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Effects of alkali and transition metal-doped TiO,
hole blocking layers on the perovskite solar cells
obtained by a two-step sequential deposition
method in air and under vacuumt
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Planar perovskite solar cells (PPSCs) have received great attention in recent years due to their intriguing
properties, which make them a good choice for photovoltaic applications. In this work, the effect of
alkali and transition metal-doped TiO, (cesium-doped TiO, (Cs-TiO,) and yttrium-doped TiO, (Y-TiO,))
compact layers on the optical, structural and the photovoltaic performance of the PPSCs have been
investigated. The perovskite layer syntheses were carried out by depositing a lead iodide (Pbl,) layer via

spin-coating; converting Pbl, into methyl ammonium iodide (CHsNH3zPblz) by chemical vapor deposition
Received 18in February 2020 (CVD) and spin-coating at 60 min and 60 ion ti tively. The as-deposited PPSC
Accepted 24th March 2020 and spin-coating a min an s conversion times respectively. The as-deposite s were
studied layer-by-layer using an X-ray diffractometer, scanning electron microscope, and UV-vis diffuse

DOI: 10.1039/d0ra01532f reflectance, transmittance and absorbance. The power conversion efficiency for stable processed
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1. Introduction

Perovskite solar cells (PSCs) have attracted great interest due to
their intriguing properties such as large absorption coefficient,
high electron-hole diffusion length, tunable band gap, high
charge carrier mobility, low temperature processing and low
cost of production. These have made them good choices as
efficient multi-purpose photovoltaics (PVs) for the next gener-
ation PV devices. The power conversion efficiency (PCE) of PSCs
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perovskite solar cells were 3.61% and 12.89% for air and vacuum processed, respectively.

has been improved from 9.7%" to 22.1%>* in the last seven
years. The main device architectures of PCSs have been pre-
sented as planar and mesoporous, and are made up of the
perovskite absorber layer, electron transport layer (ETL) and
hole transport layer (HTL)>” on a fluorine-doped tin oxide (FTO)
substrate. In the planar architecture, the perovskite absorber
(CH;3NH;Pbl;) is usually sandwiched between ETL and HTL
without a mesoporous layer while mesoporous architecture
includes a mesoporous layer. Newly emerging device architec-
tures are the inverted planar PSCs and planar structure PSCs
without HTL.*® The perovskite absorber layer is the brain box of
the perovskite photovoltaic devices where the charge carriers
(excitons) are generated when light of energy greater than or
equal to the optical bandgap of the absorber layer. Due to weak
binding energy of the exciton (electron-hole), the separation of
these electrons-holes take place at room temperature and
requires an instant transport to ETL and HTL under the internal
electric field at the junction.' However, failure to transport the
photo-generated charge carriers to the appropriate transport
layer may result to quick recombination, charge accumulation
at the interface and reduction in charge transfer.”™** Due to the
above mentioned reasons, efficient ETL is required to effectively
extract the electron from the active layer before recombination
occurs. A compact ETL, which is one component of the planar
PSCs structure, has shown to be the most promising in
producing a high and stable PCE. The planar structure without
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a mesoporous layer improves the perovskite crystallinity,
surface morphology and reduce charge recombination.***¢

In the recent years, numerous metal oxides have been
employed to improve the effectiveness of electron transport
materials (ETM) such as titanium oxide (TiO,), aluminum oxide
(Al,03), zinc oxide (ZnO), tin oxide (Sn0O,), and magnesium
oxide (MgO)'"* etc. TiO, has been proven to be the most widely
preferred ETM due to its chemical stability, low-cost synthesis
and charge transport tendency.'>*>* In addition, TiO, ETM has
shown a better conversion efficiency, and this is possible due to
the band alignment between the conduction band of the TiO,
ETL and the lower unoccupied molecular orbital (LUMO)
perovskite active layer.> The electrons generated in the
absorber layer can make his way to the ETL with less stress.
Despite all these good names given to TiO,, it suffers from poor
to low electrical conductivity. There is need to improve the
electrical conductivity for better electron transport efficiency.
One of the adopted ways to improve the electrical conductivity
of the TiO, ETL is metal ion doping. TiO, metal ion doping have
been reported in which several metal dopants such as
lanthanum, lithium, niobium, aluminum and magnesium,
were used for mesoporous doping on the TiO, layer.>>*® The
incorporation of these metal dopants resulted in tuning the
Fermi level, reduced electronic trap sites, enhanced optical
band gap and improved stability of the PSCs.>”"**

