregulation of ONOO™ occurs in hepatotoxicity. Treatment
with GSH could be used to remediate this type of cell injury by
depletion of ONOO™.**"*

One of our core research interests lies in the development of
dual analyte chemosensors capable of detecting two distinct
analytes such as biological reactive oxygen species and bio-
thiols.”®*¢ Although a wide range of single-analyte probes exist
for the detection of ROS and thiols separately,>** ‘AND’ logic
sensors for their simultaneous detection are still rare.*** We
are therefore interested in developing such probes, containing
two distinct sensing units, one for each analyte, working
simultaneously or in tandem to elicit a fluorescence response.**
This approach allows the monitoring of multiple biomolecular
events and factors involved in specific disease pathologies, in
order to achieve optimal predictive accuracy for diagnosis and
prognostication.*

Using these principles, our group has recently focused on
developing a range of ‘AND’ logic based sensors exploiting
a variety of sensing units and mechanisms of fluorescence. Two
such probes are shown below: GSH-ABAH (Fig. 1a), an ESIPT
probe with a 4-amino-2-(benzo[d]thiazol-2-yl)phenol (ABAH)
core, employing a maleic anhydride thiol-acceptor group;*' and
JEG-CAB (Fig. 1b), a coumarin-based probe, this time with
a salicylaldehyde homocysteine-reactive unit.** Both of these
sensors employ a benzyl boronate ester as their peroxynitrite-
reactive unit.

Herein, we set out to develop an ‘AND’ logic gate based
fluorescence probe for simultaneous detection of ONOO™ and
GSH. 3-Amino-7-hydroxy-2H-chromen-2-one (AHC) was chosen
as a suitable coumarin fluorophore core for the development of
an ‘AND’ logic based sensor, as its free phenol and amine
functional groups provided a good opportunity for independent
derivatization (Fig. 1).¢%°
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Fig. 1 (a) GSH-ABAH, previously reported probe for simultaneous

detection of ONOO™ and GSH. (b) JEG-CAB, previously reported
probe for simultaneous detection of ONOO™ and GSH. (c) AHC -
a core fluorescent unit that enables the synthesis of ‘AND’ based
fluorescent probe for the detection of ONOO™ and GSH (d) ROS-AHC,
a novel probe detailed in this work for simultaneous detection of
ONOO™ and GSH.

Previous literature reports show that protection of AHC with
a maleic anhydride group results in quenching of the couma-
rin's fluorescence intensity due to photoinduced electron
transfer (PeT) processes. This fluorescence is rapidly restored in
the presence of biological thiols, however, due to their fast
addition to this functional group.*® Therefore, we suggested that
functionalization of the free phenol of this sensor using
a benzyl boronic ester should further block the fluorescence,
whilst serving as reporter unit for ONOO™. The greatly increased
reactivity of peroxynitrite over other ROS towards boronate
esters*™** should allow this functionality to act as a peroxyni-
trite-selective reporter, leading to an ‘AND’ logic based probe
for the detection of ONOO™ and biological thiols (Fig. 1, Scheme
1). ROS-AHC was synthesized in 5 steps, starting with a 4-step
synthesis of compound 1 adapted from literature proce-
dures,**** followed by the addition of the benzyl boronic pinacol
ester (see Scheme S1 ESIt).
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Scheme 1 Fluorescence ‘turn on’ mechanism of ROS-AHC in the
presence of ONOO™ and GSH.

This journal is © The Royal Society of Chemistry 2020

View Article Online

RSC Advances

The UV-Vis behaviour of ROS-AHC before and after exposure
to both GSH and ONOO™ was evaluated in pH 7.40 buffer
solution, showing a maximum absorption peak at 340 nm for
both the unreacted probe and the probe following exposure to
GSH, shifting to 350 nm with the addition of ONOO™ to the
probe and 365 nm after sequential additions of GSH and
ONOO™ to the probe (Fig. S1 ESIf). Fluorescence experiments
were then carried out. As expected, ROS-AHC was initially non-
fluorescent, with a small fluorescence increase upon addition of
ONOO™ (6 uM) (Fig. 2 and S2 ESIY). Incremental additions of
GSH (0-4.5 uM) resulted in a much larger increase in fluores-
cence intensity (>69-fold, see Fig. 2 and S3 ESIT), demonstrating
the need for both GSH and ONOO™ in order to achieve
a significant ‘turn on’ fluorescence response.

Similar fluorescence experiments were then carried out in
reverse order, with the addition of GSH (6 uM) to ROS-AHC
resulting in only a small increase in fluorescence intensity
(Fig. 3 and S4 ESIT). As before, incremental addition of the
second analyte, in this case ONOO™ (0-5.5 uM), resulted in
a large increase in fluorescence intensity (>46-fold, Fig. 3 and S5
ESIt), confirming that ROS-AHC requires both GSH and ONOO™
for a full fluorescence ‘turn on’ response.

Subsequently, the selectivity of this probe towards both
analytes was evaluated. A range of amino acids were evaluated
(Fig. S6 ESIt), with only thiol-containing analytes (glutathione,
cysteine and homocysteine) eliciting significant fluorescence
response, whilst non-thiol amino acids led to no changes in
fluorescence intensity. A broad screen of ROS analytes was also
carried out, demonstrating excellent selectivity for ONOO™,
even over H,0, (Fig. S7 ESIf).

The time-dependent response of ROS-AHC with both
ONOO™ and GSH was also examined (Fig. S8 and S9 ESIf}). After
initial addition of GSH or ONOO™ to the probe, subsequent
addition of the second analyte triggered a rapid and significant
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Fig. 2 Fluorescence spectra of ROS-AHC (5 pM) with addition of
ONOO™ (6 uM), wait 5 min then incremental addition of GSH (0-4.5
uM), 5 min incubation before measurements in PBS buffer solution
(10 mM, pH = 7.40). Fluorescence intensities were measured with A,

= 400 nm (bandwidth 8 nm). The green line represents the highest
intensity after addition of GSH (4 uM).
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Fig. 3 Fluorescence spectra of ROS-AHC (5 uM) with addition of GSH
(6 uM), wait 5 min then incremental addition of ONOO™ (0-5.5 uM)
with 5 min incubation before measurements in PBS buffer solution
(10 mM, pH = 7.40). Fluorescence intensities were measured with Aey
= 400 nm (bandwidth 8 nm). The orange line shows the highest
intensity after addition of ONOO™ (5 uM).

increase in fluorescence, achieving maximum fluorescence
intensity within 78 s in both cases. Furthermore, LC-MS
experiments confirmed the formation of the suggested non-
fluorescent intermediates, as well as the final fluorescent
species shown in Scheme 1 (Fig S10, S11 and S127).

In summary, we have developed a coumarin-based dual-
analyte ‘AND’ logic fluorescent sensor, ROS-AHC, for the
simultaneous detection of ONOO™ and biological thiols. ROS-
AHC has shown high sensitivity and selectivity towards both
ONOO™ and biological thiols.
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