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This paper presents a surrogate-based optimization (SBO) method with adaptive sampling for designing
microfluidic concentration gradient generators (WCGGs) to meet prescribed concentration gradients
(CGs). An efficient physics-based component model (PBCM) is used to generate data for Kriging-based
surrogate model construction. In a comparative analysis, various combinations of regression and
correlation models in Kriging, and different adaptive sampling (infill) techniques are inspected to enhance
model accuracy and optimization efficiency. The results show that the first-order polynomial regression
and the Gaussian correlation models together form the most accurate model, and the lower bound (LB)
infill strategy in general allows the most efficient global optimum search. The CGs generated by
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an inherent limitation of the nCGG. It is also found that SBO with adaptive sampling enables much more
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1 Introduction

Formation of complex concentration gradients (CGs) of
biomolecules plays an important role in biological processes,*
such as immune response, wound healing, embryogenesis,
cancer metastasis, and others. One active research area is to
generate and maintain concentration gradients, such as linear,
parabolic, exponential, sawtooth, and hybrid profiles>* using
microfluidic devices. In contrast to their counterparts at the
macroscale, the microfluidic concentration gradient generator
(LCGQG) features several unique merits, including short trans-
portation time, fast analysis speed, simple operation, precise
manipulation of locations and quantities of biomolecule
delivery, and excellent physiological capability to cellular assays
at spatiotemporal scales.>® Therefore, a variety of pCGGs are
designed, microfabricated, and demonstrated in the field of cell
biology and biochemistry, including tree-shaped, altered tree-
shaped, Y-shaped, pressure-balanced, incomplete mixing-
based, and membrane pCGGs.*® The tree-shaped network is
one of the earliest pnCGG designs, which successively splits,
mixes, and recombines biologically relevant chemical solution
to form digitalized CGs across channel widths."®'* In order to
generate more complex CGs with higher resolutions, the
number of stages of tree-shaped pCGG needs to be increased,
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more robust than the gradient-based optimization for searching the global optimum.

which however may be more prone to clogging or leakage.**?
Therefore, an altered tree-shaped device was developed, which
is able to reduce the number of stages of the tree-shaped
network and simplify the structure by delicately designed
splitting-and-combining patterns.”® Moreover, a Y-shaped
generator is designed to simplify the structure compared to
conventional and altered tree-shaped networks by reducing the
mixing channel length.® In contrast to these complete mixing-
based pCGGs, pCGGs utilizing partial mixing were also
proposed by our coauthor that manipulates species transport
within microchannels and juxtaposes constituent CGs to form
complex ones, leading to simple network topology and salient
device reliability.”** nCGGs are also proposed to separate the
flow by a porous membrane and generate CGs by only permit-
ting specific molecules to pass through, and hence, yielding
shear free CGG."

Research efforts above mostly focused on demonstrating
MCGGs that were fabricated with known operating parameters,
such as inlet concentrations and pressures/flow rates. In
general, determining these design parameters is challenging,
a trial-and-error process entailing iterative modeling, simula-
tion, and experiments under the guidance of prior experiences.
Therefore, a component model and systematic simulation-
based pCGG design method'** was previously proposed for
designing partial mixing-based pnCGGs. It proceeds iteratively
within the design space to search for the combination of
operating parameters yielding the best agreement with the
prescribed CGs. However, the process was performed manually,
and could be further improved by automated optimization.
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Friedrich et al.*® utilized a pCGG consisting of a single micro-
fluidic channel and an obliquely angled groove, which is
designed by optimization using CFD simulations, to generate
a prescribed CG, such as linear and exponential. An efficient
MCGGs design automation method based on physics-based
models and simulation to rapidly determine operating param-
eters that accurately generate prescribed CGs is indeed scarce
and strongly needed. In this context, we propose a surrogate-
based optimization (SBO) with adaptive sampling framework
to address such a challenge. The key elements of our proposed
method include: first, optimization is undertaken on the
surrogate model and searches within the design space for
optimal parameters that can generate CGs matching the
prescribed ones. Surrogate models, also known as response
surface models and metamodels are used to approximate the
behavior of physics-based models through direct mapping
between input-output data pairs produced by the latter, and is
more computationally efficient to evaluate. Therefore, they are
widely used to minimize the number of evaluations by physics-
based computer simulation, such as the computational fluid
dynamics (CFD) or the computational structural dynamics
(CSD)'"*® for accelerated optimization and design process. It is
well known that high-fidelity, physics-based simulation can be
computationally prohibitive for optimization in high-
dimensional design parameter space.”® The surrogate
model, constructed by a small number of selected physics-
based simulations, enables a cost-effective and rapid explora-
tion of the design space, thereby making it feasible and robust
to locate the global optimum.'”?*** Second, an adaptive
sampling and infill strategy is utilized to determine new sample
points at the most important but under-explored regions for the
next round of physics-based simulation to progressively
improve surrogate model accuracy, especially near the region of
the global optimum by analyzing its underlying response
surface. The infill is undertaken with respect to a criterion that
balances between exploitation and exploration.”® Last,
a physics-based, component modeling (PBCM) approach we
developed previously to analyze species transport in pnCGGs"
will be employed as the main engine to generate simulation
data for surrogate model construction and SBO. Because of its
closed-form nature, the PBCM simulation can typically run
orders of magnitude faster than high-fidelity CFD simulation,
and therefore, is used to generate simulation data for surrogate
modeling. In the previous work, the PBCM method was verified
by both CFD simulation™ and experiments™ for a variety of CGs,
including linear, saw-tooth, and bell shapes, and proven valid
for a variety of pCGGs."

In contrast to existing efforts of H\CGG modeling and design,
this paper presents several novelties. First, to the best of our
knowledge, it is an initial effort to establish SBO with adaptive
sampling/infill method for nCGG design. Second, a comparative
analysis is carried out to thoroughly investigate the effects of
various combinations of correlation functions, regression func-
tions, and infill strategies on surrogate model accuracy and SBO
convergence for pCGG design. Last, a new formulation for SBO of
uCGGs is proposed to avoid the backflow issue, that is, liquid
solution unexpectedly exits through inlets of the pCGG network
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due to overly large difference of the pressure head among inlets.
In this formulation, instead of the inlet pressures, the pressure
differences between branch points within the pnCGG network are
used as design variables, which facilitates surrogate modeling
and adaptive sampling (see Section 3 for details). Note that the
new formulation can potentially be extended to microfluidic
electrokinetic flow driven by the electric field.>**

This paper is organized as follows. The methodology of the
SBO method for uCGGs is introduced in section 2, which
describes the PBCM, surrogate modeling, and different infill
strategies. Section 3 elucidates the problem formulation and
case studies. In Section 4, the results of SBO with adaptive
sampling for prescribed CGs of various profiles are discussed.
Finally, this paper concludes with a summary in Section 5.

