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optimization with adaptive
sampling for microfluidic concentration gradient
generator design

Haizhou Yang, a Seong Hyeon Hong,a Rei ZhGb and Yi Wang *a

This paper presents a surrogate-based optimization (SBO) method with adaptive sampling for designing

microfluidic concentration gradient generators (mCGGs) to meet prescribed concentration gradients

(CGs). An efficient physics-based component model (PBCM) is used to generate data for Kriging-based

surrogate model construction. In a comparative analysis, various combinations of regression and

correlation models in Kriging, and different adaptive sampling (infill) techniques are inspected to enhance

model accuracy and optimization efficiency. The results show that the first-order polynomial regression

and the Gaussian correlation models together form the most accurate model, and the lower bound (LB)

infill strategy in general allows the most efficient global optimum search. The CGs generated by

optimum designs match very well with prescribed CGs, and the discrepancy is less than 12% even with

an inherent limitation of the mCGG. It is also found that SBO with adaptive sampling enables much more

efficient and accurate design than random sampling-based surrogate modeling and optimization, and is

more robust than the gradient-based optimization for searching the global optimum.
1 Introduction

Formation of complex concentration gradients (CGs) of
biomolecules plays an important role in biological processes,1

such as immune response, wound healing, embryogenesis,
cancer metastasis, and others. One active research area is to
generate and maintain concentration gradients, such as linear,
parabolic, exponential, sawtooth, and hybrid proles2–4 using
microuidic devices. In contrast to their counterparts at the
macroscale, the microuidic concentration gradient generator
(mCGG) features several unique merits, including short trans-
portation time, fast analysis speed, simple operation, precise
manipulation of locations and quantities of biomolecule
delivery, and excellent physiological capability to cellular assays
at spatiotemporal scales.5–8 Therefore, a variety of mCGGs are
designed, microfabricated, and demonstrated in the eld of cell
biology and biochemistry, including tree-shaped, altered tree-
shaped, Y-shaped, pressure-balanced, incomplete mixing-
based, and membrane mCGGs.6,9 The tree-shaped network is
one of the earliest mCGG designs, which successively splits,
mixes, and recombines biologically relevant chemical solution
to form digitalized CGs across channel widths.10,11 In order to
generate more complex CGs with higher resolutions, the
number of stages of tree-shaped mCGG needs to be increased,
iversity of South Carolina, Columbia, SC

Control Engineering, Tongji University,
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which however may be more prone to clogging or leakage.6,12

Therefore, an altered tree-shaped device was developed, which
is able to reduce the number of stages of the tree-shaped
network and simplify the structure by delicately designed
splitting-and-combining patterns.13 Moreover, a Y-shaped
generator is designed to simplify the structure compared to
conventional and altered tree-shaped networks by reducing the
mixing channel length.9 In contrast to these complete mixing-
based mCGGs, mCGGs utilizing partial mixing were also
proposed by our coauthor that manipulates species transport
within microchannels and juxtaposes constituent CGs to form
complex ones, leading to simple network topology and salient
device reliability.12,14 mCGGs are also proposed to separate the
ow by a porous membrane and generate CGs by only permit-
ting specic molecules to pass through, and hence, yielding
shear free CGG.15

Research efforts above mostly focused on demonstrating
mCGGs that were fabricated with known operating parameters,
such as inlet concentrations and pressures/ow rates. In
general, determining these design parameters is challenging,
a trial-and-error process entailing iterative modeling, simula-
tion, and experiments under the guidance of prior experiences.
Therefore, a component model and systematic simulation-
based mCGG design method12,14 was previously proposed for
designing partial mixing-based mCGGs. It proceeds iteratively
within the design space to search for the combination of
operating parameters yielding the best agreement with the
prescribed CGs. However, the process was performed manually,
and could be further improved by automated optimization.
RSC Adv., 2020, 10, 13799–13814 | 13799
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Friedrich et al.16 utilized a mCGG consisting of a single micro-
uidic channel and an obliquely angled groove, which is
designed by optimization using CFD simulations, to generate
a prescribed CG, such as linear and exponential. An efficient
mCGGs design automation method based on physics-based
models and simulation to rapidly determine operating param-
eters that accurately generate prescribed CGs is indeed scarce
and strongly needed. In this context, we propose a surrogate-
based optimization (SBO) with adaptive sampling framework
to address such a challenge. The key elements of our proposed
method include: rst, optimization is undertaken on the
surrogate model and searches within the design space for
optimal parameters that can generate CGs matching the
prescribed ones. Surrogate models, also known as response
surface models and metamodels are used to approximate the
behavior of physics-based models through direct mapping
between input–output data pairs produced by the latter, and is
more computationally efficient to evaluate. Therefore, they are
widely used to minimize the number of evaluations by physics-
based computer simulation, such as the computational uid
dynamics (CFD) or the computational structural dynamics
(CSD)17,18 for accelerated optimization and design process. It is
well known that high-delity, physics-based simulation can be
computationally prohibitive for optimization in high-
dimensional design parameter space.19,20 The surrogate
model, constructed by a small number of selected physics-
based simulations, enables a cost-effective and rapid explora-
tion of the design space, thereby making it feasible and robust
to locate the global optimum.17,21,22 Second, an adaptive
sampling and inll strategy is utilized to determine new sample
points at the most important but under-explored regions for the
next round of physics-based simulation to progressively
improve surrogate model accuracy, especially near the region of
the global optimum by analyzing its underlying response
surface. The inll is undertaken with respect to a criterion that
balances between exploitation and exploration.23 Last,
a physics-based, component modeling (PBCM) approach we
developed previously to analyze species transport in mCGGs12

will be employed as the main engine to generate simulation
data for surrogate model construction and SBO. Because of its
closed-form nature, the PBCM simulation can typically run
orders of magnitude faster than high-delity CFD simulation,
and therefore, is used to generate simulation data for surrogate
modeling. In the previous work, the PBCM method was veried
by both CFD simulation12 and experiments14 for a variety of CGs,
including linear, saw-tooth, and bell shapes, and proven valid
for a variety of mCGGs.12

In contrast to existing efforts of mCGG modeling and design,
this paper presents several novelties. First, to the best of our
knowledge, it is an initial effort to establish SBO with adaptive
sampling/inll method for mCGG design. Second, a comparative
analysis is carried out to thoroughly investigate the effects of
various combinations of correlation functions, regression func-
tions, and inll strategies on surrogate model accuracy and SBO
convergence for mCGG design. Last, a new formulation for SBO of
mCGGs is proposed to avoid the backow issue, that is, liquid
solution unexpectedly exits through inlets of the mCGG network
13800 | RSC Adv., 2020, 10, 13799–13814
due to overly large difference of the pressure head among inlets.
In this formulation, instead of the inlet pressures, the pressure
differences between branch points within the mCGG network are
used as design variables, which facilitates surrogate modeling
and adaptive sampling (see Section 3 for details). Note that the
new formulation can potentially be extended to microuidic
electrokinetic ow driven by the electric eld.24,25

This paper is organized as follows. The methodology of the
SBO method for mCGGs is introduced in section 2, which
describes the PBCM, surrogate modeling, and different inll
strategies. Section 3 elucidates the problem formulation and
case studies. In Section 4, the results of SBO with adaptive
sampling for prescribed CGs of various proles are discussed.
Finally, this paper concludes with a summary in Section 5.

