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Introduction

Cascade or tandem reactions continue to be of interest because
they offer a rapid and highly effective strategy for the synthesis
of bioactive natural products'™ and pharmaceutical agents.**®
Tetrahydroquinolines have been targeted by many research
groups because of their abundance in natural products and
notable biological activity. Tetrahydroquinoline derivatives are
used in pesticides, antioxidants, photosensitizers, and dyes in
addition to pharmaceutical applications. Overall, the tetrahy-
droquinoline family has a wide range of applications and is
a key structural motif in pharmaceutical agents; therefore,
multiple strategies have been proposed for the synthesis of
tetrahydroquinoline derivatives.'”>*

Cascade reactions are valuable for generating 1,2,3,4-tetra-
hydroquinoline skeletons with various substitution groups, and
many new drugs have been designed on the basis of this
process. Bunce et al. reported a tandem-reduction-reductive
cyclization sequence in one pot of ozonolysis-reduction fol-
lowed by a reductive amination reaction sequence provided by
N-methyl-2-substituted-1,2,3,4-tetrahydroquinoline 4-carboxylic
esters.”® Povaraov performed an acid catalyzed one-pot conver-
sion of N-arylimines and electron-rich dienophiles to produce
1,2,3,4-tetrahydroquinoline, which is normally classified as an
aza-Diels-Alder or imino Diels-Alder reaction.?* Menéndez et al.
revealed that CAN catalyzed the one-pot diastereoselective
synthesis of 4-alkoxy-2-ary-1,2,3,4-tetrahydroquinolines.”® Wang
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proceeded through the Knoevenagel condensation of ethyl cyanoacetate with aldehydes followed by the
aza-Michael-Michael addition with 2-alkenyl anilines to prepare the tetrahydroquinoline scaffolds.

reported that earlier Mannich-Michael addition using malo-
nonitrile as a nucleophile toward 2-alkenyl substituted imines
yielded optically enriched and highly substituted tetrahy-
droquinolines.”* Commercially available, inexpensive ethyl
cyanoacetate has seldom been discussed in relation to the
synthesis of tetrahydroquinolines.

Results and discussion

In this paper, it reports the simple one-pot economical prepa-
ration of highly substituted tetrahydroquinolines by using 2-
alkenyl substituted aniline, aromatic aldehydes, and ethyl cya-
noacetate; this method saves time during the workup procedure
and purification of intermediates and yields minimal reagent
waste.

The DBU plays a dual role in the cascade conversion of the
Knoevenagel condensation intermediate as well as in the aza-
Michael-Michael addition to prepare 1,2,3,4-tetrahydroquino-
lines. Thus, the overall conversion was integrated irrespective of
the Michael acceptors attached to aniline, and resulted in high
diastereoselectivity up to 93 : 7. Initial reaction conditions were
tested with tert-butyl 2-alkenyl substituted imines (1) and ethyl
cyanoacetate with bases including TEA, DIPEA, DABCO, and
DBN (Table 1, entries 1-4) in DCM; however no characteristic
reactions occurred.”” K,CO; as a base in DMF and DMSO
demonstrated reasonable conversion (Table 1, entries 5 and 6),
and it was found that DBU in DCM enabled excellent conversion
of (E)-tert-butyl-3-(2-((E)-4-nitrobenzylideneamino)phenyl)acry-
late into tetrahydroquinolines 3a/4a at room temperature
(Table 1, entries 10 and 11, 95%, racemate). DBU was deemed
superior to the other bases.