2 Methodology

Fig. 1 illustrates the SBO process with adaptive sampling,****2¢*
specifically for designing inlet operating parameters of nCGGs
that allow generating user-desired/prescribed CGs. It includes
initial sampling, model selection, surrogate modeling, surrogate
model optimization, adaptive sampling (or infill), and iterative
surrogate model update to gradually identify the global optimum
parameters within the design space. The detailed procedure is
given as follows: first, latin hypercube sampling (LHS) (block
labeled ‘1’ in Fig. 1), one kind of the one-shot space-filling tech-
niques for the design of experiments (DoE), is used to generate
initial samples in the multi-dimensional design space,”**® which
includes chemical concentrations at the inlet reservoirs and
pressures (or flow rates). Second, the aforementioned physics-
based component models (PBCM)*(labeled ‘2’ in Fig. 1) repre-
senting the designated pCGG network is then simulated to predict
corresponding CGs at each sample obtained in the previous step.
The discrepancy Jq between the generated CG C,, at the sampled
point and the user-prescribed CG Cs, i.e., the Normalized Root
Mean Squared Error (NRMSE)* is used as the output of the
surrogate model. Next, the existing sampled points and their
corresponding discrepancies j4s relative to the user-prescribed CG
are utilized as the input-out data pairs to construct the surrogate
model (labeled ‘3’ in Fig. 1). Despite a variety of surrogate model
techniques available to establish the input-output mapping
relationship,” the Kriging interpolation method that is
comprised of a trend regression model and a correlation model is
adopted in this work. Because of multiple choices of the regres-
sion model and the correlation model, the best combination of
them needs to be selected and will be used for subsequent infill
and SBO. Therefore, a model selection process (labeled ‘4’ in
Fig. 1) will be executed using the initial sampling data during the
first iteration. That is, the data of initial sampling is divided into
two subsets, and the first subset is used to construct the surrogate
model, while the second to evaluate its accuracy.

Since the surrogate model is an approximation of the physics-
based model, an adaptive sampling technique (also known as an
infill) (labeled ‘5’ in Fig. 1) will be incorporated into SBO, which
during each iteration will add a new sampled point and its cor-
responding discrepancy J4 computed by PBCM (labeled ‘2’) into
the data set to update the surrogate model (labeled ‘3’) for
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Fig. 1 Flowchart of the SBO with adaptive sampling for pnCGG.

enhanced accuracy. Essentially infill is a sub-optimization process
to identify a new sample within the design space that minimizes
or maximizes a specific infill criterion, and hence, providing more
information than randomly selected samples for SBO. In addi-
tion, the surrogate model is very computationally efficient, and
each evaluation only costs milli- to centi-second. As a result, it can
be used to find the global optimum, e.g., using the genetic algo-
rithm that entails a large number of model evaluations. The infill,
PBCM simulation, and optimization will be repeated until the
minimum of the surrogate model (labeled ‘6’ in Fig. 1) converges
with respect to a predefined tolerance or the maximum number of
iterations defined by the user is reached. Once converged, the
optimum design (labeled 77 in Fig. 1), selected from the
minimum of the surrogate model and all existing samples in the
last iteration, will be supplied to PBCM and CFD simulation to
predict corresponding CGs, which then will be compared with
prescribed CGs to verify SBO-based design of nCGGs. The detailed
verification process is elucidated in Section 4.

2.1 Microfluidic concentration gradient generators and
physics-based component model

The proposed SBO with adaptive sampling is performed on
a triple-Y nCGG that was reported in our previous paper.'>** It is
comprised of three Y-shaped mixers combined through one W-
shaped junction that is then followed by a main output micro-
channel as shown in Fig. 2a, that is, in total there are six inlets and
one outlet, respectively, located at the top and the bottom. In each
Y-shaped mixer, two streams containing chemicals of different

This journal is © The Royal Society of Chemistry 2020
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concentrations enter the pCGG via the two inlets, and then merge
together and diffuse transversely within the mixing channel
following the Y-junction. At the end of the mixing channel,
a monotonically increasing or decreasing linear CG is generated.
Subsequently, constituent CGs emanating from all the three Y-
shaped mixers are concatenated along the width direction in
the W-shaped junction to form an even more complex CG at the
entrance of the main output channel. Likewise, the chemicals
carried by the three streams will also diffuse within the main
output channel, and the extent of mixing depends on the location
relative to the entrance. Both the chemical concentrations at the
inlets and the pressure (or equivalently the flow rates) can be used
to tune precisely the generated CGs. For example, a large flow rate
driven by a large pressure head applied to the inlet will reduce the
residence time of the chemical and inter-stream diffusion within
the microchannels, resulting in a sharp gradient of the chemical
concentration. On the other hand, a small flow rate and pressure
head leads to milder CGs. In addition, unequal pressure or flow
rates among the three Y-shaped mixers will also give rise to
different widths of the constituent CGs in the concatenated one.

Although high-fidelity CFD can be used to simulate the
UCGG above to produce data for surrogate modeling, the
physics-based component modeling (PBCM) method verified by
both CFD simulations' and experiments'* is adopted instead in
this work. In our prior research, PBCM demonstrated excellent
speedup without appreciably compromising simulation accu-
racy relative to CFD. In the PBCM method, a pCGG network of
complex topology, such as the one in Fig. 2a, can be

RSC Adv, 2020, 10, 13799-13814 | 13801
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Fig. 2 (a) Schematic and geometric parameters and (b) physics-based

decomposed into a set of constituent components, including
microchannels (straight or curved), Y-junctions, inlet reservoirs,
and outlet reservoirs as shown in Fig. 2b. The simple geometries
of these constituent components render possible the analytical
solution of their underlying species transport equation. The
component models are then connected in correspondence to
the desired pCGG topology to form a network model that can be
simulated at a fast speed because of its analytical, closed-form
nature.