2 Methodology

Fig. 1 illustrates the SBO process with adaptive sampling,19,23,26,27

specically for designing inlet operating parameters of mCGGs
that allow generating user-desired/prescribed CGs. It includes
initial sampling, model selection, surrogate modeling, surrogate
model optimization, adaptive sampling (or inll), and iterative
surrogate model update to gradually identify the global optimum
parameters within the design space. The detailed procedure is
given as follows: rst, latin hypercube sampling (LHS) (block
labeled ‘1’ in Fig. 1), one kind of the one-shot space-lling tech-
niques for the design of experiments (DoE), is used to generate
initial samples in the multi-dimensional design space,28,29 which
includes chemical concentrations at the inlet reservoirs and
pressures (or ow rates). Second, the aforementioned physics-
based component models (PBCM)12(labeled ‘2’ in Fig. 1) repre-
senting the designated mCGGnetwork is then simulated to predict
corresponding CGs at each sample obtained in the previous step.
The discrepancy Jd between the generated CG Co at the sampled
point and the user-prescribed CG Cs, i.e., the Normalized Root
Mean Squared Error (NRMSE)30 is used as the output of the
surrogate model. Next, the existing sampled points and their
corresponding discrepancies Jds relative to the user-prescribed CG
are utilized as the input-out data pairs to construct the surrogate
model (labeled ‘3’ in Fig. 1). Despite a variety of surrogate model
techniques available to establish the input–output mapping
relationship,23 the Kriging interpolation method that is
comprised of a trend regression model and a correlation model is
adopted in this work. Because of multiple choices of the regres-
sion model and the correlation model, the best combination of
them needs to be selected and will be used for subsequent inll
and SBO. Therefore, a model selection process (labeled ‘4’ in
Fig. 1) will be executed using the initial sampling data during the
rst iteration. That is, the data of initial sampling is divided into
two subsets, and the rst subset is used to construct the surrogate
model, while the second to evaluate its accuracy.

Since the surrogate model is an approximation of the physics-
based model, an adaptive sampling technique (also known as an
inll) (labeled ‘5’ in Fig. 1) will be incorporated into SBO, which
during each iteration will add a new sampled point and its cor-
responding discrepancy Jd computed by PBCM (labeled ‘2’) into
the data set to update the surrogate model (labeled ‘3’) for
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Flowchart of the SBO with adaptive sampling for mCGG.
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enhanced accuracy. Essentially inll is a sub-optimization process
to identify a new sample within the design space that minimizes
or maximizes a specic inll criterion, and hence, providingmore
information than randomly selected samples for SBO. In addi-
tion, the surrogate model is very computationally efficient, and
each evaluation only costs milli- to centi-second. As a result, it can
be used to nd the global optimum, e.g., using the genetic algo-
rithm that entails a large number of model evaluations. The inll,
PBCM simulation, and optimization will be repeated until the
minimum of the surrogate model (labeled ‘6’ in Fig. 1) converges
with respect to a predened tolerance or themaximumnumber of
iterations dened by the user is reached. Once converged, the
optimum design (labeled ‘7’ in Fig. 1), selected from the
minimum of the surrogate model and all existing samples in the
last iteration, will be supplied to PBCM and CFD simulation to
predict corresponding CGs, which then will be compared with
prescribed CGs to verify SBO-based design of mCGGs. The detailed
verication process is elucidated in Section 4.
2.1 Microuidic concentration gradient generators and
physics-based component model

The proposed SBO with adaptive sampling is performed on
a triple-Y mCGG that was reported in our previous paper.12,14 It is
comprised of three Y-shaped mixers combined through one J-
shaped junction that is then followed by a main output micro-
channel as shown in Fig. 2a, that is, in total there are six inlets and
one outlet, respectively, located at the top and the bottom. In each
Y-shaped mixer, two streams containing chemicals of different
This journal is © The Royal Society of Chemistry 2020
concentrations enter the mCGG via the two inlets, and then merge
together and diffuse transversely within the mixing channel
following the Y-junction. At the end of the mixing channel,
a monotonically increasing or decreasing linear CG is generated.
Subsequently, constituent CGs emanating from all the three Y-
shaped mixers are concatenated along the width direction in
the J-shaped junction to form an even more complex CG at the
entrance of the main output channel. Likewise, the chemicals
carried by the three streams will also diffuse within the main
output channel, and the extent of mixing depends on the location
relative to the entrance. Both the chemical concentrations at the
inlets and the pressure (or equivalently the ow rates) can be used
to tune precisely the generated CGs. For example, a large ow rate
driven by a large pressure head applied to the inlet will reduce the
residence time of the chemical and inter-stream diffusion within
the microchannels, resulting in a sharp gradient of the chemical
concentration. On the other hand, a small ow rate and pressure
head leads to milder CGs. In addition, unequal pressure or ow
rates among the three Y-shaped mixers will also give rise to
different widths of the constituent CGs in the concatenated one.

Although high-delity CFD can be used to simulate the
mCGG above to produce data for surrogate modeling, the
physics-based component modeling (PBCM) method veried by
both CFD simulations12 and experiments14 is adopted instead in
this work. In our prior research, PBCM demonstrated excellent
speedup without appreciably compromising simulation accu-
racy relative to CFD. In the PBCM method, a mCGG network of
complex topology, such as the one in Fig. 2a, can be
RSC Adv., 2020, 10, 13799–13814 | 13801
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Fig. 2 (a) Schematic and geometric parameters and (b) physics-based component model of the triple-Y mCGG.
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decomposed into a set of constituent components, including
microchannels (straight or curved), Y-junctions, inlet reservoirs,
and outlet reservoirs as shown in Fig. 2b. The simple geometries
of these constituent components render possible the analytical
solution of their underlying species transport equation. The
component models are then connected in correspondence to
the desired mCGG topology to form a network model that can be
simulated at a fast speed because of its analytical, closed-form
nature.

PBCM considers the uid ow and the species transport
separately within each constituent component above and is only
applicable to mCGGs. Since the full set of the models were re-
ported previously,12,14 the important ones for the microchannel
and the Y-junction are described here briey for the sake of
completeness of the paper. The microchannel is used for mix-
ing and diffusion of chemicals along the channel width to form
desired CGs. The uid ow within the microchannel is modeled
using the electric analogy and its hydrodynamic resistance is
given in our previous work.12 To model the species transport,
two assumptions are taken, that is, the channel is at with
a large aspect ratio and long. With a at channel, the effect on
dðoutÞ
n ¼

d
ðLÞ
0 sþ d

ðRÞ
0 ð1� sÞ;

s
XN;msns

m¼0

dðLÞ
m

f1 sinðf2Þ þ f2 sinðf1Þ
f1f2

þ s
N

þ2ð�1Þnð1� sÞ
XN;msnð1�sÞ

m¼0

d ðRÞ
m

�
cosðF2

8>>>>>>>>>>><
>>>>>>>>>>>:

13802 | RSC Adv., 2020, 10, 13799–13814
the chemical transportation due to nonuniform velocity distri-
bution along the channel cross-section is negligible and the
convection term in the transport equation can be approximated
by the cross-sectionally averaged velocity. Within a long
channel, the axial diffusion is also negligible.12 The simplica-
tion allows analytical solution to the convection–diffusion
equation, in which the chemical concentration is represented
by a Fourier series, and the relationship of the Fourier coeffi-
cients (dn) between the inlet and the outlet is given by

dðoutÞ
n ¼ dðinÞ

n e�ðnpÞ
2s and s ¼ lD

Uw2
(1)

where l is the channel length, D is the molecular diffusivity of
the chemical, w is the channel width and U is the average ow
velocity.