Compact-TiO, (c-TiO,) layer is the most frequently used ETL
in the fabrication of highly efficient PSCs because of several
reasons such as better exciton separation, easy to process in air,
high transparency and low cost of fabrication.?® Varieties of
deposition methods have been used in the preparation of c-TiO,
layer as ETL in PSCs, like spin-coating, dip-coating, spray-
coating, magnetron sputtering, electrochemical deposition,
electron beam deposition and atomic layer deposition.*~** Spin-
coating presents a lot of advantages over other deposition
technique such as easy fabrication, low energy intensive, and
thin film control through precursor concentration.*® The
desired thickness of ¢-TiO, layer is in the range of 10-80 nm for
planar structure without mesoporous TiO, layer. However,
optimization of c-TiO, layer for use as ETL in PSCs is currently
an area of research that has received a great attention. The c-
TiO, layer is crucial by selectively allowing the electron gener-
ated at the absorber layer to be extracted to the electrode (FTO)
so as to block the hole at the junction between FTO/absorber
layer.*>*” It helps also to prevent carrier recombination at the
perovskite/absorber interface, pinhole-free and maximum light
penetration. Moreover, doped c-TiO, layer have been reported
to address the issue of hysteresis.*® More works are required to
further improve the solar parameters and stability of planar
(with no mesoporous layer) PSCs.

In this study, Cs and Y doped c-TiO, ETL have been
synthesized by sol-gel spin-coating deposition, which further
promotes cost reduction of the PSCs. The planar architecture
(n-i-p structure), FTO/doped c¢-TiO,/CH;NH;PbI;/HTL/Ag were
used in all the fabrication steps. We further studied the crystal
structure, electrical conductivity, optical properties, and layer-
by-layer surface morphology of PSCs with the active layer
deposited by two-step vapour deposition method. The PCE for
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perovskite layer deposited by spin coating and CVD methods
was compared for different c-TiO,. The effects of the doped c-
TiO, and the active layer deposition technique on the perfor-
mance of the fabricated PSCs were discussed in the article.
Moreover, this research work addresses the issue of choice of
deposition method for doped c-TiO, ETL and the perovskite
absorber layer on the PSCs performance.

2. Experimental
2.1 Materials

The materials used for this study were purchased as commercial
products and some were used as purchased without any further
purification. Methyl ammonium iodide (CH3;NH;I), unpat-
terned FTO coated glass substrates (10 ohm per sq), 2,2",7,7"-
tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene
(Spiro-MeOTAD) were purchased at the Ossila. Lead(u) iodide
(PbI,; 99%), titanium isopropoxide (TTIP; 97%), chlorobenzene,
4-tert-butylpyridine (tBP), acetonitrile (99.8%), lithium bis-(tri-
fluoromethanesulfonyl)imide (LITSFI), N,N-dimethylforma-
mide (DMF; 99.8%), and dimethyl sulfoxide (DMSO; 99.9%)
were purchased from Sigma and ALDRICH.

2.2 Preparation of c¢-TiO, pristine and doped c-TiO, layer

Prior to the deposition of ¢-TiO, layer used in this study, the
unpatterned FTO substrates were patterned by etching the
desired portion with zinc (Zn) powder and 2 M hydrochloric
acid (HCI). The etched substrates were cleaned in Hellmanex
detergent, sonicated in deionized water (70 °C), isopropanol
(IPA) and deionized water (70 °C) respectively. The cleaned FTO
patterned substrates were treated by UV-O; for 10 min.

The c-TiO, layers were deposited on the patterned FTO
substrates by sol-gel spin coating at 3000 rpm for 30 s, pre-
heated for 10 min at 30 °C slightly above room temperature, and
finally calcined at 400 °C for 1 h using hot plate. The titanium
precursor solutions were prepared by adding different masses
of cesium chloride (CsCl) and yttrium(m) oxide (Y,03) in ethanol
(2.5 mL) and stirred for 2 h to dissolve completely. 350 pL of
TTIP in ethanol (2.5 mL; 99.9%) in separate beaker was stirred
for 10 min to form a milky solution. An acidic solution was
prepared in a different beaker by adding 2 drops of HCI (2 M) in
ethanol (2.5 mL). The dopant solution and acidic solution were
added to the titanium precursor under constant stirring to clear
the milky solution and form a viscous colorless solution. The
prepared sol was spin-coated on the FTO patterned substrate by
masking the undesired area for metal contact with acid resistive
tape to form a thin FTO/c-TiO,. The same method was repeated
for pristine c-TiO, without adding any dopant oxides.