The 3a/4a isomers were separated through column chro-
matography, were recrystallized in DCM, and underwent X-ray
analysis (Fig. 1) to facilitate understanding of the relative
configuration of the diastereomers. The groups of 1,3-cis-tetra-
hydroquinoline 3a (major isomer) with the distorted chair
configuration of 4-NO,Ph, -CH,CO,-'Bu preferred the same side
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Table 1 Ethyl cyanoacetate as nucleophile
o o
©\/\iOR1 NC/\COZEt R‘OJ\¥ "‘Jz’:) Et "2 *{Z Et
NN (1.0 aquiv) (:L/Hj’—':m T C/ EH: KN ’
! Majgﬁggmer Mingf;ggmer
racemate racemate
Entry R' Ar? Base (mol%) Solvent T (h) ield® (%) Ratio 3/4°
1 t-Bu 4-NO,Ph (3a/4a) DABCO (100) DCM 24 — —
2 t-Bu 4-NO,Ph (3a/4a) DIPEA (200) DCM 24 — —
3 t-Bu 4-NO,Ph (3a/4a) DBN (100) DCM 12 — —
4 t-Bu 4-NO,Ph (3a/4a) TEA (100) DCM 24 — —
5 t-Bu 4-NO,Ph (3a/4a) K,CO;5 (50) DMF 12 74 62 :38
6 t-Bu 4-NO,Ph (3a/4a) K,CO; (50) DMSO 12 45 75:25
7 t-Bu 4-NO,Ph (3a/4a) DBU (50) DMF 5 79 70 : 30
8 t-Bu 4-NO,Ph (3a/4a) DBU (50) MeOH 8 31 51:49
9 t-Bu 4-NO,Ph (3a/4a) DBU (50) THF 8 45 54 : 46
10 t-Bu 4-NO,Ph (3a/4a) DBU (200) DCM 3 95 65:35
11 t-Bu 4-NO,Ph (3a/4a) DBU (50) DCM 3 95 67 :33
124 t-Bu 4-NO,Ph (3a/4a) DBU (50) DCM 10 62 52 :48
13 t-Bu 4-OMePh (3b/4b) DBU (50) DCM 12 — —
14 t-Bu Ph (3c/4c) DBU (50) DCM 12 — —
15 Me 4-NO,Ph (3d/4d) DBU (50) DCM 2 96 74:26
16 Me 2-OMePh (3e/4e) DBU (50) DCM 12 67 85:15
17 Me 3,5-diOMePh (3f/4f) DBU (50) DCM 48 — —
18 Me 4-NO,Ph (3d/4d) TEA (50) DCM 12 — —
19 Me 4-NO,Ph (3d/4d) DIPEA (100) DCM 12 — —

“ All reactions were performed in 30 to 50 mg scale. ” Yield of isolated product is a mixture of diastereomers after column chromatography.
° Determined by '"H NMR analysis of crude reaction mixture. ¢ Reactions were completed at —10 °C to rt, 10 h.
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Fig. 1 X-ray studies confirmed the relative isomeric structures of 3a
(CCDC 1834300) and 4a (CCDC 1834305).

of the ring; the opposite was observed for 4a (alternative, both
hydrogens were 1,3 cis in the major diastereomer and in its
opposite). To further evaluate diastereoselectivity, we measured
the reaction temperature and catalyst loading; however, the
results revealed a poor yield and no evident improvement in
diastereoselectivity (Table 1, entries 10 and 12).

Further investigations were conducted using solvents such
as MeOH, THF, and DMF (Table 1, entries 7-9) with DBU as
a base, but no significant improvements in diastereomeric ratio
(dr) or yield were observed.

The combination of DCM and DBU was preferable to the
other solvents. The mixture of diastereomers was inevitable,
and it further experimented with the versatility of the reaction
through the cascade addition. Methyl 2-alkenyl-substituted
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imine (Table 1, entries 15 and 16) yielded products with
improved diastereoselectivity.

The synthesis and purification of Schiff bases were tedious in
many cases; thus a complete tetrahydroquinoline conversion
was attempted in a one-pot reaction. Reacting ethyl cyanoace-
tate, (E)-methyl 3-(2-aminophenyl)acrylate (5), and substituted
aromatic aldehydes with DBU yielded 1,2,3,4-substituted tetra-
hydroquinolines effectively (Scheme 1).* Electron rich alde-
hydes resulted in better conversion compared with the other
aldehydes. The corresponding product 3e of 2-anisaldehyde
demonstrated improved diastereoselectivity compared with the
other substituted benzaldehydes (Scheme 1).