PBCM considers the fluid flow and the species transport
separately within each constituent component above and is only
applicable to pCGGs. Since the full set of the models were re-
ported previously,"* the important ones for the microchannel
and the Y-junction are described here briefly for the sake of
completeness of the paper. The microchannel is used for mix-
ing and diffusion of chemicals along the channel width to form
desired CGs. The fluid flow within the microchannel is modeled
using the electric analogy and its hydrodynamic resistance is
given in our previous work.” To model the species transport,
two assumptions are taken, that is, the channel is flat with
a large aspect ratio and long. With a flat channel, the effect on
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component model of the triple-Y unCGG.

the chemical transportation due to nonuniform velocity distri-
bution along the channel cross-section is negligible and the
convection term in the transport equation can be approximated
by the cross-sectionally averaged velocity. Within a long
channel, the axial diffusion is also negligible."” The simplifica-
tion allows analytical solution to the convection-diffusion
equation, in which the chemical concentration is represented
by a Fourier series, and the relationship of the Fourier coeffi-
cients (d,) between the inlet and the outlet is given by

ID

d(out) — d(in)e{n'rc)zr and 7 =
n n U]/VZ

(1)
where [ is the channel length, D is the molecular diffusivity of
the chemical, w is the channel width and U is the average flow
velocity.

For the Y-junction, two streams enter from the inlets, and are
combined as a single stream exiting through the outlet. The
flow resistance between the inlets and the outlet of the Y-shaped
junction is assumed zero, that is, it is treated as a point-wise
component without the physical The relationship
between Fourier coefficients d™™ and d®™ of the concentration

size.
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profile at the inlets and the outlet is

where L, R and out denote the left inlet, right inlet, and outlet,
respectively; s = ¢/(q¢"™ + ¢™) denotes the flow ratio of the left
stream to the right stream at the Y-junction, and also the
normalized position of the stream interface; q is the flow rate.
fi=(m—ns)r, fr=m+ns)r,F,=(m+n—ns)rand F, =(m+n
+ ns)m. A W-shaped junction consisting of three inlets and one
outlet can be treated as a cascade concatenation of two
Y-shaped junctions as shown in Fig. 2b, and the Fourier
coefficients are obtained by solving eqn (2) twice. That is, the
Fourier coefficients at the outlet of the first Y-shaped
junction is supplied to the left inlet of the second Y-shaped
junction.

All the PBCMs above in this work are developed in MATLAB
(https://www.mathworks.com), and the simulation is carried
out in two serial steps. First, the pressure and the flow distri-
bution within the pCGG network is simulated following the
Kirchhoff's law given the boundary conditions, i.e., the pres-
sure and/or flow rate specified at the inlet and outlet reser-
voirs. Next, the Fourier coefficients of the concentration
profiles are calculated along the flow direction determined in
the previous step, and the calculation is initiated from inlet
reservoirs where constant concentrations of the chemical are
specified as the design variables in SBO. The coefficients
{d"YV at the outlet of the /™ component are computed using
those at its inlet(s), and then assigned to those at the inlet of
the component immediately downstream. It should be noted
that PBCM above is applicable to both the partial mixing- and
the complete mixing-based pCGG," while in this paper only
demonstrated for the former that involves species transport
along the width of each component and is more challenging to
design.*’

2.2 Surrogate modeling: universal Kriging

The Kriging interpolation method first proposed by Krige and
Sacks is mainly used to predict the unknown response based on
existing samples by minimizing prediction’'s mean squared error
(MSE).** Universal Kriging is one of the kriging methods, and
comprised of a polynomial regression model, f7(x)g to represent
the global trend of the sampled data, and a correlation model,
Z(x) to capture the distance from the data points to the regression
surface."”*' Mathematically the universal Kriging interpolation
reads

y(x) = f1(x)B + Z(x), x € R* (3)

where £ is the dimension of input variables; f*(x) = [fy(x), fi(x),
wooy faoa(0)]” is a set of basis functions of regression, e.g., zero,
first, and second-order polynomial terms; ¢ is the vector of
regression coefficients; n is the number of the regression basis
functions. The correlation model Z(x) represents a random
stochastic process with zero mean and ¢ variance, and the
covariance and the correlation matrix for the process are
defined, respectively, in eqn (4) and (5)

This journal is © The Royal Society of Chemistry 2020
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Cov(Z, Z) = a°W (4)

cor(x", x?) cor(x(V, x(")

W= 5)

cor (x, xM) cor (x(™, x(n)

where ‘cor’ denotes a correlation function that depends on the
Euclidean distance between two data points. Widely used
correlation functions include Gaussian, spline, exponential,
linear, and spherical.

2.3 Adaptive sampling and infill

Adaptive sampling and infill, is a key technique that exploits
response surface information of the existing surrogate model and
adds new samples and information at critical regions within the
design space to further refine the surrogate model for optimiza-
tion.** Through a discreet selection of infill points, accurate
surrogate models can be constructed with a small number of
samples.”® Normally the infill process is repeated until stopping
criteria are satisfied, such as the number of maximum iterations
and error tolerance. As shown in Fig. 1, the infill is embedded in
the optimization loop, the choice of infill techniques and criteria
is critical for SBO performance. In this work, three different infill
techniques: statistical lower-bound (LB), probability of improve-
ment (PI), and expected improvement (EI) are applied, evaluated,
and compared. The statistical lower-bound (LB) is defined as:

LB(x) = )i(x) — A(x) (6)

where y and § are the prediction and MSE of the surrogate model
at the input variable x, respectively. A is a constant that balances
between the exploitation and exploration® for sample selection,
and in this paper, an empirical value of A = 2 is accepted.
Exploitation uses the information of the optimum in the current
iteration, and select infill points close to it. It is well suited for the
scenario when the global optimum is relatively easy to find.
Exploration focuses on the regions that are unknown or under-
sampled, and then adds infill points where the surrogate model
exhibits the large MSE, and hence, is more suitable for complex
problems where multiple optimums appear in the response
surface, such as the multi-modal response surface. In this paper,
the infill point is obtained by finding the sample location that
minimizes the statistical lower-bound.

Probability of improvement (PI) selects an infill point that
leads to a maximum probability of an improvement, I = y;,in —
Y(x),* where ymin is the minimum observation of existing
samplings. PI is expressed as an error function as shown in eqn
(7), and maximizing it yields the infill point

)= = [ L ar 0)

T W2m

A quantity of expected improvement (EI) within the design
space can also be defined to balance the need of exploitation
and exploration to improve the surrogate model.** The infill is
essentially to maximize the amount of improvement we

RSC Adv, 2020, 10, 13799-13814 | 13803
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~ Ymin
min x))®
sy = d O =002 (

0

expect.?® The equation of EI is shown in eqn (8).

where ®(x) and ¢(x) are the cumulative distribution function
and the probability density function, respectively. This equation
represents the area enclosed by the Gaussian distribution below
the minimum of surrogate model found at the current itera-
tion." Similar to PI, the infill point is attained by maximizing
the EI in eqn (8).