2.3 Fabrication of the perovskite absorber layer

The perovskite absorber layer was prepared by two-step spin-
coating and two-step chemical vapor deposition method. The
schematic diagram of the deposition steps is shown in Fig. 1.
(I) Spin-coating deposition method. For the methyl ammo-
nium lead iodide (MAPDI;) prepared by spin-coating deposition
method, 369 mg of Pbl, was dissolved in a mixture of DMF and

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Schematic diagram of the deposition steps for the perovskite solar cell.

DMSO in the ratio of 9:1 respectively to form 0.8 M PbI,
solution. The Pbl, solution was heated at 65 °C for 3 h with the
bottle containing the solution capped for the PbI, to dissolve
properly. With the PbI, solution kept at 65 °C, 40 pL of the
dissolved PbI, solution was spin-coated on the FTO/c-TiO, and
FTO/c-TiO, substrate which was heated at 65 °C prior to depo-
sition at 7000 rpm for 35 s. The spin-coated PbI, layer was
preheated at 40 °C for 4 min, and finally heated at 105 °C for
4 min for the solvent to evaporate. This first procedure for the
preparation of MAPbI; by spin-coating is considered as the first
step while the second step is to convert the PbI, layer into
MAPDI;. The conversion of the PbI, into MAPbI; was done by
dissolving 10 mg of CH;NH;I in 1 mL of IPA, and then dropped
on the Pbl, layer to diffuse into the layer for 60 s (loading time),
followed by spin-coating at 4000 rpm for 20 s. The converted
MAPDI; was dried at 105 °C for 2 min to obtain a dark brown
perovskite layer film. Afterwards, 50 pL of HTL (Spiro-OMeTAD)
solution was spin coated on the MAPDI; layer at 300 rpm for 30 s
after which the perovskite layer was cooled to room tempera-
ture. The Spiro-OMeTAD solution was made from the mixture of
180 mg of 2,2"7,7"-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-
spirobifluorene (Spiro-OMeTAD) in 1 mL of chlorobenzene, 30
uL of 4-tert-butylpyridine (tBP) and 20 pL of lithium bis-(tri-
fluoromethanesulfonyl)imide (LITSFI) solution (520 mg of
LITSFI in 1 mL of acetonitrile) stirred for 30 min and allow
overnight to oxidize. Finally, 100 nm in thickness of silver (Ag)
electrodes were deposited at a deposition rate of 0.1 A s~* using
thermal evaporator to form a FTO/c-TiO,/MAPDbI;/Spiro-
OMeTAD/Ag device.

(IT) Chemical vapor deposition method. The perovskite layer
deposited by CVD was performed in two steps, whereby the Pbl,
layer was deposited on the FTO/c-TiO, and FTO/doped-TiO, in
the first step, followed by the conversion of the PbI, layer to
MAPDI; in the presence of a MAI vapor. Further details of the
deposition process can be found in the work by Ngqoloda et al.*®

The procedures for HTL deposition layer and metal contact
were repeated the same as the devices prepared by spin-coating
technique to complete the device.

This journal is © The Royal Society of Chemistry 2020

3. Characterization

The structural characterization of the synthesized TiO, nano-
particles was carried out by an automatic powder X-ray
diffractometer (XRD) X' pert Pro with a theta-theta goniom-
eter, using an ultrafast semiconductor detector pixel and Cu-Ka
radiation (A = 1.54 A). The optical band gap, transmittance and
absorbance were carried out with the Agilent Cary 5000 UV-VIS-
NIR universal measurement spectrophotometer. The surface
morphology and cross section imaging of the component layers
were studied by Carl Zeiss mA 10 model field emission scanning
electron microscopy (SEM) in combination with the energy
dispersive X-ray spectroscopy (EDX) for elemental microanal-
ysis. The current density-voltage (J-V) characteristics was
measured with Keithley 2420 source meter under standard
simulated solar irradiation of 1000 W m~> (100 mW c¢cm™?) and
AM 1.5 at room temperature. The active area of the solar cell was
0.0512 cm? as defined by the shadow mask used for the solar
testing.