Tetrahydroquinolines obtained from 1-naphthaldehyde
demonstrated improve yield and diastereoselectivity compared
with those obtained from 2-naphthadehyde (5b and 5c¢

NC™ > CO,E i
2 MeO N

Q DBU, Ar-CHO P 't
4AMS, DCM, 1t, @(j—coza A,A\HJ\O/\MQ
o +
N7 Ar CN

WOMe
¥
NH

2 H

5 3a: Ar = 4-NO,Ph, 74% (dr 74:26) 5al1: Ar =2,4,6-trilOMePh
3e: Ar = 2-OMePh, 90%, (dr 93:7)
3f: Ar = 3,5-diOMePh, 89%, (dr 84:16)
5a: Ar = 2,4,6-triOMePh, 21%, (dr 85:15)
5b: Ar = 1-Napthalene, 95%(dr 90:10)
5c: Ar = 2-Napthalene, 90 % (dr 72:28)
5d: Ar = 4-OMePh , 90%, (dr 85:15)

Scheme 1 One pot-three component cascade reaction.

This journal is © The Royal Society of Chemistry 2020
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Scheme 1). Unexpectedly, when DBU was used as the base, the
synthesis of 3f (Scheme 1), was unsuccessful after the corre-
sponding imine reacted with ethyl cyanoacetate (Table 1, entry
17). In addition, the synthesis of 5a (Scheme 1) produced a low
yield, and we managed to isolate the intermediate 5a1, which
altered our understanding regarding the mechanistic pathway
of the cascade reaction and verified the formation of 1,2,3,4-
tetrahydroquinolines through a Knoevenagel-condensation
intermediate.

Two control experiments were performed and monitored by
TLC. (E)-Methyl 3-(2-aminophenyl)acrylate (5) and p-nitro-
benzaldehyde (6a) in CH,Cl,, combined with the application of
molecular sieves (4 A), were used to synthesize the corre-
sponding imine. This reaction solution was stirred at room
temperature for 1 h and monitored by TLC, which revealed
extremely poor conversion. By contrast, ethyl cyanoacetate (2)
reacted readily with p-nitrobenzaldehyde (6a) in the presence of
DBU to produce a Knoevenagel condensation product (7a).>
Similarly, the other intermediates (7b, 7¢, and 7d) were
synthesized under optimized conditions (Scheme 2). Electron-
rich aldehydes (2-anisaldehyde and 4-anisaldehyde) were con-
verted to imine (1, Table 1) at high temperatures (110 °C) by
using toluene as a solvent to describe the formation of 1,2,3,4-
tetrahydroquinolines at room  temperature through
Knoevenagel-condensation intermediate. Tetrahydroquinolines
(3¢, 3b, and 3f) synthesis was successful when Knoevenagel
intermediates (7b, 7¢, and 7d) were used and mediated by DBU
in a two-component approach (Scheme 2).

After the initial formation of enol intermediate 2a, the
intermediate reacted with aldehyde to produce an aldol product
that subsequently endured base-induced elimination to form 7a
(Fig. 2). Reactions between Schiff base's and enol intermediate
2a (Mannich reaction) had failed in earlier experiments
(Table 1, entries 13, 14, and 17) because the imines were mostly
inert, and thus unable to react with ethyl cyanoacetate. It
understand from the crystal structures 3a/4a (Fig. 1) that the
initial aza-Michael addition to a Knoevenagel intermediate
considerably increased the diastereoselectivity whereas subse-
quent Michael addition to a,B-unsaturated esters yielded a dia-
stereomeric mixture. Thus, for the synthesis of 1,2,3,4-

i OHC. | ! \
WOMe \©\ molecular sieves /
+

5 6a
gHo DBU <0 5 iv)
CO,Et EtO,C equiv),
J e [ gz _DBU 05 equiv) Y ge DCM, rt
NC JR—pcmt ~ cn U2 o
2 - oR!
gf)-_ #NO, 7a:R? = 4-NO, (92%, 1 h) Ws Rl m
6¢: 4-OMe 7b: R? = H (96%, 6 h) NH, 1 Rz g
6d: 3,5-diOMe 7c: R? = 4-OMe (90%, 3 h) = tBu
7d: R? = 3,5-diOMe (90%, 5 h)
o
R1O)k: N
: //

3a: R? = 4-NOy, R" = t-Bu (66%, 3 h); dr: 75:25
3c: R2=H, R'= t-Bu (79%, 6 h); dr: 83:17

, 3b:R?=4-OMe, R'= t-Bu (60%, 20 h); dr: 80: 20
| IR 31.R2=35.di0Me, R = Me (78%, 4 h); dr: 82:18

Scheme 2 Two component approach via Knoevenagel intermediate.
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Fig. 2 Plausible mechanism.