For the Y-junction, two streams enter from the inlets, and are
combined as a single stream exiting through the outlet. The
ow resistance between the inlets and the outlet of the Y-shaped
junction is assumed zero, that is, it is treated as a point-wise
component without the physical size. The relationship
between Fourier coefficients d(in)n and d(out)n of the concentration
n ¼ 0

X;m¼ns

m¼0

dðLÞ
m þ ð1� sÞ

XN;m¼nð1�sÞ

m¼0

ð�1Þn�m
dðRÞ
m

=2ÞsinðF1=2Þ
F1

þ cosðF1=2ÞsinðF2=2Þ
F2

�
;

n$ 1
(2)

This journal is © The Royal Society of Chemistry 2020
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prole at the inlets and the outlet is
where L, R and out denote the le inlet, right inlet, and outlet,
respectively; s¼ q(L)/(q(L) + q(R)) denotes the ow ratio of the le
stream to the right stream at the Y-junction, and also the
normalized position of the stream interface; q is the ow rate.
f1¼ (m� ns)p, f2¼ (m + ns)p, F1¼ (m + n� ns)p and F2¼ (m + n
+ ns)p. A J-shaped junction consisting of three inlets and one
outlet can be treated as a cascade concatenation of two
Y-shaped junctions as shown in Fig. 2b, and the Fourier
coefficients are obtained by solving eqn (2) twice. That is, the
Fourier coefficients at the outlet of the rst Y-shaped
junction is supplied to the le inlet of the second Y-shaped
junction.

All the PBCMs above in this work are developed in MATLAB
(https://www.mathworks.com), and the simulation is carried
out in two serial steps. First, the pressure and the ow distri-
bution within the mCGG network is simulated following the
Kirchhoff's law given the boundary conditions, i.e., the pres-
sure and/or ow rate specied at the inlet and outlet reser-
voirs. Next, the Fourier coefficients of the concentration
proles are calculated along the ow direction determined in
the previous step, and the calculation is initiated from inlet
reservoirs where constant concentrations of the chemical are
specied as the design variables in SBO. The coefficients
{d(out)n }j at the outlet of the jth component are computed using
those at its inlet(s), and then assigned to those at the inlet of
the component immediately downstream. It should be noted
that PBCM above is applicable to both the partial mixing- and
the complete mixing-based mCGG,12 while in this paper only
demonstrated for the former that involves species transport
along the width of each component and is more challenging to
design.10
2.2 Surrogate modeling: universal Kriging

The Kriging interpolation method rst proposed by Krige and
Sacks is mainly used to predict the unknown response based on
existing samples by minimizing prediction's mean squared error
(MSE).21 Universal Kriging is one of the kriging methods, and
comprised of a polynomial regression model, fT(x)b to represent
the global trend of the sampled data, and a correlation model,
Z(x) to capture the distance from the data points to the regression
surface.19,31 Mathematically the universal Kriging interpolation
reads

y(x) ¼ fT(x)b + Z(x), x ˛ Rk (3)

where k is the dimension of input variables; fT(x) ¼ [f0(x), f1(x),
., fn�1(x)]

T is a set of basis functions of regression, e.g., zero,
rst, and second-order polynomial terms; b is the vector of
regression coefficients; n is the number of the regression basis
functions. The correlation model Z(x) represents a random
stochastic process with zero mean and s2 variance, and the
covariance and the correlation matrix for the process are
dened, respectively, in eqn (4) and (5)
This journal is © The Royal Society of Chemistry 2020
Cov(Z, Z) ¼ s2J (4)

J ¼
0
@ cor

�
xð1Þ; xð2Þ� / cor

�
xð1Þ; xðnÞ�

« ⋱ «
cor

�
xðnÞ; xð1Þ� / cor

�
xðnÞ; xðnÞ�

1
A (5)

where ‘cor’ denotes a correlation function that depends on the
Euclidean distance between two data points. Widely used
correlation functions include Gaussian, spline, exponential,
linear, and spherical.

2.3 Adaptive sampling and inll

Adaptive sampling and inll, is a key technique that exploits
response surface information of the existing surrogate model and
adds new samples and information at critical regions within the
design space to further rene the surrogate model for optimiza-
tion.32 Through a discreet selection of inll points, accurate
surrogate models can be constructed with a small number of
samples.28 Normally the inll process is repeated until stopping
criteria are satised, such as the number of maximum iterations
and error tolerance. As shown in Fig. 1, the inll is embedded in
the optimization loop, the choice of inll techniques and criteria
is critical for SBO performance. In this work, three different inll
techniques: statistical lower-bound (LB), probability of improve-
ment (PI), and expected improvement (EI) are applied, evaluated,
and compared. The statistical lower-bound (LB) is dened as:

LB(x) ¼ ŷ(x) � Aŝ(x) (6)

where ŷ and ŝ are the prediction and MSE of the surrogate model
at the input variable x, respectively. A is a constant that balances
between the exploitation and exploration23 for sample selection,
and in this paper, an empirical value of A ¼ 2 is accepted.
Exploitation uses the information of the optimum in the current
iteration, and select inll points close to it. It is well suited for the
scenario when the global optimum is relatively easy to nd.
Exploration focuses on the regions that are unknown or under-
sampled, and then adds inll points where the surrogate model
exhibits the large MSE, and hence, is more suitable for complex
problems where multiple optimums appear in the response
surface, such as the multi-modal response surface. In this paper,
the inll point is obtained by nding the sample location that
minimizes the statistical lower-bound.