4. Results and discussion

4.1 Thickness optimization of Cs and Y doped TiO, on FTO
substrate

The desired thickness for the compact Cs-and Y-doped TiO,
layer was between 20 and 80 nm. The prepared solution of Cs-
and Y-doped TiO, was controlled by the spin speed, spin
time, atmospheric temperature, stirring speed and time in
order to achieve the thickness in the desired range. The depo-
sition of the TiO, layers were performed using 40 pL of the
solution, spin speed of 3000 rpm and spin time of 30 s to ach-
ieve the desired average thickness of 54 + 5 nm. Table 1 shows
the summary of the obtained thicknesses with respect to spin-
coated growth conditions.

The above thicknesses were achieved at room temperature
deposition using static spin-coating technique and measured
with Dektak Profilometer.

RSC Adv, 2020, 10, 13139-13148 | 13141
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Table 1 Thickness optimization with FTO substrates at different
volumes, spin speeds and times

Amount of solution Spin speed Spin duration

(nL) (rpm) (s) Thickness (nm)
40.0 3000.0 30.0 48.0, 56.5 and 58.5
80.0 3000.0 30.0 130.0 and 142.0
40.0 2000.0 60.0 58.8, 71.0 and 53.0
100.0 3000.0 40.0 140.0 and 150.0
150.0 2000.0 60.0 2000.0

4.2 XRD characterization

Fig. 2 shows the XRD patterns for the pristine, doped Cs- and Y-
TiO, (Fig. 2(a)), perovskite layer processed in air (Fig. 2(b)) and
vacuum (Fig. 2(c)).

The XRD patterns of the dried titanium precursor annealed
at 500 °C for 30 min for the pristine, Cs- and Y-doped TiO, show
anatase phase of TiO,. The diffraction peaks observed at 2theta
(indexed) values: 25.28° (101), 38.57° (112), 48.05° (200), 53.89°
(105), 55.06° (211), 62.69° (204), and 68.76° (116) (as shown in
Fig. 2(a)) indicates an anatase with body-centered tetragonal
structure of TiO, (JCP2-021-1272) with lattice parameters of a =
b = 3.78520 A, ¢ = 9.51390 A. The calculated lattice parameters
for pristine TiO,, Cs-doped TiO, and Y-doped TiO, are (a = b =
3.7739A,c=9.2928 A), (a = b = 3.7858 A, ¢ = 9.5087 A), and (a =
b = 3.7898 A, ¢ = 9.4407 A) respectively.

There is no other TiO, phase observed in the XRD patterns of
the samples which were all crystallized at 500 °C annealing.

The crystallite size of the pristine, Cs- and Y-doped TiO,
particles were estimated by the Scherer's equation;*®

K
" Bcosd

1)
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where L is the crystallite size, K is the Scherer constant (0.94 for
FWHM of spherical crystals), @ is the full width at half-
maximum (FWHM) of the peak at 25.28° (101), # is the
diffraction angle and 2 is the wavelength of X-ray source (Cu-Ko
= 0.154 nm). The estimated crystallite sizes are 14.74, 14.07 and
13.07 nm for pristine TiO,, Cs-TiO, and Y-TiO, respectively
using main diffraction peaks at 25.28° as shown in Fig. 2(a).
There was a reduction in the crystallite size when doped with Cs
and Y compare to the pristine TiO,. The decrease in crystallite
sizes for Cs- and Y-doped TiO, is expected as the ionic radius of
both dopants play a role in the formation of the nanoparticles.
The crystal with lesser crystallite size has smaller ionic radius.

The XRD pattern of the spin-coated Pbl, layer and converted
MAPbDI; perovskite on the compact pristine, Cs- and Y-doped
TiO, layer are as shown in Fig. 2(b). The XRD spectra of the
PbI, layers show main peaks at 2theta diffraction angle of 12.72°
corresponding to the reflection from (001) plane, with a hexag-
onal crystal structure (JCPDS 07-0235). The crystallite size was
calculated using the Scherer eqn (1) and estimated to be
approximately 42 + 3 nm.