2.4 Genetic algorithm

For SBO with adaptive sampling, global optimization needs to
be performed for sample infill and search for the minimum of J4
(Min. J4) using the surrogate model. Despite various global
optimization methods, the genetic algorithm (GA)* is selected
for use. GA evolves an initial population of random gene
sequences, through many generations, and toward a final
population of “fit” gene sequences that demonstrate optimal
performance on a fitness function used to assess the perfor-
mance of a given gene sequence. There are three basic genetic
operations, reproduction, cross over, and mutation,*® which
need to be undertaken to generate the next generation with
consideration of both exploration and exploitation. The GA
process will be terminated by evaluating certain stop criteria,
e.g., meeting the desired tolerance in the fitness value or
reaching the maximum number of generations.

3 Problem formulation and case
studies

In this section, the problem of nCGG design will be formulated,
including the design variables and the cost function used in
SBO, and case studies used to verify the proposed method will
also be described. For the nCGG presented in this paper, all

<
~
s
Backflow
—

10 ‘b"&

l AP10,0

/

0

Fig. 3 lllustration of the backflow issue and reformulation of the
design problem to use the pressure difference as the design variables
rather than the inlet pressure for the triple-Y pCGG.
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channels have a depth of 7 = 60 um with the aspect ratio of 5-
20, and other geometric parameters of the nCGG are given in
Fig. 2a.>" PBS buffer with a viscosity of 0.001 ke m~" s, and
the chemical with diffusivity 1 x 107'° m* s~ is used. The first
step of our SBO design formulation is to prescribe a desired CG
Cs, such as the linear, sawtooth, trapezoidal, and others. The
cost function is then defined as the discrepancy J4 between the
CG created by the candidate design C, at the detector location
and the prescribed one Cs. It seems that the inlet parameters of
the triple-Y pnCGG should be used as the design variables to
minimize J4, such as inlet concentrations C; and pressures p; (or
equivalently the flow rate ¢,) at the inlet, where i denotes the i
inlet. However, as shown in Fig. 3, when the pressure at junc-
tion 7 is greatly higher than those at junction 8 or (and) 9 and
the outlet 0, the pressure at junction 10 may also be higher than
that at Junction 8 or (and) 9. Thus a fraction of fluid from the
first Y-shaped mixer will be diverted towards the second and the
third Y-shaped mixer, and unexpectedly exit through inlet 3, 4, 5
and 6, viz., backflow, although the inlets are originally intended
for inflow. To eliminate such an issue, the pressure difference
between junctions in each Y-shaped mixer, instead of the inlet
pressure is proposed as the design variables, which is one of the
novelties of the present work. The flow conservation at junction
10, 7, 8, and 9, is written as

Apri0 |, Apsio | Apeio _ Apioo
Riio Rgiw  Roo Riop
(Pl - (APIO,O + Ap7,10)) (Pz - (Aplo,o + Apno)) Ap710
+ =
Ry; Ry R710
(P3 - (APIO.O + APS.IO)) " (P4 - (APIO,O + ApS,lO)) _ Aps 10
Rsg Ryg Rs 10
(ps — (Apioo + Apoo)) N (ps — (Ap1oo + Aposo)) _ Apow
Rsy Ry Ry 1o
)

where as shown in Fig. 3, p, Ap, and R are the pressure, pressure
difference, and resistance, respectively; the subscript with
a single number or two numbers, respectively, denote the
quantity at the junction or the quantity across the channel, e.g.,
pressure difference and resistance between two junctions. The
pressure at the outlet is assumed zero in eqn (9), i.e., grounded,
and the pressure at junction 10, ie., pio is equal to Apjg.
Therefore, the inlet pressures pq, p,, ..., ps can be expressed
using pressure differences Ap; 19, Apg 10, and Apg 0. In our
formulation, the incoming branch channels of each Y-shaped
mixer and the pressures at their inlets are set the same, while
the pressures could be different from one Y-shaped mixer to
another, that is, p; = p,, p3 = pa, ps = ps, and p; # p3 # ps. By
simply constraining the values of these pressure differences to

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Prescribed CGs in the first case study: design of inlet concentrations.

be larger than zero, the backflow can be effectively eliminated
because positive pressure differences of junction 7, 8, and 9
relative to junction 10 imply that all fluid streams enter the
main output channel.

Mathematically, the SBO-based design of pCGGs can be
summarized as follows:

|Co(x) = Gl
Gl

mVin Jq = (10)
where x is the vector of the design variables; recall that Cs and
C, are, respectively, the prescribed CG and the CG of candidate
design extracted at the detector location; and C, depends on the
values of the design variables x. The CG is measured with 100
uniformly distributed probes along the channel width direc-
tion, and thus, both Cs and C, are a 100-dimensional vector.
In this paper, two case studies following the formulation
above are investigated to verify SBO-based design of nCGGs. In
the first one, only normalized chemical concentrations at the six
inlets are included as the design variables, i.e., x =[c, 3, ..., C6]
with ¢; being a scalar, and the pressure difference applied across

the merging channel of all the Y-shaped mixers is the same, i.e.,
Ap;10 = Apgio = Apo,io. This reduces the problem to six
dimensions and is called design of inlet concentrations here-
after. In this case study, p; = p, = p3 = ps = ps = ps = 382.44 pa
is used, and correspondingly the flow rate through each inlet
channel is fixed as 864 nl min “.*> Fig. 4 illustrates three
prescribed CGs, i.e., Cs that need to be generated by selecting
appropriate inlet concentrations c;, which include the sawtooth-
shaped, trapezoidal, and linear CGs. The normalized concen-
tration is in the range of [0-1]. Note that due to the same flow
rate through each inlet channel, three linear segments in the
prescribed CGs have the same width.