Probability of improvement (PI) selects an inll point that
leads to a maximum probability of an improvement, I ¼ ymin �
ŷ(x),33 where ymin is the minimum observation of existing
samplings. PI is expressed as an error function as shown in eqn
(7), and maximizing it yields the inll point

p½IðxÞ� ¼ 1

ŝ
ffiffiffiffiffiffi
2p

p
ð0
�N

eð�ðI�ŷðxÞÞ2Þ=2s2dI (7)

A quantity of expected improvement (EI) within the design
space can also be dened to balance the need of exploitation
and exploration to improve the surrogate model.34 The inll is
essentially to maximize the amount of improvement we
RSC Adv., 2020, 10, 13799–13814 | 1380
3
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E½IðxÞ� ¼

8><
>:

ðymin � ŷðxÞÞF
�
ymin � ŷðxÞ

ŝðxÞ
�
þ ŝðxÞ4

�
ymin � ŷðxÞ

ŝðxÞ
�

if s. 0

0 if s ¼ 0

(8)
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expect.23 The equation of EI is shown in eqn (8).
where F(x) and 4(x) are the cumulative distribution function
and the probability density function, respectively. This equation
represents the area enclosed by the Gaussian distribution below
the minimum of surrogate model found at the current itera-
tion.19 Similar to PI, the inll point is attained by maximizing
the EI in eqn (8).
2.4 Genetic algorithm

For SBO with adaptive sampling, global optimization needs to
be performed for sample inll and search for the minimum of Jd
(Min. Jd) using the surrogate model. Despite various global
optimization methods, the genetic algorithm (GA)35 is selected
for use. GA evolves an initial population of random gene
sequences, through many generations, and toward a nal
population of “t” gene sequences that demonstrate optimal
performance on a tness function used to assess the perfor-
mance of a given gene sequence. There are three basic genetic
operations, reproduction, cross over, and mutation,36 which
need to be undertaken to generate the next generation with
consideration of both exploration and exploitation. The GA
process will be terminated by evaluating certain stop criteria,
e.g., meeting the desired tolerance in the tness value or
reaching the maximum number of generations.
3 Problem formulation and case
studies

In this section, the problem of mCGG design will be formulated,
including the design variables and the cost function used in
SBO, and case studies used to verify the proposed method will
also be described. For the mCGG presented in this paper, all
Fig. 3 Illustration of the backflow issue and reformulation of the
design problem to use the pressure difference as the design variables
rather than the inlet pressure for the triple-Y mCGG.

13804 | RSC Adv., 2020, 10, 13799–13814
channels have a depth of h ¼ 60 mm with the aspect ratio of 5–
20, and other geometric parameters of the mCGG are given in
Fig. 2a.12,14 PBS buffer with a viscosity of 0.001 kg m�1 s�1, and
the chemical with diffusivity 1 � 10�10 m2 s�1 is used. The rst
step of our SBO design formulation is to prescribe a desired CG
Cs, such as the linear, sawtooth, trapezoidal, and others. The
cost function is then dened as the discrepancy Jd between the
CG created by the candidate design Co at the detector location
and the prescribed one Cs. It seems that the inlet parameters of
the triple-Y mCGG should be used as the design variables to
minimize Jd, such as inlet concentrations Ci and pressures pi (or
equivalently the ow rate qi) at the inlet, where i denotes the i

th

inlet. However, as shown in Fig. 3, when the pressure at junc-
tion 7 is greatly higher than those at junction 8 or (and) 9 and
the outlet 0, the pressure at junction 10 may also be higher than
that at Junction 8 or (and) 9. Thus a fraction of uid from the
rst Y-shaped mixer will be diverted towards the second and the
third Y-shapedmixer, and unexpectedly exit through inlet 3, 4, 5
and 6, viz., backow, although the inlets are originally intended
for inow. To eliminate such an issue, the pressure difference
between junctions in each Y-shaped mixer, instead of the inlet
pressure is proposed as the design variables, which is one of the
novelties of the present work. The ow conservation at junction
10, 7, 8, and 9, is written as

Dp7;10
R7;10

þ Dp8;10
R8;10

þ Dp9;10
R9;10

¼ Dp10;0
R10;0�

p1 �
�
Dp10;0 þ Dp7;10

��
R1;7

þ
�
p2 �

�
Dp10;0 þ Dp7;10

��
R2;7

¼ Dp7;10
R7;10�

p3 �
�
Dp10;0 þ Dp8;10

��
R3;8

þ
�
p4 �

�
Dp10;0 þ Dp8;10

��
R4;8

¼ Dp8;10
R8;10�

p5 �
�
Dp10;0 þ Dp9;10

��
R5;9

þ
�
p6 �

�
Dp10;0 þ Dp9;10

��
R6;9

¼ Dp9;10
R9;10

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(9)

where as shown in Fig. 3, p, Dp, and R are the pressure, pressure
difference, and resistance, respectively; the subscript with
a single number or two numbers, respectively, denote the
quantity at the junction or the quantity across the channel, e.g.,
pressure difference and resistance between two junctions. The
pressure at the outlet is assumed zero in eqn (9), i.e., grounded,
and the pressure at junction 10, i.e., p10 is equal to Dp10,0.
Therefore, the inlet pressures p1, p2, ., p6 can be expressed
using pressure differences Dp7,10, Dp8,10, and Dp9,10. In our
formulation, the incoming branch channels of each Y-shaped
mixer and the pressures at their inlets are set the same, while
the pressures could be different from one Y-shaped mixer to
another, that is, p1 ¼ p2, p3 ¼ p4, p5 ¼ p6, and p1 s p3 s p5. By
simply constraining the values of these pressure differences to
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Prescribed CGs in the first case study: design of inlet concentrations.
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be larger than zero, the backow can be effectively eliminated
because positive pressure differences of junction 7, 8, and 9
relative to junction 10 imply that all uid streams enter the
main output channel.

Mathematically, the SBO-based design of mCGGs can be
summarized as follows:

min
x

Jd ¼ kCoðxÞ � Csk2
kCsk2

(10)

where x is the vector of the design variables; recall that Cs and
Co are, respectively, the prescribed CG and the CG of candidate
design extracted at the detector location; and Co depends on the
values of the design variables x. The CG is measured with 100
uniformly distributed probes along the channel width direc-
tion, and thus, both Cs and Co are a 100-dimensional vector.

In this paper, two case studies following the formulation
above are investigated to verify SBO-based design of mCGGs. In
the rst one, only normalized chemical concentrations at the six
inlets are included as the design variables, i.e., x ¼ [c1, c2,., c6]
with ci being a scalar, and the pressure difference applied across
Fig. 5 Prescribed CGs in the second case study: design of both inlet co

This journal is © The Royal Society of Chemistry 2020
the merging channel of all the Y-shaped mixers is the same, i.e.,
Dp7,10 ¼ Dp8,10 ¼ Dp9,10. This reduces the problem to six
dimensions and is called design of inlet concentrations here-
aer. In this case study, p1 ¼ p2 ¼ p3 ¼ p4 ¼ p5 ¼ p6 ¼ 382.44 pa
is used, and correspondingly the ow rate through each inlet
channel is xed as 864 nl min�1.12 Fig. 4 illustrates three
prescribed CGs, i.e., Cs that need to be generated by selecting
appropriate inlet concentrations ci, which include the sawtooth-
shaped, trapezoidal, and linear CGs. The normalized concen-
tration is in the range of [0–1]. Note that due to the same ow
rate through each inlet channel, three linear segments in the
prescribed CGs have the same width.

In the second case study, the pressure difference across the
merging channel of the three Y-shaped mixers (Dp7,10, Dp8,10,
and Dp9,10 in Fig. 3), are introduced as three additional design
variables to generate more complex CGs. This will increase the
design dimension to 9, viz., x ¼ [c1,., c6, Dp7,10, Dp8,10, Dp9,10],
making it more challenging to construct the surrogate model
and to search optimal parameters corresponding to minimum
Jd. Note that once the optimal values of the pressure difference
ncentrations and pressure differences.