MAPDI; was obtained from the conversion of Pbl, as shown
in the XRD pattern in Fig. 2(b) [MAPDbI;]. After the trans-
formation process of PbI, to MAPbI; was completed, new sets of
diffraction peaks (2theta) related to the tetragonal perovskite
structure appeared at 14.20°, 19.95°, 28.79°, 31.88°, 40.72°, and
43.15° corresponding to (110), (112), (004), (312), (224), and
(314) crystal planes respectively. The crystallite size using the
110 peak located at 14.20° was calculated to be 81 + 3 nm and
was larger than the size of Pbl, before conversion to MAPDI;.
These MAPDI; peaks are accompanied by other peaks from PbI,
and FTO layers, in which the Pbl, peak appearing at 12.72° was
an indication that the conversion had some remnant Pbl, in the
perovskite layer. There is no impurity peak from both the first
and second step deposition of perovskite layer. The XRD
patterns of the perovskite layers were the same for the

MAPbI3 |

——Y-Ti02] MAPbI3
_|[ =——cs-Tio2]

3

i A o Iy ll
2 Pbl, Pbl,
)

=
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Fig. 2 XRD Spectra of (a) pristine and doped TiO, and (b) Pbl,—MAPbIs layer by spin-coating (c) Pbl,—MAPbI3z layer by CVD.
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perovskite layer on pristine, Cs- and Y-doped TiO,. However, the
XRD pattern of the perovskite layer grown by CVD is shown in
Fig. 2(c). The XRD pattern of the Pbl, layer grown by CVD is
similar to the one grown by spin-coating with the main peak
appeared at 12.70° diffraction angle corresponding to (001)
Bragg reflection plane of the Pbl, crystal structure. The
conversion of Pbl, to MAPDIj; results to a new set of major peaks
at the 2theta diffraction position 14.04°, 24.40° and 28.37°
corresponding to (110), (202) and (220) reflection planes. The
XRD pattern of perovskite absorber layer was improved as no
remnant Pbl, peak appear on the diffraction pattern. This show
that the conversion from Pbl, to MAPbI; for perovskite absorber
layer grown by CVD was completely done, while for spin-coating
some remnant Pbl, not converted was present in the MAPbI;
diffraction peaks.

4.3 SEM and EDX analyses of ETL, perovskite active and HTL
layers

The SEM micrograph of the top-view of the electron trans-
porting layer (ETL), perovskite layer by spin-coating, hole
transporting layer and perovskite layer by CVD are shown in
Fig. 3(a—f) respectively and cross-sectional view in Fig. 4.

From Fig. 3(a-c); the SEM images are similar, and this is an
indication that they particles grow in a similar manner. The
dopant metal ions have no much effect on the surface
morphology as shown in Fig. 3(b and c) compared with Fig. 3(a),
which is the pristine TiO,. The SEM image for all the TiO, layers
had no cluster or agglomeration in the formation of the particle.
The SEM image were spherical-like shaped in nature. The
segregated nanoparticles were because the annealing

View Article Online
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Fig. 4 Cross-sectional SEM image of the TiO, compact layer,
perovskite layer and Spiro-OMeTAD layer.

temperature above 400 °C was able to initiate crystals which are
similar in crystallite size as shown in Fig. 3(a-c).

The first step of the perovskite layer formation involves the
deposition of densely packed PbI, nanoparticles as shown in
the SEM image of Fig. 3(d). The absence of pinhole in the
deposition of Pbl, layer was as a result high spin speed and time
during spin coating. The higher the spin speed and time, the
better the surface morphology as seen in Fig. 3(d). The SEM
image of the Pbl, layer appeared the same on the pristine, Cs-
and Y-doped TiO,. However, the transformation of Pbl, layer to
perovskite layer shows a different morphology with few
pinholes and larger grain sizes in Fig. 3(e). The SEM image in
Fig. 3(d and e) indicates that the grain size increases to almost
double after conversion to perovskite layer in the second step of
the perovskite deposition. The increase in grain size in this layer
is advantageous because it prevents Spiro-OMETAD from
diffusing into the ETL. This was also observed in the average

Fig.3 Top view SEM images of (a) pristine TiO, compact layer (b) Cs-TiO, compact layer (c) Y-TiO, compact layer (d) Pbl, layer (e) MAPbI3 layer

by spin-coating and (f) Spiro-OMeTAD layer.