In the second case study, the pressure difference across the
merging channel of the three Y-shaped mixers (Ap; 10, Aps 10,
and Aps 10 in Fig. 3), are introduced as three additional design
variables to generate more complex CGs. This will increase the
design dimension to 9, viz., X = [c4, ..., Cs, AP7,10) APs.10s AP 10
making it more challenging to construct the surrogate model
and to search optimal parameters corresponding to minimum
Ja- Note that once the optimal values of the pressure difference
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H——— pe—e—————» e ¢———
1 1 o 1 : :
= 0.8 10.8 = 0.8 10.8
g 0.8 .E 0.8 g 0.8
~— P =
£0.6 £ 0.6 £ 0.6
-~ ~— ~—
S 5 s
0 04r < 0.4 o 0.4
= = =
= =] (=3
O 0.2 . O 0.2 0.1\ Qo2 01 0.1
0.2 i - =
0 0 : : 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Normalized channel width

(a) Sawtooth-shaped

Normalized channel width

(b) Trapezoidal

Normalized channel width

(c) Valley-shaped

Fig. 5 Prescribed CGs in the second case study: design of both inlet concentrations and pressure differences.
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are fou-nd, tflley can be converted to tbe mI?t pressures at. the pN _ (| Cs — gpem (Xopt) I,
reservoirs using eqn (9). Because of the identical size of the inlet d = G,
branch channels in all Y-shaped mixers, the two inlet pressures (11)
and the two flow rates through each Y-shaped mixer are equal, JCFD _ [ICs — gcrp (xopl) l 5
d

thatis ¢, = ¢, g3 = ¢4, and g5 = ge. However, the flow rate can be
different among them, i.e., ¢, # g3 # ¢s. Therefore, the nCGG in
this design can generate CGs comprised of three segments with
different widths as shown in Fig. 5, which include the sawtooth-
shaped, trapezoidal, and valley-shaped CGs.

4 Results and discussion

In this section, we will first describe a process to verify the
optimum design obtained by SBO with adaptive sampling. Then
the details of the SBO design solutions for both case studies
above will be presented. Specifically, in each case study, the
model selection step is first undertaken to compare various
combinations of the regression model and the correlation
model and select the best one for surrogate model construction.
The adaptive sampling is then carried out to update the surro-
gate model and the response surface will be refined with infills
for enhanced approximation, in which various infill criteria are
also compared in terms of convergence rate. The performance
of SBO with adaptive sampling will also be benchmarked with
other relevant optimization methods, including SBO with
random sampling and gradient-based optimization.

The procedure to verify the design obtained by SBO with
adaptive sampling and benchmark its performance with the
other optimization methods is illustrated in Fig. 6. Starting with
a minimum number of initial samples, SBO with adaptive
sampling (within the black box) consisting of model selection
and infill will be performed, and eventually yields an optimum
design when convergence criterion is reached. For verification,
the optimum design parameters are then entered to CFD
simulation or PBCM simulation, producing a CG that is then
compared against the prescribed CG, i.e., Cs. The process will be
repeated for several prescribed CGs as presented in Section 3.
To quantitatively characterize the performance of the proposed
design method, two performance criteria are defined, including
discrepancy of PBCM J5°“™ and discrepancy of CFD J§*®

13806 | RSC Adv, 2020, 10, 13799-13814
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where C; again is the prescribed CG; x,p is the optimum design
parameters; gppcm and gerp represent PBCM and CFD simula-
tion, respectively, which takes x,,. as inputs and predicts the
generated CGs. In this paper, CGs produced by CFD simulation
is treated as the ground truth. Ji™ and j§° are used to inspect
different aspects of the design process. J4°“™ compares the
prescribed CG and the CG computed by PBCM using optimum
design parameters, and therefore, it characterizes not only
design performance, but also feasibility of generating the
prescribed CG. It should be noted that it is almost impossible to
generate prescribed CGs in Fig. 4 and 5 exactly using nCGGs due
to the physical limitation that CGs will be bent at all channel
walls due to their impermeability to species transport.'> More
broadly, J§* will also examine the discrepancy between PBCM
and high-fidelity CFD arising from the assumptions used in
PBCM. CFD simulation is performed with the commercial finite
volume method (FVM) package CFD-ACE+ (http://www.esi-
cfd.com) to verify the optimal parameters and corresponding
CGs obtained by various design methods above. The details
regarding CFD simulation is presented in our prior work."

As discussed above SBO with adaptive sampling is also
compared with two other design methods, ie., SBO with
random sampling and gradient-based optimization as shown by
the gray dashed lines in Fig. 6. In the former, the one-shot
random sampling is used, and the surrogate model is only
constructed once before the design process using simulation
data at these randomly sampled parameters. In the latter,
Matlab's built-in function, finincon, a gradient-based optimiza-
tion method to find the minimum of a constrained nonlinear
multivariable function, is used to search for the optimum given
prescribed CGs. The design performance of these methods,
including accuracy and the numbers of evaluations, i.e., design
costs are also compared.

This journal is © The Royal Society of Chemistry 2020
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Table 1 Relative percentage errors of surrogate models built by
different combinations of regression and correlation models in the
case study: design of inlet concentrations
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Table2 Comparison of differentinfill strategies and prescribed CGs in
terms of Jgq of optimum design for the case study: design of inlet
concentrations

Relative (percentage) errors ¢ Ja
Regression Correlation
model model Sawtooth-shaped Trapezoidal Linear  Infill Sawtooth-shaped Trapezoidal Linear
Zero order Spline 20.60% 22.56% 20.69% LB 9.83% 4.07% 2.97%
polynomial Gauss 17.63% 17.45% 12.78%  PI 10.24% 4.54% 7.04%
Exp. 19.59% 21.18% 13.07% EI 9.91% 4.20% 2.60%
Linear 20.60% 22.56% 20.69%
Spherical 20.60% 22.56% 20.69%
First order Spline 15.20% 10.52% 10.10%
polynomial Gauss 13.25% 9.48% 8.89%
Exp. 15.20% 10.31% 10.59% 1 T —J, .
Linear 15.20% 10.52% 10.10% = Zl T4 | X 100% (12)
Spherical  15.20% 10.52% 10.10% !
Second order  Spline 16.14% 26.08% 9.60%  where Jy is the true value of the discrepancy between the
i (V) 0, 0, . . .
polynomial  Gauss 16.14% 26.08% 9-60% prescribed CG Cs and the CG generated at the validation
Exp. 16.14% 26.08% 9.60% i hile 7. is the di dicted by th
Linear 16.14% 26.08% 9600%  samples Co, W'l e Jq is the 1screpa}ncy‘ predicted by t e.surr‘o-
Spherical 16.14% 26.08% 9.60%  gate model, n is the number of validation samples and is 9 in

4.1 Case study 1: design of inlet concentrations

For each prescribed CG given in Fig. 4, a comparative analysis is
performed to compare the performance of various combina-
tions of the regression model and the correlation model in
order to construct a surrogate model of salient accuracy for SBO
design. 28 training data, the minimum number of required
samples to build a surrogate model with the second order
polynomial regression in the 6-dimensional design space is
adopted.” For each prescribed CG, a total of 15 surrogate
models are constructed by the full-factorial combination of
three regression models and five correlation models. The
regression models under consideration include the 0™, 1%, and
2™ order polynomial. The correlation models include spline,
Gauss, exponential, linear, and spherical, and their mathe-
matical expressions are described in ref. 23. Then surrogate
model-predicted values are compared with true values of 9
validation data, and the relative error between them is defined
as

this case study. Table 1 lists the relative error for various
combinations of the regression model and the correlation
model, according to which the most accurate one is selected for
adaptive sampling and SBO.