RSC Adv., 2020, 10, 13799–13814 | 13805
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Fig. 6 The procedure for design verification and performance benchmarking.
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are found, they can be converted to the inlet pressures at the
reservoirs using eqn (9). Because of the identical size of the inlet
branch channels in all Y-shaped mixers, the two inlet pressures
and the two ow rates through each Y-shaped mixer are equal,
that is q1¼ q2, q3¼ q4, and q5¼ q6. However, the ow rate can be
different among them, i.e., q1s q3s q5. Therefore, the mCGG in
this design can generate CGs comprised of three segments with
different widths as shown in Fig. 5, which include the sawtooth-
shaped, trapezoidal, and valley-shaped CGs.
4 Results and discussion

In this section, we will rst describe a process to verify the
optimum design obtained by SBO with adaptive sampling. Then
the details of the SBO design solutions for both case studies
above will be presented. Specically, in each case study, the
model selection step is rst undertaken to compare various
combinations of the regression model and the correlation
model and select the best one for surrogate model construction.
The adaptive sampling is then carried out to update the surro-
gate model and the response surface will be rened with inlls
for enhanced approximation, in which various inll criteria are
also compared in terms of convergence rate. The performance
of SBO with adaptive sampling will also be benchmarked with
other relevant optimization methods, including SBO with
random sampling and gradient-based optimization.

The procedure to verify the design obtained by SBO with
adaptive sampling and benchmark its performance with the
other optimization methods is illustrated in Fig. 6. Starting with
a minimum number of initial samples, SBO with adaptive
sampling (within the black box) consisting of model selection
and inll will be performed, and eventually yields an optimum
design when convergence criterion is reached. For verication,
the optimum design parameters are then entered to CFD
simulation or PBCM simulation, producing a CG that is then
compared against the prescribed CG, i.e., Cs. The process will be
repeated for several prescribed CGs as presented in Section 3.
To quantitatively characterize the performance of the proposed
design method, two performance criteria are dened, including
discrepancy of PBCM JPBCMd and discrepancy of CFD JCFDd
13806 | RSC Adv., 2020, 10, 13799–13814
JPBCM
d ¼ kCs � gPBCM

�
xopt

�k
2

kCsk2

JCFD
d ¼ kCs � gCFD

�
xopt

�k
2

kCsk2

(11)

where Cs again is the prescribed CG; xopt is the optimum design
parameters; gPBCM and gCFD represent PBCM and CFD simula-
tion, respectively, which takes xopt as inputs and predicts the
generated CGs. In this paper, CGs produced by CFD simulation
is treated as the ground truth. JPBCMd and JCFDd are used to inspect
different aspects of the design process. JPBCMd compares the
prescribed CG and the CG computed by PBCM using optimum
design parameters, and therefore, it characterizes not only
design performance, but also feasibility of generating the
prescribed CG. It should be noted that it is almost impossible to
generate prescribed CGs in Fig. 4 and 5 exactly using mCGGs due
to the physical limitation that CGs will be bent at all channel
walls due to their impermeability to species transport.12 More
broadly, JCFDd will also examine the discrepancy between PBCM
and high-delity CFD arising from the assumptions used in
PBCM. CFD simulation is performed with the commercial nite
volume method (FVM) package CFD-ACE+ (http://www.esi-
cfd.com) to verify the optimal parameters and corresponding
CGs obtained by various design methods above. The details
regarding CFD simulation is presented in our prior work.12

As discussed above SBO with adaptive sampling is also
compared with two other design methods, i.e., SBO with
random sampling and gradient-based optimization as shown by
the gray dashed lines in Fig. 6. In the former, the one-shot
random sampling is used, and the surrogate model is only
constructed once before the design process using simulation
data at these randomly sampled parameters. In the latter,
Matlab's built-in function, fmincon, a gradient-based optimiza-
tion method to nd the minimum of a constrained nonlinear
multivariable function, is used to search for the optimum given
prescribed CGs. The design performance of these methods,
including accuracy and the numbers of evaluations, i.e., design
costs are also compared.
This journal is © The Royal Society of Chemistry 2020
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Table 1 Relative percentage errors of surrogate models built by
different combinations of regression and correlation models in the
case study: design of inlet concentrations

Regression
model

Correlation
model

Relative (percentage) errors 3

Sawtooth-shaped Trapezoidal Linear

Zero order
polynomial

Spline 20.60% 22.56% 20.69%
Gauss 17.63% 17.45% 12.78%
Exp. 19.59% 21.18% 13.07%
Linear 20.60% 22.56% 20.69%
Spherical 20.60% 22.56% 20.69%

First order
polynomial

Spline 15.20% 10.52% 10.10%
Gauss 13.25% 9.48% 8.89%
Exp. 15.20% 10.31% 10.59%
Linear 15.20% 10.52% 10.10%
Spherical 15.20% 10.52% 10.10%

Second order
polynomial

Spline 16.14% 26.08% 9.60%
Gauss 16.14% 26.08% 9.60%
Exp. 16.14% 26.08% 9.60%
Linear 16.14% 26.08% 9.60%
Spherical 16.14% 26.08% 9.60%

Table 2 Comparison of different infill strategies and prescribed CGs in
terms of Jd of optimum design for the case study: design of inlet
concentrations

Inll

Jd

Sawtooth-shaped Trapezoidal Linear

LB 9.83% 4.07% 2.97%
PI 10.24% 4.54% 7.04%
EI 9.91% 4.20% 2.60%
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4.1 Case study 1: design of inlet concentrations

For each prescribed CG given in Fig. 4, a comparative analysis is
performed to compare the performance of various combina-
tions of the regression model and the correlation model in
order to construct a surrogate model of salient accuracy for SBO
design. 28 training data, the minimum number of required
samples to build a surrogate model with the second order
polynomial regression in the 6-dimensional design space is
adopted.21 For each prescribed CG, a total of 15 surrogate
models are constructed by the full-factorial combination of
three regression models and ve correlation models. The
regression models under consideration include the 0th, 1st, and
2nd order polynomial. The correlation models include spline,
Gauss, exponential, linear, and spherical, and their mathe-
matical expressions are described in ref. 23. Then surrogate
model-predicted values are compared with true values of 9
validation data, and the relative error between them is dened
as
Fig. 7 Convergence of Min. Jd using different infill strategies for prescrib
study in the case study: design of inlet concentrations.

This journal is © The Royal Society of Chemistry 2020
3 ¼ 1

n

Xn

1

|
Jd � J

0
d

Jd
|� 100% (12)

where Jd is the true value of the discrepancy between the
prescribed CG Cs and the CG generated at the validation
samples Co, while J

0
d is the discrepancy predicted by the surro-

gate model, n is the number of validation samples and is 9 in
this case study. Table 1 lists the relative error for various
combinations of the regression model and the correlation
model, according to which the most accurate one is selected for
adaptive sampling and SBO.