tetrahydroquinoline, it propose a plausible mechanism with
a Knoevenagel intermediate that favours cascade transition
through the aza-Michael-Michael addition.*®

To determine the effective substrate scope of the reaction, it
was reviewed systematic studies performed under optimized
conditions (Table 2). In this study, 2-alkenyl-4-chloroanilines
were efficiently converted to their corresponding tetrahy-
droquinolines 9a-9g (Table 2, entries 1-7). Regardless of the
groups (X = Cl, H or CO,Me) present at 2-alkenylaniline, the
yields of the tetrahydroquinolines primarily varied according to
the reactivity of the aldehydes. Heteroaromatic aldehydes
underwent one-pot conversion into 1,2,3,4-tetrahydroquino-
lines (9e-9g) with moderate yields (Table 2, entries 5-7).
Aromatic aldehydes under the same conditions produced 9a, 9j,
and 9n (Table 2, entries 1, 10, and 14) and demonstrated
excellent yields compared with the other heteroaromatic

Table 2 Substrate scope

[e]
A
X //
N7 “Ar
N
9a-9r

o
NC COgEL
X\C(\)LW 2
NH; DBU, Ar-CHO

4A MS, DCM, 1,12 h

Entry  Ar° X R® Yield? (%)  dr°

1 2-OMePh (9a) cl OMe 88 93:7
2 3,5-diOMePh (9b) Cl OMe 89 81:19
3 2-Naphthyl (9¢) Cl OMe 92 79:21
4 1-Naphthyl (9d) cl OMe 90 91:9
5 2-Pyridyl (9e) Cl OMe 54 76 : 24
6 3-Thiophenyl (9f) Cl OMe 65 76 :24
7 2-Thiophenyl (9g) Cl OMe 63 72:28
8 2-Naphthyl (9h) CO,Me OMe 85 70:30
9 1-Naphthyl (9i) CO,Me OMe 88 84:16
10 2-OMePh (9j) CO,Me OMe 91 90:10
11 3,5-diOMePh (9k) CO,Me OMe 86 80: 20
12 2-Naphthyl (91) H Ph 95 75:25
13 2-OMePh (9m) H Ph 90 90:10
14 1-Naphthyl (9n) H Ph 92 90:10
15 2-Thiophenyl (90) H Ph 84 72:28
16 3,5-diOMePh (9p) H Ph 81 79:21
17 4-NO,Ph (9q) H Ph 83 70:30
18 2,4,6-triOMePh (9r) H Ph 79 83:17

@ All reactions were performed in 50 mg scale at room temperature.

b Yield of isolated product was a mlxture of diastereomers after
column chromatography. ¢ Determined by 'H NMR analysis of the
crude reaction mixture.

RSC Adv, 2020, 10, 13591-13600 | 13593
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aldehydes (Table 2, entries 5-7). In the synthesis of tetrahy-
droquinoline 9a up to 93:7, o-anisaldehyde exhibited the
highest diastereoselectivity (Table 2, entry 1).

Naphthaldehydes (Table 2, entries 3 and 4) were converted
into 1,2,3,4-tetrahydroquinolines (9¢ and 9d) under optimized
conditions, and 5-methoxycarbonylaniline analogues were
converted into their corresponding tetrahydroquinolines
(9h-9k) with good to moderate yields (Table 2, entries 8-11). In
addition to examining the versatility of the reaction toward
Michael acceptor o,B-unsaturated esters (Schemes 1 and 2), it
was also examined that of the reaction toward a,B-unsaturated
phenyl ketones in tetrahydroquinoline synthesis; the results
demonstrated high efficiency. In one-pot, 2-amino substituted
chalcones were converted into 1,2,3,4-tetrahydroquinolines
with good to moderate yield; all yields were superior to those of
the other analogues (Table 2, entries 12-18). No major differ-
ences in diastereoselectivity were caused by a,Bf-unsaturated
phenyl ketones (Table 2, entries 13 and 14); however, better
yields were obtained with high diastereoselectivity upto 90 : 10.
The stronger electron-withdrawing phenyl ketone group accel-
erated cascade conversion more easily than the other o,pB-
unsaturated esters. Separation of the diastereomers through
column chromatography and preparative TLC failed in most
cases; therefore, they were able to triturate the 1,3-cis isomer
(major) separately from the mixture of diastereomers by using
methanol.