It was found that the first-order polynomial regression
model combined with the Gauss correlation model reveals the
smallest relative error ¢ for all three prescribed CGs, and thus, is
selected for SBO with adaptive sampling. In this case study, 30
adaptive samples/infill (corresponding to 58 in total) are
allowed to find the optimum design for each prescribed CG. For
comparison, three infill techniques above are applied sepa-
rately. Fig. 7 shows the convergence of Min. J4 of the surrogate
model for different infill strategies for each prescribed CG.
Multiple runs of the same optimization configuration are
repeated for each prescribed CG, and all converge to the global
optimum, and therefore, the same results are not duplicated
here for the sake of conciseness. For sawtooth-shaped CGs, LB
exhibits a faster convergence rate compared to the other two
infill strategies. For the trapezoidal CG, three infill strategies
have a similar convergence rate. For the linear CG, EI converges
to a better solution, i.e., lower J, at a faster rate.

30% 30%
=S 20% S 20%
£ i £
= 10% ) = 10%
0% 0% 0%
0 10 20 30 0 10 20 30 0 10 20 30
Iteration Iteration Iteration
(a) Sawtooth-shaped (b) Trapezoidal (¢) Linear

Fig. 7 Convergence of Min. J4 using different infill strategies for prescribed CGs: (a) sawtooth-shaped, (b) trapezoidal, and (c) linear in the case

study in the case study: design of inlet concentrations.
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Fig. 9 CFD contour plots and predicted CGs relative to the prescribed CG for the case study: design of inlet concentrations.
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Fig. 10 Comparison of results between SBO with random sampling and adaptive sampling for the case study: design of inlet concentrations.

Table 2 lists the numerical values of J4 of optimum design in
all cases above. The J4 achieved for each infill strategy repre-
sents the closeness between the CG generated by the candidate
design and the prescribed CG. A better infill strategy constructs
a more accurate surrogate model near the region around the
optimum to capture the true response surface of j; there, but
not necessarily the entire design space. This is because the goal
of our infill is to improve the accuracy of the optimum design,
rather than building a global surrogate model to represent the
input and output relationship across the entire domain. The
results in Table 2 confirm that LB outperforms the other two for
the sawtooth-shaped CG, all the three are equivalent for the
trapezoidal CG and LB is used for the analysis below, and EI is
the best the linear CG.

Fig. 8 shows the response surfaces of J4 predicted by the
surrogate models as more samples are added by the best infill
strategy identified above for each prescribed CG. To facilitate
visualization, the surface is portrayed in 3D that only varies with
¢; and c, while keeping the other design variables constant. 0,
15, and 30 sample infills are employed in the surface plot from
the top to the bottom, respectively. It clearly shows that for each
prescribed CG, the minimum value of the surrogate model
becomes smaller and converges to a single point as more infills
are added. Besides, the infill points are mostly distributed
within the region close to the minimum, and impact the
response surface shape there, which improves the accuracy of
the optimum design solution and confirms that adaptive
sampling effectively accelerates the process of search.

CFD simulation results and the comparison between the
prescribed and predicted CGs in terms of the normalized
chemical concentration are shown in Fig. 9. The concentration
contour near the W-shaped junction is displayed in the top row,
and the CGs across the channel width are observed at the
detector, which is located 400 um downstream the W-shaped
junction. The PBCM- and CFD-predicted CGs match well with
prescribed CGs, which are obtained by supplying the optimum
designs to PBCM and CFD-ACE+ simulation. The excellent
agreement of PBCM- and CFD-predicted CGs with respect to
prescribed CGs verifies the accuracy of SBO with adaptive
sampling for the nCGG design. However, minor differences are
also observed at the stream interface and the side walls, which

This journal is © The Royal Society of Chemistry 2020

can be attributed to the fact that the prescribed CGs are created
by concatenating three linear profiles while in actual nCGGs,
CGs will be bent near all channel walls resulting from their
impermeability to chemical species. In other words, the uCGG
is not able to generate exactly the same prescribed CGs if the
latter are artificial and do not fully match the solution of the
underlying species transport equation. In addition, there is also
an excellent match of the CG results predicted by PBCM and
CFD, which implies that PBCM although with assumptions to
allow analytical solution, is an accurate approximation of
computationally demanding CFD, and can be used in place of
the latter for design.

The optimum design found by SBO with adaptive sampling
is also compared with two other design methods, i.e., SBO with
random sampling and gradient-based optimization (enclosed
in the dashed boxes in gray in Fig. 6), for all three prescribed
CGs. In the former, one surrogate model is constructed using
training data produced at parameters selected by one-shot
random sampling before the design, and it is then used in the
design process without infill or model update. Fig. 10 shows
Min. J4 found by SBO with random sampling that uses the
different number of samples, and compares it with the refer-
ence line in orange, viz., adaptive sampling results using 58
samples in total. The red circle represents the result of random
sampling when 58 samples in total are used. It clearly reveals
that the optimal solution determined by the one-shot random
sampling and corresponding surrogate model exhibit a much
larger value of Min. J4 for all cases. The adaptive sampling at
least improves the accuracy of random sampling by two times,
that is, Min. J4 drops from 21.6% to 9.83% in the sawtooth-
shaped CG, from 11.4% to 4.07% in the trapezoidal CG, and
from 23.2% to 2.60% in the linear CG. Even if the number of
randomly selected samples is increased to 1000, the accuracy of
random sampling-based design cannot reach that by adaptive
sampling. Besides, as we can see from the figures, the oscilla-
tion present in the curve of the random sampling is due to the
insufficient number of samples. Therefore, given a fixed simu-
lation budget, adaptive sampling is more computationally effi-
cient and desired for global optimum search.