This journal is © The Royal Society of Chemistry 2020
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crystallite size of the nanoparticles calculated with Scherer eqn
(1) using the XRD spectra. However, the average grain size of the
converted perovskite absorber layer deposited by spin coating
technique was estimated from SEM image, and they are 0.43 +
0.1, 0.22 £+ 0.3, and 0.10 £ 0.1 um for perovskite absorber layer
deposited on Cs-doped TiO,, Y-doped TiO, and pristine TiO,
respectively. The grain boundaries in the converted MAPbI;
layer increases during drying and thermal annealing of the
perovskite layer to remove the remnant solvent. Fig. 3(f) shows
the surface morphology of the deposited Spiro-OMeTAD layer
with larger pores and grain size. The larger grain size was ex-
pected in this layer because the spin speed was reduced during
spin coating. In addition, the SEM image of perovskite layer
grown by CVD as depicted in Fig. S41 show larger grain size. The
estimated average grain size of the perovskite layer grown by
CVD is 0.857 £ 0.012 pm. From the SEM image in Fig. 3(e) and
S4,T the grain boundaries of the perovskite layer grown by spin-
coating method show some pin-holes, while the perovskite layer
grown by CVD does not show any pin-holes in the grain
boundaries. The absence of pin-holes in the perovskite layer
grown by CVD is good as it prevents diffusion of HTL into the
perovskite layer during deposition.

Fig. 4 shows the cross-sectional SEM image of the layers of
the device from the FTO substrate to the Spiro-OMETAD in
a sequential manner. The SEM image did not show interfacial
diffusion in the layers of the perovskite solar cell. However, the
perovskite layer thickness estimated to be larger than both the
ETL and HTL was evident on the cross-sectional view of the
three major layers in the solar cell device. The three layers
created a well-defined interface in the SEM micrograph in Fig. 4.
The cross-sectional SEM image of the perovskite layer grown by
spin-coating is consistent with the cross-sectional SEM image of
perovskite absorber layer grown by CVD as shown in our
previous work.*

The EDX Spectra of the ETM, and the elemental composition
confirmed that the dopant is present in the material (Fig. S1
ESIt). The EDX Spectra of the perovskite absorber layer show
that the elemental compositions in the deposited materials are
present (Fig. S2 ESIt). The absent of the dopant materials in the
EDX of the perovskite absorber layer on the pristine, Cs-TiO,
and Y-TiO, could be due to the small percentage amount of the
dopant element in the ETL.

4.4 Optical transmittance and absorption spectra

The optical transmittance of the pristine, Cs- and Y-doped TiO,
deposited on FTO substrate is important prior to the deposition
of the perovskite layer. This is to ascertain that reasonable
amount of solar light can make the absorber layer (perovskite)
to generate maximum photo-generated carriers for the solar
performance.

Fig. S3,7 the optical transmittance spectra for bare FTO
substrate (black), pristine TiO, (red), Cs-doped TiO, (blue) and
Y-doped TiO, (green) measured in the UV-vis region of the
electromagnetic spectrum. The optical transmittance spectra
show an oscillating spectrum, due to interaction between the
light and the atoms. The transmittance of the Cs-doped TiO, on
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FTO substrate is lower compared to the other three (bare FTO,
pristine TiO, and Y-doped TiO,). The results are expected
because the ionic radius of Cs dopant is much larger than ionic
radius of Y dopant, and this tends to absorb more light. The
transmittance for the three samples allowed over 50% light
through them into the perovskite layer.

Fig. 5 shows the optical absorbance spectra for the PbI,
before conversion to perovskite layer and MAPDI; layer after
conversion to perovskite layer. The absorbance was measured
for Pbl, and MAPbDI; deposited on pristine, Cs-doped and Y-
doped TiO,. From the absorbance spectra in Fig. 5(a), Pbl,
deposited on the Cs-doped TiO, showed the highest absor-
bance, followed by Y-doped TiO,.