Conclusions

In summary, it was developed a simple DBU mediated cascade
process to effectively synthesize a new class of highly
substituted 1,2,3,4-tetarhydroquinolines by using ethyl cya-
noacetate in one pot. The reaction mechanism was investigated
through control experiments, namely three reactions involving
Knoevenagel condensation followed by aza-Michael-Michael
addition efficiently conducted at the room temperature with
simple practicability.

Experimental section
General methods

Melting points were recorded using a Yanagimoto Micro
Melting Point Apparatus Model-S3 capillary melting point
apparatus and are uncorrected. TLC analysis was carried out on
silica gel 60 F254 precoated glass sheets and detected under UV
light. "H NMR spectra were obtained at 300, 400 or 500 MHz (as
indicated), and *C NMR spectra were obtained at 75.5, 100 or
125.6 MHz, using a Bruker NMR spectrometer. Chemical shifts
(6) are reported in parts per million (ppm) relative to CDCl;
(7.26 and 77.0 ppm), the coupling constants are reported in
hertz (Hz) and the multiplicities are indicated as b = broad, s =
singlet, d = doublet, dd = doublet of doublet, dt = doublet of
triplet, t = triplet, m = multiplet. In each case proton NMR
showed the presence of indicated solvent(s). Infrared spectra
were recorded using PerkinElmer FT/IR spectrometer. Mass
spectra were recorded on a Micromass Platform II or Finnigan/
Thermo Quest MAT 95XL spectrometer. All reactions were
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carried out in anhydrous solvents. CH,Cl,, DMF, DMSO were
distilled from Molecular Sieves. MeOH was distilled from Mg
cake. All chemicals and solvents were purchased from Aldrich
Chemical Co.

A typical procedure for synthesis of ethyl 6-chloro-3-cyano-4-
(2-methoxy-2-oxoethyl)-2-(2-methoxyphenyl)-1,2,3,4-
tetrahydroquinoline-3-carboxylate, 9a

A solution of (E)-3-(2-amino-5-chlorophenyl)acrylate (0.24
mmol), ethyl cyanoacetate (0.28 mmol), and 2-methox-
ybenzaldehyde (0.28 mmol) in CH,Cl, (5 mL) with DBU (0.12
mmol) was stirred at room temperature, followed by the addi-
tion of molecular sieves (4 A, 30 mg). The reaction mixture was
stirred at room temperature for 12 h under N, atmosphere, and
the progress of the reaction was monitored by TLC (eluent: 20%
EtOAc in hexane). The crude product was filtered through Celite
and washed using CH,Cl, (20 mL). The organic solvent was
removed by a rotary evaporator under reduced pressure, and the
obtained crude product was purified by column chromatog-
raphy (100-200 mesh silica) using 30% ethyl acetate in hexane
as an eluent. The mixture of diastereomers (94 mg, 88%) was
stirred in anhydrous methanol, and the white precipitate that
appeared was filtered and dried to yield major isomer 9a. Yield:
66.7% (71 mg); white solid; mp 164-166 °C; "H NMR (400 MHz,
CDCl;) 7.86 (1H, d, ] = 7.8 Hz), 7.38-7.35 (1H, m), 7.08-7.02 (3H,
m), 6.89-6.87 (1H, m), 6.58-6.56 (1H, m), 5.27 (1H, s), 4.40-4.38
(1H, m), 4.15 (1H, s), 4.03-3.96 (2H, m), 3.86 (1H, s), 3.80 (3H,
b), 3.78 (3H, b), 2.93 (1H, dd, J = 7.9, 17.1 Hz), 2.71 (1H, dd, J =
3.4,17.0 Hz), 0.97 (3H, t,] = 7.2 Hz); ">*C NMR (100 MHz, CDCl,)
172.0, 166.2, 157.1, 141.7, 130.5, 128.1, 127.3, 124.4, 123.8,
122.0,121.3,116.3, 115.8, 110.5, 62.9, 55.5, 54.2, 53.6, 52.5, 13.5;
FT-IR (KBr, ) 3389, 2952, 2225, 1722, 1602, 1492, 1465, 1368,
1296, 1258, 1170, 1051, 1023, 862, 824, 755 cm ™ *; LRMS-EI" (m/
z) 465.40 (M + Na]'100), 443.60 (43.69), 444.70 (16.67), 445.66
(13.54). HRMS-TOF-ES" (m/z) [M + H]" caled for C,3H,,CIN,O;
443.1374, found 443.1373.