Next, SBO with adaptive sampling is compared with the
gradient-based optimization method in terms of the total

RSC Adv, 2020, 10, 13799-13814 | 13809
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Table 3 Comparison of the number of PBCM evaluation/simulation
between SBO with adaptive sampling and gradient-based optimization
for the case study: design of inlet concentrations
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Table5 Comparison of different infill strategies and prescribed CGs in
terms of Jgq of optimum design for the case study: design of inlet
concentrations and pressure differences

Method Sawtooth-shaped Trapezoidal Linear
Gradient-based 100 87 109
SBO 58 58 58

Table 4 Relative percentage errors of surrogate models built by
different combinations of regression and correlation models in the
case study: design of inlet concentrations and pressure differences

Relative (percentage) error ¢

Regression Correlation Sawtooth- Valley-
model model shaped Trapezoidal shaped
Zero order Spline 17.87% 28.90% 18.54%
polynomial Gauss 17.57% 25.21% 17.57%
Exp. 17.87% 28.90% 18.54%
Linear 17.87% 28.90% 18.54%
Spherical 17.87% 28.90% 18.54%
First order Spline 16.55% 20.46% 11.64%
polynomial Gauss 16.48% 20.44% 11.10%
Exp. 16.55% 20.46% 11.64%
Linear 16.55% 20.46% 11.64%
Spherical 16.55% 20.46% 11.64%
Second Spline 83.02% 56.99% 83.66%
order Gauss 83.02% 56.99% 83.66%
polynomial Exp. 83.02% 56.99% 83.66%
Linear 83.02% 56.99% 83.66%
Spherical 83.02% 56.99% 83.66%

number of PBCM simulations, and the latter uses Matlab's
built-in function, finincon. It is well known that the number of
model evaluations (viz., PBCM simulations herein) in
gradient-based optimization heavily depends on the selection
of initial start points. Therefore, ten runs with different initial
points, which are selected from initial samples in SBO with
adaptive sampling, are undertaken and examined for the
gradient-based optimization. The number of PBCM evalua-
tions required to reach the same accuracy as SBO with adaptive

Ja
Infill Sawtooth-shaped Trapezoidal Valley-shaped
LB 11.90% 3.75% 11.23%
PI 12.97% 4.36% 11.57%
EI 14.61% 4.43% 12.77%

sampling in the ten runs is averaged, and the average number
is then compared with that of the proposed method. Table 3
shows that for all three prescribed CGs, SBO with adaptive
sampling uses a smaller number of PBCM evaluations/
simulations (~30 less on the average) for this case study
involving 6 design variables.

4.2 Case study 2: design of inlet concentrations and pressure
differences

Next, we extend the study to the 9-dimensional design space
encompassing six inlet concentrations of chemicals and three
pressure differences in all the Y-shaped mixers. Similarly, the
best combination of the regression model and the correlation
model is first selected through a comparative analysis. Each
combination uses 55 samples in the training data, which is the
minimum number of samples required to build a surrogate
model with the second order polynomial regression in the 9-
dimensional design space. Subsequently, 17 validation samples
are utilized to evaluate performance of the 15 combinations of
the regression model and the correlation model for all three
prescribed CGs in Fig. 5. The relative percentage errors are lis-
ted in Table 4, which clearly indicates that the first-order poly-
nomial regression model and the Gauss correlation model
yields the smallest relative errors ¢ and is the best one for all
three cases.

With the best surrogate model structure selected, SBO
design with adaptive sampling is then carried out subject to
a budget of 700 infill samples that are selected by three different
infill strategies. Fig. 11 portrays convergence curves of Min. J4 of
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Fig. 11 Convergence of Min. J4 of surrogate model using different infill strategies for prescribed CGs: (a) sawtooth-shaped, (b) trapezoidal, and
(c) valley-shaped for the case study: design of inlet concentrations and pressure differences.
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Fig. 13 CFD contour plots and predicted CGs relative to the prescribed CG for the case study: design of inlet concentrations and pressure
differences.
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Table 6 Jgs of CGs predicted by PBCM and CFD using the optimum
designs found by SBO with adaptive sampling

Sawtooth-shaped Trapezoidal Valley-shaped
PBCM 11.90% 3.75% 11.23%
CFD 22.98% 6.42% 12.34%
1
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: 0.8 N CFD
=) KS
= % 2
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Fig. 14 Comparison between PBCM and CFD simulation at fully
developed region for the sawtooth-shaped CG.

the surrogate model using the three infill strategies for each
prescribed CG. LB outperforms the other two in terms of the
convergence rate, and constructs more accurate surrogate
models that find inlet concentrations and pressure differences.
This is quantitatively confirmed by J4 of optimum design listed
in Table 5, which clearly shows that LB achieves the lowest J; for
all three prescribed CGs, yielding better designs than PI and EI

The response surfaces of /4 predicted by the surrogate models
with more samples added by the LB infill are shown in Fig. 12.
Similarly, for the sake of visualization, only ¢; and ¢, vary while
the other design variables are held constant. The surface plots
from the top to the bottom are generated by surrogate models
with 0, 300, and 700 infills. It shows that without infills, the
response surfaces appear almost linear because of the use of the
first-order regression model and extremely insufficient training
data. As more infill points are added, e.g, 300 infills, the

View Article Online
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nonlinearity of the response surface for each prescribed CG is
observed, and Min. Jq4 becomes evident. The profiles of the
response surfaces only change slightly at 700 infills along with
the converged solution of Min. J4. Again, this confirms that the
surrogate model can be improved and the optimum design in 9-
dimensional space can be found in a reliable manner given
adequate infill points. More importantly, adaptive sampling
based on the LB infill strategy successfully assigns most of the
infill points within the region close to optimum (not shown to
avoid data clustering and facilitate visualization) that provides
more topological information to speed up the search process and
improve the solution accuracy.

Fig. 13 shows the CFD contour plots of the normalized chem-
ical concentrations and the comparison between the prescribed
and predicted CGs extracted at the detector location. Table 6 lists
the numerical values of J4s of CGs predicted by PBCM and CFD
simulation using the optimum design parameters found above by
SBO with adaptive sampling. There are several points to note. First,
the PBCM-predicted CGs match well with prescribed CGs in all
cases, although their shapes are more complex in this case study
with 9 design variables. The discrepancies between prescribed CGs
and PBCM-predicted CGs are mostly due to bending of the
concentration distributions at the side walls that are impermeable
to chemical transport. Second, CFD-predicted CGs exhibit notice-
able discrepancy from the prescribed and PBCM-predicted CGs in
the sawtooth-shaped and trapezoidal CGs, and therefore, the
values of J4 by CFD is appreciably higher than that of PBCM in both
CGs. This is caused by appreciable transverse flow immediately
downstream the W-shaped junction before flow is fully developed,
and presence of the detector within the flow entrance region of the
main output channel, as revealed by the concentration contours in
Fig. 13a and b. However, as discussed above, our PBCM is not able
to take into account such an effect because of its modeling
assumptions. To confirm the interpretation, Fig. 14 illustrates the
comparison between PBCM- and CFD-predicted CGs when the
detector is located further downstream (2000 pm from the W-
shaped junction), and we can see that both match very well. It is
also noticed that for the valley-shaped CG, the transverse flow is
relatively weak due to the pressure symmetry in the streamwise
direction, which again is apparent in CFD contour plot of Fig. 13c.
Therefore, PBCM- and CFD-predicted CGs are almost identical
with negligible differences.
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300 | (755 22.2 %) ; 0% 20% o o o P
5 B O, ~ =
~ » @ O g D . = soog | 755 32:0%)
= % = () = ()
& 2 (755, 9.2%) £
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Fig. 15 Results of SBO with random sampling for the design of inlet concentration and pressure difference.
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Table 7 Evaluation comparisons between the SBO with adaptive sampling and the gradient-based optimization methods