The absorbance for Pbl, layers deposited on Cs- and Y-doped
TiO, are higher than Pbl, later deposited on pristine TiO,. This
observation can be attributed to the larger ionic size of Cs
dopant than Y dopant and pristine TiO,. However, the absorp-
tion edges in the Pbl, layers absorbance spectra are uniform
and occur at 499 nm (2.49 eV). The calculated optical band gap
of the PbI, layer on the three different TiO, substrates using the
Tauc plot is approximately 2.54 eV. The optical band gap was
calculated and extrapolated using Kubelka-Munk and Tauc plot
for a direct band gap transition as shown in Fig. 5(b). Moreover,
the absorption edge was shifted to the wavelength (750 nm)
region upon conversion of Pbl, layer to MAPbI; as shown in the
Fig. 5(a). The calculated optical band gap of the converted
MAPDI; layer on the three different TiO, substrates using Tauc
plot is approximately 1.63 eV. The narrowing of the optical band
gap of Pbl, layer transformed to MAPDI; is as a result of struc-
tural modification caused by introducing MAI into the system.
Both PbI, and MAPbI; thin film layers have higher absorption in
the visible region of the electromagnetic spectrum.

4.5 J-V characteristics

Fig. 6 and 7 show the best performing solar cells fabricated with
different perovskite deposition methods namely: (I) perovskite
layer deposited by spin coating as air processed (II) perovskite
layer deposited by CVD as vacuum processed. The key param-
eters 1 and FF of the perovskite solar cells were calculated using
the eqn (2) and (3);"

——Y-TiO,/Pbl, MAPbI3
2.51 —=Cs-TIOz/Phl; Optical band gap = 1.63eV
—TiO,/Pbly
= 2.0 ——Y-TiO2/MAPbIg3
s —— Cs-TiO,/MAPbI3 /K\/
Py —— TiO2/MAPbI. 'S
S 1.5 i
H < Pbl,
£
8 1.0 Optical band gap = 2.54eV
4 !
< Absorption edge for Pbl,
0.5 Absorption edge for MAPDI,|
400 500 600 700 800 1.41.61.82.02.22.42.62.8
Wavelength (nm) Photon energy (eV)
(a) (b)
Fig. 5 (a) Optical absorbance spectra of the perovskite on pristine, Cs

doped and Y doped TiO, and (b) the corresponding optical band gap of
Pbl, and MAPbIs calculated by Tauc plot.
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where Jsc is the current density (mA cm™?), Voc is the open
circuit voltage, FF is the fill factor and P, is the maximum
power.

(I) J-V characteristics of perovskite layer deposited by spin
coating as air processed. From Fig. 6(a and b) and Table 2, we
observed that power conversion efficiency (PCE) and solar
parameter depends on the type of TiO, layer in which perovskite
layer is deposited upon. There is correlation between the
average grain size and PCE of the device, which suggest that the
lower the average grain size of the perovskite the better the PCE
of device. The perovskite layer deposited on Y-doped TiO, show
the maximum PCE of 3.61%, and the lowest PCE of 1.45% was
observed for perovskite layer deposited on pristine TiO,. The
lower PCE observed for the perovskite layer on pristine TiO, is
due to lower value of the open circuit voltage, current density
and fill factor. However, the nearly ohmic behavior observed in
the J-V curve of the perovskite layer deposited on the pristine
TiO, may be due to the increase in the sheet resistance and
series resistance of the fabricated solar cell.*

(IT) J-V characteristics of perovskite layer deposited by CVD
as vacuum processed. The obtained solar parameters from the
J-V measurements of the best performing perovskite solar cells
deposited on different ETL (pristine-TiO,, Cs-TiO, and Y-TiO,

Table 2 Perovskite solar cell parameters for perovskite layer on
different TiO, by spin-coating and air processed

PCE (1)
TiO, layer Jsc (mA ecm™?) Voc (V) FF (%)
Pristine 10.71 0.44 0.31 1.45
Cs-doped 9.05 0.73 0.34 2.21
Y-doped 12.34 0.77 0.38 3.61