It was found that the rst-order polynomial regression
model combined with the Gauss correlation model reveals the
smallest relative error 3 for all three prescribed CGs, and thus, is
selected for SBO with adaptive sampling. In this case study, 30
adaptive samples/inll (corresponding to 58 in total) are
allowed to nd the optimum design for each prescribed CG. For
comparison, three inll techniques above are applied sepa-
rately. Fig. 7 shows the convergence of Min. Jd of the surrogate
model for different inll strategies for each prescribed CG.
Multiple runs of the same optimization conguration are
repeated for each prescribed CG, and all converge to the global
optimum, and therefore, the same results are not duplicated
here for the sake of conciseness. For sawtooth-shaped CGs, LB
exhibits a faster convergence rate compared to the other two
inll strategies. For the trapezoidal CG, three inll strategies
have a similar convergence rate. For the linear CG, EI converges
to a better solution, i.e., lower Jd at a faster rate.
ed CGs: (a) sawtooth-shaped, (b) trapezoidal, and (c) linear in the case

RSC Adv., 2020, 10, 13799–13814 | 13807
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Fig. 8 Response surface plots of the surrogate models in 3D that vary with c1 and c2 while keeping the other design variables constant for
different numbers of sample infills: (1) 0, (2) 15, and (3) 30 in the case study: design of inlet concentrations.

Fig. 9 CFD contour plots and predicted CGs relative to the prescribed CG for the case study: design of inlet concentrations.

13808 | RSC Adv., 2020, 10, 13799–13814 This journal is © The Royal Society of Chemistry 2020
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Fig. 10 Comparison of results between SBO with random sampling and adaptive sampling for the case study: design of inlet concentrations.
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Table 2 lists the numerical values of Jd of optimum design in
all cases above. The Jd achieved for each inll strategy repre-
sents the closeness between the CG generated by the candidate
design and the prescribed CG. A better inll strategy constructs
a more accurate surrogate model near the region around the
optimum to capture the true response surface of Jd there, but
not necessarily the entire design space. This is because the goal
of our inll is to improve the accuracy of the optimum design,
rather than building a global surrogate model to represent the
input and output relationship across the entire domain. The
results in Table 2 conrm that LB outperforms the other two for
the sawtooth-shaped CG, all the three are equivalent for the
trapezoidal CG and LB is used for the analysis below, and EI is
the best the linear CG.

Fig. 8 shows the response surfaces of Jd predicted by the
surrogate models as more samples are added by the best inll
strategy identied above for each prescribed CG. To facilitate
visualization, the surface is portrayed in 3D that only varies with
c1 and c2 while keeping the other design variables constant. 0,
15, and 30 sample inlls are employed in the surface plot from
the top to the bottom, respectively. It clearly shows that for each
prescribed CG, the minimum value of the surrogate model
becomes smaller and converges to a single point as more inlls
are added. Besides, the inll points are mostly distributed
within the region close to the minimum, and impact the
response surface shape there, which improves the accuracy of
the optimum design solution and conrms that adaptive
sampling effectively accelerates the process of search.

CFD simulation results and the comparison between the
prescribed and predicted CGs in terms of the normalized
chemical concentration are shown in Fig. 9. The concentration
contour near theJ-shaped junction is displayed in the top row,
and the CGs across the channel width are observed at the
detector, which is located 400 mm downstream the J-shaped
junction. The PBCM- and CFD-predicted CGs match well with
prescribed CGs, which are obtained by supplying the optimum
designs to PBCM and CFD-ACE+ simulation. The excellent
agreement of PBCM- and CFD-predicted CGs with respect to
prescribed CGs veries the accuracy of SBO with adaptive
sampling for the mCGG design. However, minor differences are
also observed at the stream interface and the side walls, which
This journal is © The Royal Society of Chemistry 2020
can be attributed to the fact that the prescribed CGs are created
by concatenating three linear proles while in actual mCGGs,
CGs will be bent near all channel walls resulting from their
impermeability to chemical species. In other words, the mCGG
is not able to generate exactly the same prescribed CGs if the
latter are articial and do not fully match the solution of the
underlying species transport equation. In addition, there is also
an excellent match of the CG results predicted by PBCM and
CFD, which implies that PBCM although with assumptions to
allow analytical solution, is an accurate approximation of
computationally demanding CFD, and can be used in place of
the latter for design.

The optimum design found by SBO with adaptive sampling
is also compared with two other design methods, i.e., SBO with
random sampling and gradient-based optimization (enclosed
in the dashed boxes in gray in Fig. 6), for all three prescribed
CGs. In the former, one surrogate model is constructed using
training data produced at parameters selected by one-shot
random sampling before the design, and it is then used in the
design process without inll or model update. Fig. 10 shows
Min. Jd found by SBO with random sampling that uses the
different number of samples, and compares it with the refer-
ence line in orange, viz., adaptive sampling results using 58
samples in total. The red circle represents the result of random
sampling when 58 samples in total are used. It clearly reveals
that the optimal solution determined by the one-shot random
sampling and corresponding surrogate model exhibit a much
larger value of Min. Jd for all cases. The adaptive sampling at
least improves the accuracy of random sampling by two times,
that is, Min. Jd drops from 21.6% to 9.83% in the sawtooth-
shaped CG, from 11.4% to 4.07% in the trapezoidal CG, and
from 23.2% to 2.60% in the linear CG. Even if the number of
randomly selected samples is increased to 1000, the accuracy of
random sampling-based design cannot reach that by adaptive
sampling. Besides, as we can see from the gures, the oscilla-
tion present in the curve of the random sampling is due to the
insufficient number of samples. Therefore, given a xed simu-
lation budget, adaptive sampling is more computationally effi-
cient and desired for global optimum search.

Next, SBO with adaptive sampling is compared with the
gradient-based optimization method in terms of the total
RSC Adv., 2020, 10, 13799–13814 | 13809
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Table 3 Comparison of the number of PBCM evaluation/simulation
between SBOwith adaptive sampling and gradient-based optimization
for the case study: design of inlet concentrations

Method Sawtooth-shaped Trapezoidal Linear

Gradient-based 100 87 109
SBO 58 58 58

Table 4 Relative percentage errors of surrogate models built by
different combinations of regression and correlation models in the
case study: design of inlet concentrations and pressure differences

Regression
model

Correlation
model

Relative (percentage) error 3

Sawtooth-
shaped Trapezoidal

Valley-
shaped

Zero order
polynomial

Spline 17.87% 28.90% 18.54%
Gauss 17.57% 25.21% 17.57%
Exp. 17.87% 28.90% 18.54%
Linear 17.87% 28.90% 18.54%
Spherical 17.87% 28.90% 18.54%

First order
polynomial

Spline 16.55% 20.46% 11.64%
Gauss 16.48% 20.44% 11.10%
Exp. 16.55% 20.46% 11.64%
Linear 16.55% 20.46% 11.64%
Spherical 16.55% 20.46% 11.64%

Second
order
polynomial

Spline 83.02% 56.99% 83.66%
Gauss 83.02% 56.99% 83.66%
Exp. 83.02% 56.99% 83.66%
Linear 83.02% 56.99% 83.66%
Spherical 83.02% 56.99% 83.66%

Table 5 Comparison of different infill strategies and prescribed CGs in
terms of Jd of optimum design for the case study: design of inlet
concentrations and pressure differences