Ethyl 4-(2-(tert-butoxy)-2-oxoethyl)-3-cyano-2-(4-nitrophenyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate (major isomer), 3a

Yellow solid; mp 198-200 °C; 'H NMR (300 MHz, CDCl;) 8.26
(2H, d,J = 8 8 Hz), 7.80 (2H, d, J = 8.8 Hz), 7.20-7.01 (2H, m),
6.85 (1H, dd, J = 7.7, 7.7 Hz), 6.68 (1H, d, J = 8.0 Hz), 4.87 (1H,
s), 4.38-4.01 (3H, m), 2.88 (1H, dd, J = 7.8, 17.2 Hz), 2.65 (1H,
dd,j = 3.8, 17.3 Hz), 1.60-1.36 (9H, m), 1.05 (3H, t, /] = 7.1 Hz);
3C NMR (75.5 MHz, CDCl;) 170.7, 166.5, 148.8, 143.5, 142.1,
129.3, 128.3, 127.5, 123.9, 120.6, 120.0, 115.3, 114.9, 81.7, 63.3,
61.4, 55.4, 41.2, 38.7, 41.2, 38.7, 28.0, 13.8; FT-IR (KBr, 7) 3377,
2980, 2923, 2247, 1734, 1608, 1524, 1488, 1368, 1349, 1296,
1248, 1152, 1040, 858, 748 cm™'; LRMS-EI (m/z) 464.13 (M —
H]", 100), 464.13 (28); HRMS-TOF-ES (m/z) [M — H]" caled for
C,5H,6N304 464.1822, found 464.1825.

Ethyl 4-(2-(tert-butoxy)-2-oxoethyl)-3-cyano-2-(4-nitrophenyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate (minor isomer), 4a

Yellow solid; mp 188-189 °C; "H NMR (300 MHz, CDCl;) 8.26-
8.21 (2H, d, J = 8.8 Hz), 7.91-7.86 (2H, d, ] = 8.8 Hz), 7.22-7.07

This journal is © The Royal Society of Chemistry 2020
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(2H, m), 6.83-6.76 (1H, m), 6.65 (1H, d, ] = 8.0 Hz), 4.97 (1H, s),
4.22-3.97 (3H, m), 2.91 (1H, dd, J = 7.7, 17.3 Hz), 2.57 (1H, dd, J
=5.2,17.3 Hz), 1.46 (9H, m), 1.26 (1H, s), 1.15 (3H, t,/ = 7.1 Hz);
3C NMR (75 MHz, CDCl;) 170.0, 166.0, 148.6, 144.4, 140.8,
130.3, 129.5, 128.8, 123.6, 119.7, 119.3, 116.5, 81.5, 63.2, 55.3,
50.7,41.3, 40.8, 28.1, 13.7; FT-IR (KBr, 7) 3392, 2918, 2319, 1739,
1605, 1525, 1490, 1349, 1246, 1155, 1041, 848 cm '; LRMS-EI
(m/z) 464.18 (M — H]', 100), 464.13 (28); HRMS-TOF-ES (m/2)
[M — H]" caled for Cy5H,6N30, 464.1822, found 464.1821.

Ethyl 4-(2-(tert-butoxy)-2-oxoethyl)-3-cyano-2-(4-
methoxyphenyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 3b

White solid; mp 138-140 °C; '"H NMR (400 MHz, CDCl;) 7.51-
7.49 (2H, d,J = 8.6 Hz), 7.11-7.05 (2H, m), 6.92-6.90 (2H, d, ] =
8.6 Hz), 6.78 (1H, t,J = 7.5 Hz), 6.64-6.60 (1H, m), 4.68 (1H, s),
4.26 (1H, dd, J = 2.7, 7.9 Hz), 4.06 (2H, q,J = 7.0 Hz), 3.82 (3H,
s), 2.85 (1H, dd, J = 8.2, 17.0 Hz), 2.62 (1H, dd, J = 3.3, 16.9 Hz),
0.86 (1H, t,J = 7.1 Hz); ">C NMR (100 MHz, CDCl;) 170.9, 167.0,
160.6, 142.8, 129.1, 128.4, 128.1, 127.4, 120.49, 119.11, 115.67,
114.91, 114.15, 81.48, 62.86, 61.69, 55.6, 55.4, 41.1, 38.7, 28.0,
13.8; FT-IR (KBr, #) 2979, 2247, 1738, 1610, 1585, 1514, 1485,
1368, 1299, 1152, 1034, 839, 748 cm™'; LRMS-EI" (m/z) 473.24
(IM + NaJ", 100), 451.36 (13.48), 459.34 (69.06); HRMS-TOF-ES*
(m/z) M + H]" caled for C,eHzoN,NaOs 473.2052, found
473.2054.