Sawtooth-shaped Trapezoidal Valley-shaped
Run no. Number of evaluation Min. J4 Number of evaluation Min. J4 Number of evaluation Min. J4
1 247 11.42% 448 3.74% Fail 22.37%
2 280 11.17% 207 3.73% Fail 22.36%
3 Fail 31.11% 246 3.70% 307 10.83%
4 484 11.12% 255 3.69% 260 10.93%
5 Fail 31.11% 204 3.75% Fail 21.99%
6 279 10.63% 195 3.72% 229 11.18%
7 297 11.06% 219 3.74% Fail 21.93%
8 Fail 31.11% 195 3.73% 255 11.15%
9 Fail 31.11% 216 3.71% 351 10.96%
10 Fail 31.11% Fail 4.62% Fail 22.28%

Min. J4 for the different numbers of samples obtained by
SBO with random sampling is shown in Fig. 15, and compared
with shows the reference line in orange, viz., adaptive sampling
results using 755 samples in total. Again, Min. J; achieved by
the random sampling is at least 2 times larger than that by
adaptive sampling with 755 samples in total. Even if the number
of samples and evaluations is 13 times larger than adaptive
sampling, it still cannot reach the same level of accuracy. This is
because even 10 000 samples for 9 dimensions are still too
small for constructing an accurate surrogate model in the entire
design space, in particular, around the region of optimum. It
turns out that adaptive sampling effectively accelerates the
process of searching minimum. Besides, the uniform distribu-
tion of samples contributes to the oscillation of the curve as the
correlation matrix in Kriging can vary dramatically and
randomly. However, the general trend of random sampling
error is to decrease as more samples are added.

Table 7 shows the number of evaluations required by the
gradient-based optimization to reach the optimum solution at
the same level of accuracy as SBO with adaptive sampling. Again,
10 different start points are selected from the initial samples
used in SBO design to initiate 10 gradient-based optimization
runs. It shows that 50% of the runs fail to converge to the
optimum solution for the sawtooth-shaped CG, 10% failure for
the trapezoidal, and 50% for the valley-shaped. It seems caused
by being trapped at local optima because Min. J4s achieved in
these failed runs are notably higher than those at the global
optimum. This implies that although gradient-based optimiza-
tion can be more computationally efficient for high-dimensional
design problems, there is a risk of missing the global optimum,
in particular, for generating complex CGs. However, for the
trapezoidal CG, gradient-based optimization outperforms SBO
with adaptive sampling in efficiency for 9 runs, which may be
attributed to the simpler topology of its response surface.
Generally speaking, because of its exploratory nature, SBO with
adaptive sampling is a more feasible and reliable method to
search for the global optimum, while the gradient-based
approach is more computationally efficient and requires fewer
PBCM evaluation in high-dimensional design space if not trap-
ped at the local optimum. The large variation in the number of
PBCM evaluations further reveals that the gradient-based opti-
mization is indeed dependent on the initial start point.

This journal is © The Royal Society of Chemistry 2020

5 Conclusion

In this paper, a new method based on surrogate-based optimi-
zation (SBO) with adaptive sampling is developed for efficient
and reliable design of microfluidic concentration gradient
generators (LCGGs). The key rationale of the proposed method
is to construct the surrogate model, i.e., Kriging, using physics-
based simulation data, update the model using incrementally
and adaptively added data, viz., infill, and then utilize contin-
uously enriched topological information provided by the
surrogate model to guide the search of global optimum. New
aspects of the proposed research include: first, the feasibility of
applying SBO with adaptive sampling to complex pCGG design
is systematically examined. Second, the physics-based compo-
nent model (PBCM) of nCGGs in the closed-form is employed to
generate data for surrogate model construction to further
reduce the computational cost. Third, a comparative analysis is
performed to identify the best combinations of the regression
model and the correlation model, and determine the infill
strategies for improved surrogate modeling and design perfor-
mance. Last, the use of pressure differences rather than the
native inlet pressures as the design variables to eliminate the
backflow issue.

Two case studies are undertaken on the partial mixing- and
species transport-governed triple Y-shaped uCGG to evaluate
design performance of the proposed method. Key technical
findings are obtained, including

(1) Our comparative analysis indicates that combining the
first-order polynomial regression model and the Gauss corre-
lation model in Kriging yields the highest surrogate model
accuracy.

(2) In general, three infill strategies all allow the design to
converge to the global optimum, while on average LB exhibits
faster convergence rate than EI and PI.

(3) All CGs predicted by PBCM using the optimum design
parameters match prescribed CGs, which verifies feasibility,
robustness, and accuracy of the proposed method.

(4) Both PBCM-predicted and CFD-predicted CGs match very
well in the first case study, which validates the accurate design
of SBO with adaptive sampling, while an appreciable difference
(average J4 difference 4.95%) between them is observed in the
second case study. It is attributed to asymmetric flow rates

RSC Adv, 2020, 10, 13799-13814 | 13813
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through Y-shaped mixers in the second case study that give rise
to significant transverse flow in the entrance region, the effect of
which on species transport can be captured by CFD but not
PBCM.

(5) The proposed method is at least two times more accurate
than SBO with random sampling for all prescribed CGs, which
confirms that adaptive sampling-based infill is necessary for
SBO design of complex CGs.

(6) The gradient-based optimization method requires at least
30 more evaluations compared to the method of SBO with
adaptive sampling in the first case study. In the second case,
approximately 1/3 of the runs of gradient-based optimization
fail to find the global optimal solution, although on average it
uses less simulation than SBO with adaptive sampling. In short,
SBO with adaptive sampling is preferred as a robust method to
find the global optimum design.

The future work will focus on combining a small amount of
high-fidelity CFD data with PBCM data to construct multi-
fidelity surrogate models®” to address the discrepancy between
PBCM- and CFD-predicted CGs caused by transverse flow in the
entrance region, and utilize the multi-fidelity model for p\CGG
design.
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