Inll

Jd

Sawtooth-shaped Trapezoidal Valley-shaped

LB 11.90% 3.75% 11.23%
PI 12.97% 4.36% 11.57%
EI 14.61% 4.43% 12.77%
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number of PBCM simulations, and the latter uses Matlab's
built-in function, fmincon. It is well known that the number of
model evaluations (viz., PBCM simulations herein) in
gradient-based optimization heavily depends on the selection
of initial start points. Therefore, ten runs with different initial
points, which are selected from initial samples in SBO with
adaptive sampling, are undertaken and examined for the
gradient-based optimization. The number of PBCM evalua-
tions required to reach the same accuracy as SBO with adaptive
Fig. 11 Convergence of Min. Jd of surrogate model using different infill s
(c) valley-shaped for the case study: design of inlet concentrations and

13810 | RSC Adv., 2020, 10, 13799–13814
sampling in the ten runs is averaged, and the average number
is then compared with that of the proposed method. Table 3
shows that for all three prescribed CGs, SBO with adaptive
sampling uses a smaller number of PBCM evaluations/
simulations (�30 less on the average) for this case study
involving 6 design variables.
4.2 Case study 2: design of inlet concentrations and pressure
differences

Next, we extend the study to the 9-dimensional design space
encompassing six inlet concentrations of chemicals and three
pressure differences in all the Y-shaped mixers. Similarly, the
best combination of the regression model and the correlation
model is rst selected through a comparative analysis. Each
combination uses 55 samples in the training data, which is the
minimum number of samples required to build a surrogate
model with the second order polynomial regression in the 9-
dimensional design space. Subsequently, 17 validation samples
are utilized to evaluate performance of the 15 combinations of
the regression model and the correlation model for all three
prescribed CGs in Fig. 5. The relative percentage errors are lis-
ted in Table 4, which clearly indicates that the rst-order poly-
nomial regression model and the Gauss correlation model
yields the smallest relative errors 3 and is the best one for all
three cases.

With the best surrogate model structure selected, SBO
design with adaptive sampling is then carried out subject to
a budget of 700 inll samples that are selected by three different
inll strategies. Fig. 11 portrays convergence curves of Min. Jd of
trategies for prescribed CGs: (a) sawtooth-shaped, (b) trapezoidal, and
pressure differences.

This journal is © The Royal Society of Chemistry 2020
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Fig. 12 Response surface plots of the surrogate models in 3D that vary with c1 and c2 while keeping the other design variables constant for
different numbers of sample infills: (1) 0, (2) 300, and (3) 700 in the case study: design of inlet concentrations and pressure differences.

Fig. 13 CFD contour plots and predicted CGs relative to the prescribed CG for the case study: design of inlet concentrations and pressure
differences.

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 13799–13814 | 13811
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Table 6 Jds of CGs predicted by PBCM and CFD using the optimum
designs found by SBO with adaptive sampling

Sawtooth-shaped Trapezoidal Valley-shaped

PBCM 11.90% 3.75% 11.23%
CFD 22.98% 6.42% 12.34%

Fig. 14 Comparison between PBCM and CFD simulation at fully
developed region for the sawtooth-shaped CG.
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the surrogate model using the three inll strategies for each
prescribed CG. LB outperforms the other two in terms of the
convergence rate, and constructs more accurate surrogate
models that nd inlet concentrations and pressure differences.
This is quantitatively conrmed by Jd of optimum design listed
in Table 5, which clearly shows that LB achieves the lowest Jd for
all three prescribed CGs, yielding better designs than PI and EI.

The response surfaces of Jd predicted by the surrogate models
with more samples added by the LB inll are shown in Fig. 12.
Similarly, for the sake of visualization, only c1 and c2 vary while
the other design variables are held constant. The surface plots
from the top to the bottom are generated by surrogate models
with 0, 300, and 700 inlls. It shows that without inlls, the
response surfaces appear almost linear because of the use of the
rst-order regression model and extremely insufficient training
data. As more inll points are added, e.g., 300 inlls, the
Fig. 15 Results of SBO with random sampling for the design of inlet co

13812 | RSC Adv., 2020, 10, 13799–13814
nonlinearity of the response surface for each prescribed CG is
observed, and Min. Jd becomes evident. The proles of the
response surfaces only change slightly at 700 inlls along with
the converged solution of Min. Jd. Again, this conrms that the
surrogate model can be improved and the optimum design in 9-
dimensional space can be found in a reliable manner given
adequate inll points. More importantly, adaptive sampling
based on the LB inll strategy successfully assigns most of the
inll points within the region close to optimum (not shown to
avoid data clustering and facilitate visualization) that provides
more topological information to speed up the search process and
improve the solution accuracy.

Fig. 13 shows the CFD contour plots of the normalized chem-
ical concentrations and the comparison between the prescribed
and predicted CGs extracted at the detector location. Table 6 lists
the numerical values of Jds of CGs predicted by PBCM and CFD
simulation using the optimum design parameters found above by
SBOwith adaptive sampling. There are several points to note. First,
the PBCM-predicted CGs match well with prescribed CGs in all
cases, although their shapes are more complex in this case study
with 9 design variables. The discrepancies between prescribed CGs
and PBCM-predicted CGs are mostly due to bending of the
concentration distributions at the side walls that are impermeable
to chemical transport. Second, CFD-predicted CGs exhibit notice-
able discrepancy from the prescribed and PBCM-predicted CGs in
the sawtooth-shaped and trapezoidal CGs, and therefore, the
values of Jd by CFD is appreciably higher than that of PBCM in both
CGs. This is caused by appreciable transverse ow immediately
downstream theJ-shaped junction before ow is fully developed,
and presence of the detector within the ow entrance region of the
main output channel, as revealed by the concentration contours in
Fig. 13a and b. However, as discussed above, our PBCM is not able
to take into account such an effect because of its modeling
assumptions. To conrm the interpretation, Fig. 14 illustrates the
comparison between PBCM- and CFD-predicted CGs when the
detector is located further downstream (2000 mm from the J-
shaped junction), and we can see that both match very well. It is
also noticed that for the valley-shaped CG, the transverse ow is
relatively weak due to the pressure symmetry in the streamwise
direction, which again is apparent in CFD contour plot of Fig. 13c.
Therefore, PBCM- and CFD-predicted CGs are almost identical
with negligible differences.
ncentration and pressure difference.

This journal is © The Royal Society of Chemistry 2020
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Table 7 Evaluation comparisons between the SBO with adaptive sampling and the gradient-based optimization methods

Run no.