This journal is © The Royal Society of Chemistry 2020

layer) are depicted in Fig. 7(a-c), and tabulated in Table 3. The
solar cell with the high efficiency, fill factor and open circuit
voltage out of the three different types of TiO, is the TiO, doped
with yttrium. From Table 3, the solar parameters such as Jsc,
Voc and FF increase with the PCE of the different TiO, layer.
After optimization process of the perovskite solar cell,
a maximum efficiency of 12.89% was obtained for the perov-
skite layer deposited on Y-doped TiO,. This result indicates that
after doping TiO, with yttrium, the photovoltaic parameters can
be improved. The doping of TiO, is vital in the electron
extraction from the active layer, and this was observed in the
values of open circuit voltage for the three types of TiO, layers.
Depositing perovskite layer in a vacuum improved the Jsc, Voc,
FF and PCE of the perovskite solar cell as shown in Tables 2 and
3 The increase in the solar cell parameters is as a result of
improved extraction of photo-generated charge carriers in the
device. The increase in Voc for the sample prepared by spin-
coating and CVD can be attributed to the incorporation of Y
and Cs dopant in the host element Ti. These dopants in the ETL
alters the crystal structure of the pristine TiO,, and as a result,
the Fermi-level shifted towards the conduction band edge of the
TiO,. The closer the Fermi-level towards the conduction band
edge, the better the extraction of electron to the bottom elec-
trode. Perovskite absorber grown by both spin coating and CVD
on doped Cs and Y-TiO, show an increase in Vo and Jsc which
in turns improve the PCE. Consequently, Jsc usually increases
when recombination rate is reduced in the photovoltaic devices,
and we have reduced recombination rate in the perovskite layer
by doping and by reducing the thickness of the electron trans-
porting layer for effective electron extraction. However, the
increase in Jsc of the device when perovskite layer is grown on
compact Y-TiO, and in other perovskite solar cell, have also
been observed in the literature.'®***** High short-circuit
current density of 28.06 mA cm ™ for perovskite solar cell has
been reported,* this value of Js¢ is greater than the maximum
predicted Jsc of 25 mA cm ™~ for Pb based perovskite solar cell in
the literature.** The I-V characteristics of the complete devices
deposited as perovskite absorber on Y-TiO, by CVD show
a higher Jsc of 32.60 mA cm 2, and these measurement was
repeated for 4 different cells as depicted in Fig. S4-S7,T and all

RSC Adv, 2020, 10, 13139-13148 | 13145
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Table 3 Perovskite solar cell parameters for perovskite layer on
different TiO, by CVD and vacuum processed

PCE (1)
TiO, layer Jsc (mA em™?) Voc (V) FF (%)
Pristine 9.88 0.39 0.35 1.35
Cs-doped 18.58 0.66 0.38 4.66
Y-doped 33.71 0.85 0.45 12.89

show similar high short-circuit current density above 25 mA
cm 2. An enhanced PCE was observed for device processed in
vacuum (CVD) than the device processed in air (spin-coating)
due to the following reasons: (i) the exchange of oxygen in air
processed perovskite devices which reduces the stability of the
device during processing while there is no exchange of oxygen
during vacuum processed, and (ii) the spin-coating processed
perovskite devices have some pin-holes in the perovskite layer
which could lead to the diffusion of HTL causing much
recombination in the devices. In addition, the formation of
voids sites in the pristine ETL could lead to reduction in
extraction of photo-generated charge carrier. These voids sites
may have been replaced by dopant in the host material to
improve the PCE. The enhanced PCE has also been attributed to
well-defined interface observed by sample grown by CVD than
in spin-coating as reported in literature.**** Therefore, the
method of deposition of the perovskite absorber layer deter-
mines the outcome of the PCE. This was observed in the
perovskite absorber layer deposited by spin-coating with PCE
3.61% while the perovskite absorber layer deposited by CVD
show a PCE of 12.89%.

5. Conclusions

In summary, we successfully synthesized three different kinds
of titanium precursors for the deposition of electron trans-
porting layers to improve electron extraction from the perov-
skite active layer. The perovskite layer was deposited using two
steps deposition by spin-coating in air and CVD in vacuum. The
effect of doping TiO, and the perovskite layer deposition

13146 | RSC Adv, 2020, 10, 13139-13148

method on the optical absorption, structural properties, surface
morphology and efficiency were studied. The efficiency was
enhanced by doping the TiO, with yttrium which had ionic
radius comparable with titanium(v) ionic radius. However,
short-circuit current density for complete devices made from
perovskite absorber layer on Y-TiO, for vacuum processed, show
a higher Jsc above 25 mA ecm 2. For perovskite layers deposited
by spin coating and CVD, the efficiencies were calculated to be
3.61% and 12.89% respectively. These results suggest that
a perovskite solar cells fabricated in a vacuum produce a high
quality stable perovskite solar cell with an enhanced PCE.
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