Ethyl4-(2-(tert-butoxy)-2-oxoethyl)-3-cyano-2-phenyl-1,2,3,4-
tetrahydroquinoline-3-carboxylate, 3c

White solid; mp 146-148 °C; 'H NMR (400 MHz, CDCl;) 7.59-
7.57 (2H, m), 7.41-7.40 (3H, m), 7.12-7.06 (2H, m), 6.80 (1H, t, J
=7.5Hz), 6.64 (1H, d,J = 7.7 Hz), 4.73 (1H, s), 4.29 (1H, dd, ] =
2.9, 7.8 Hz), 4.12-3.94 (2H, m), 2.90-2.82 (1H, dd, J = 8.24, 16.9
Hz), 2.63 (1H, dd, ] = 3.3, 16.9 Hz), 1.51 (9H, s), 1.00-0.97 (1H, d,
J=7.1Hz); *C NMR (75 MHz, CDCl;) 170.9, 166.9, 142.7, 136.4,
129.7,128.9,128.1,127.9, 127.5, 120.5, 119.2, 115.5, 115.0, 81.5,
62.9, 62.3, 55.4, 41.2, 38.8, 28.0, 13.7; FT-IR (KBr, ) 2978, 2918,
2247, 1731, 1605, 1586, 1487, 1368, 1247, 1152, 988, 848, 747,
700 cm '; LRMS-EI" (m/z) 443.19 ((M + Na], 100), 421.19
(25.05); HRMS-TOF-ES"* (m/z) [M + H]" caled for C,5H,gN,NaO,
443.1947, found 443.1947.

Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(4-nitrophenyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 3d

Yellow solid; mp 81-83 °C; "H NMR (400 MHz, CDCl;) 8.29-8.24
(2H, m), 7.83-7.78 (2H, m), 7.17-7.11 (1H, m), 7.07-7.02 (1H,
m), 6.88-6.82 (1H, m), 6.7-6.66 (1H, m), 4.88 (1H, s), 4.35 (1H,
m), 4.24 (1H, s), 4.11-4.02 (2H, m), 3.78 (3H, s), 3.00 (1H, dd, ] =
7.5,17.1 Hz), 2.78-2.70 (1H, m), 1.04 (3H, t,/ = 7.0 Hz); ">*C NMR
(100 MHz, CDCl;) 172.0, 166.5, 148.8, 143.4, 142.1, 129.3, 128.5,
127.3,124.0,120.0, 115.4, 114.8, 63.4, 61.3, 55.2, 52.5, 41.1, 37.1,
13.8; FT-IR (KBr, #) 3375, 2955, 2247, 1739, 1608, 1524, 1488,
1350, 1295, 1247, 1247, 1161, 1041, 858, 750, 699 cm ™ '; LRMS-
EI' (m/z) 424.45 ((M + H]', 100), 276.37 (4); HRMS-TOF-ES" (m/z)
[M + H]" caled for C,,H,,N30, 424.1509, found 424.1508.
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Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(4-nitrophenyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 4d