Sawtooth-shaped Trapezoidal Valley-shaped

Number of evaluation Min. Jd Number of evaluation Min. Jd Number of evaluation Min. Jd

1 247 11.42% 448 3.74% Fail 22.37%
2 280 11.17% 207 3.73% Fail 22.36%
3 Fail 31.11% 246 3.70% 307 10.83%
4 484 11.12% 255 3.69% 260 10.93%
5 Fail 31.11% 204 3.75% Fail 21.99%
6 279 10.63% 195 3.72% 229 11.18%
7 297 11.06% 219 3.74% Fail 21.93%
8 Fail 31.11% 195 3.73% 255 11.15%
9 Fail 31.11% 216 3.71% 351 10.96%
10 Fail 31.11% Fail 4.62% Fail 22.28%
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Min. Jd for the different numbers of samples obtained by
SBO with random sampling is shown in Fig. 15, and compared
with shows the reference line in orange, viz., adaptive sampling
results using 755 samples in total. Again, Min. Jd achieved by
the random sampling is at least 2 times larger than that by
adaptive sampling with 755 samples in total. Even if the number
of samples and evaluations is 13 times larger than adaptive
sampling, it still cannot reach the same level of accuracy. This is
because even 10 000 samples for 9 dimensions are still too
small for constructing an accurate surrogate model in the entire
design space, in particular, around the region of optimum. It
turns out that adaptive sampling effectively accelerates the
process of searching minimum. Besides, the uniform distribu-
tion of samples contributes to the oscillation of the curve as the
correlation matrix in Kriging can vary dramatically and
randomly. However, the general trend of random sampling
error is to decrease as more samples are added.

Table 7 shows the number of evaluations required by the
gradient-based optimization to reach the optimum solution at
the same level of accuracy as SBO with adaptive sampling. Again,
10 different start points are selected from the initial samples
used in SBO design to initiate 10 gradient-based optimization
runs. It shows that 50% of the runs fail to converge to the
optimum solution for the sawtooth-shaped CG, 10% failure for
the trapezoidal, and 50% for the valley-shaped. It seems caused
by being trapped at local optima because Min. Jds achieved in
these failed runs are notably higher than those at the global
optimum. This implies that although gradient-based optimiza-
tion can be more computationally efficient for high-dimensional
design problems, there is a risk of missing the global optimum,
in particular, for generating complex CGs. However, for the
trapezoidal CG, gradient-based optimization outperforms SBO
with adaptive sampling in efficiency for 9 runs, which may be
attributed to the simpler topology of its response surface.
Generally speaking, because of its exploratory nature, SBO with
adaptive sampling is a more feasible and reliable method to
search for the global optimum, while the gradient-based
approach is more computationally efficient and requires fewer
PBCM evaluation in high-dimensional design space if not trap-
ped at the local optimum. The large variation in the number of
PBCM evaluations further reveals that the gradient-based opti-
mization is indeed dependent on the initial start point.
This journal is © The Royal Society of Chemistry 2020
5 Conclusion

In this paper, a new method based on surrogate-based optimi-
zation (SBO) with adaptive sampling is developed for efficient
and reliable design of microuidic concentration gradient
generators (mCGGs). The key rationale of the proposed method
is to construct the surrogate model, i.e., Kriging, using physics-
based simulation data, update the model using incrementally
and adaptively added data, viz., inll, and then utilize contin-
uously enriched topological information provided by the
surrogate model to guide the search of global optimum. New
aspects of the proposed research include: rst, the feasibility of
applying SBO with adaptive sampling to complex mCGG design
is systematically examined. Second, the physics-based compo-
nent model (PBCM) of mCGGs in the closed-form is employed to
generate data for surrogate model construction to further
reduce the computational cost. Third, a comparative analysis is
performed to identify the best combinations of the regression
model and the correlation model, and determine the inll
strategies for improved surrogate modeling and design perfor-
mance. Last, the use of pressure differences rather than the
native inlet pressures as the design variables to eliminate the
backow issue.

Two case studies are undertaken on the partial mixing- and
species transport-governed triple Y-shaped mCGG to evaluate
design performance of the proposed method. Key technical
ndings are obtained, including

(1) Our comparative analysis indicates that combining the
rst-order polynomial regression model and the Gauss corre-
lation model in Kriging yields the highest surrogate model
accuracy.

(2) In general, three inll strategies all allow the design to
converge to the global optimum, while on average LB exhibits
faster convergence rate than EI and PI.

(3) All CGs predicted by PBCM using the optimum design
parameters match prescribed CGs, which veries feasibility,
robustness, and accuracy of the proposed method.

(4) Both PBCM-predicted and CFD-predicted CGs match very
well in the rst case study, which validates the accurate design
of SBO with adaptive sampling, while an appreciable difference
(average Jd difference 4.95%) between them is observed in the
second case study. It is attributed to asymmetric ow rates
RSC Adv., 2020, 10, 13799–13814 | 13813
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through Y-shaped mixers in the second case study that give rise
to signicant transverse ow in the entrance region, the effect of
which on species transport can be captured by CFD but not
PBCM.

(5) The proposed method is at least two times more accurate
than SBO with random sampling for all prescribed CGs, which
conrms that adaptive sampling-based inll is necessary for
SBO design of complex CGs.

(6) The gradient-based optimization method requires at least
30 more evaluations compared to the method of SBO with
adaptive sampling in the rst case study. In the second case,
approximately 1/3 of the runs of gradient-based optimization
fail to nd the global optimal solution, although on average it
uses less simulation than SBO with adaptive sampling. In short,
SBO with adaptive sampling is preferred as a robust method to
nd the global optimum design.

The future work will focus on combining a small amount of
high-delity CFD data with PBCM data to construct multi-
delity surrogate models37 to address the discrepancy between
PBCM- and CFD-predicted CGs caused by transverse ow in the
entrance region, and utilize the multi-delity model for mCGG
design.
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9 S. Höving, D. Janasek and P. Novo, Anal. Chim. Acta, 2018,
1044, 77–85.

10 B. R. Gorman and J. P. Wikswo, Microuid. Nanouid., 2008,
4, 273.

11 M. Rismanian, M. S. Saidi and N. Kashaninejad, Chem. Eng.
Sci., 2019, 195, 120–126.
13814 | RSC Adv., 2020, 10, 13799–13814
12 Y. Wang, T. Mukherjee and Q. Lin, J. Micromech. Microeng.,
2006, 16, 2128–2137.

13 K. Hattori, S. Sugiura and T. Kanamori, Lab Chip, 2009, 9,
1763–1772.

14 Y. Zhou, Y. Wang, T. Mukherjee and Q. Lin, Lab Chip, 2009,
9, 1439–1448.

15 Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma,
Y. Tian, L. Wen and L. Jiang, J. Am. Chem. Soc., 2015, 137,
14765–14772.

16 D. Friedrich, C. P. Please and T. Melvin, Chem. Eng. J., 2012,
193–194, 296–303.

17 I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier and
L. Knockaert, Int. J. RF Microw. Comput. Eng., 2010, 20,
492–501.

18 P. Singh, I. Couckuyt, K. Elsayed, D. Deschrijver and
T. Dhaene, Appl. Math. Model., 2016, 40, 4248–4259.

19 A. I. J. Forrester and A. J. Keane, Progress in Aerospace
Sciences, 2009, 45, 50–79.

20 A. Bhosekar and M. Ierapetritou, Comput. Chem. Eng., 2018,
108, 250–267.

21 Z.-H. Han and K.-S. Zhang, Real-world Appl. Genet.
algorithms, 2012, pp. 343–362.

22 R. T. Haka, D. Villanueva and A. Chaudhuri, Struct.
Multidiscip. Optim., 2016, 54, 3–13.
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