Yellow solid; mp 70-72 °C; "H NMR (400 MHz, CDCl;) 8.23 (2H,
d,J = 8.8 Hz), 7.88 (2H, d, J = 8.8 Hz), 7.22-7.07 (2H, m), 6.81
(1H, dd, J = 7.5, 7.5 Hz), 6.67 (1H, d, J = 7.7 Hz), 4.98 (1H, s),
4.21 (1H, s), 4.18-3.99 (3H, m), 3.69 (3H, s), 3.01 (1H, dd, ] = 7.9,
17.4 Hz), 2.69 (1H, dd, J = 5.1, 17.2 Hz), 1.16 (3H, t, ] = 7.2 Hz);
C NMR (100 MHz, CDCl;) 171.2, 166.0, 148.6, 144.2, 140.9,
130.2,129.4, 129.0, 123.7, 119.3, 119.29, 116.3, 114.7, 63.5, 55.2,
52.1, 50.7, 41.46, 39.7, 13.7; FT-IR (KBr, 7): 3391, 2927, 2247,
1737, 1609, 1524, 1495, 1349, 1241, 1173.1, 1040.1, 857.0,
751.9 em ™ '; LRMS-EI" (m/z) 424.45 (M + HJ, 100), 276.37 (4);
HRMS-TOF-ES" (m/z) [M + H]" caled for C,,H,,N30¢ 424.1509,
found 424.1508.

Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(2-methoxyphenyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 3e

White solid; mp 118-120 °C; 'H NMR (400 MHz, CDCI;) 7.90
(1H, d,J = 6.8 Hz), 7.37-7.33 (1H, m), 7.11-7.03 (3H, m), 6.89-
6.87 (1H, d,J = 8.0 Hz), 6.81-6.77 (1H, m), 6.63-6.62 (1H, d, ] =
8.0 Hz), 5.30 (1H, s), 4.43 (1H, dd, J = 2.9, 7.7 Hz), 4.13 (1H, m),
4.02-3.98 (2H, m), 3.78 (6H, b), 2.96 (1H, dd, J = 8.0, 14.0 Hz),
2.72 (1H, dd, J = 3.3, 16.9 Hz), 0.98 (3H, t, J = 7.0 Hz); ">*C NMR
(100 MHz, CDCl;) 172.3, 166.5, 157.1, 143.1, 130.4, 128.2, 128.0,
127.3, 124.9, 121.3, 120.5, 119.2, 116., 116.1, 115.2, 110.5, 62.7,
55.5, 54.2, 54.1, 52.3, 41.1, 37.4, 13.5; FT-IR (KBr, 7) 3381, 2953,
2840, 2236, 1737, 1606, 1492, 1439, 1368, 1291, 1249, 1161,
1025, 857, 755 cm ™ ; LRMS-EI" (m/z) 431.17 ([M + NaJ*, 100),
409.30 (M + H]', 38.94); HRMS-TOF-ES" (m/z) [M + H]" calcd for
C,3H,5N,05 409.1763, found 409.1762.

Ethyl 3-cyano-2-(3,5-dimethoxyphenyl)-4-(2-methoxy-2-
oxoethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 3f

White powder; mp 156-158 °C; "H NMR (400 MHz, CDCl;) 7.11
(1H, t,J = 7.5 Hz), 7.03-7.01 (1H, d, ] = 7.4 Hz), 6.79 (1H, t,] =
7.5 Hz), 6.73-6.72 (2H, m), 6.66-6.64 (1H, d, J = 8.0 Hz), 6.49-
6.47 (1H, m), 4.65 (1H, s), 4.33 (1H, dd,J = 2.9, 7.7 Hz), 4.25 (1H,
s), 4.14-4.02 (2H, m), 3.79 (6H, s), 3.78 (3H, s), 2.97 (1H, dd, ] =
7.9,17.1 Hz), 2.71 (1H, dd, ] = 3.5, 17.1 Hz), 1.05 (3H, t, ] = 7.2
Hz); *C NMR (100 MHz, CDCl;) 172.1, 166.96, 161.1, 142.5,
138.5, 128.2, 127.2, 120.6, 119.31, 115.5, 115.0, 105.7, 101.85,
63.0, 62.3, 55.5, 55.2, 52.3, 41.1, 37.1, 13.7; FT-IR (KBr, ) 3380,
2955, 2841, 2242, 1737, 1609, 1598, 1475, 1434, 1353, 1246,
1156, 1062, 851, 749 cm™'; LRMS-EI" (m/z) 461.15 ([M + Na]’,
100), [M + H]" 439.19 (12.92); HRMS-TOF-ES" (m/z) [M + H]"
caled for C,,H,,N,0O¢ 439.1869, found 439.1884.

Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(2,4,6-
trimethoxyphenyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate,
5a

Low melting yellow solid; 'H NMR (400 MHz, CDCl;), 7.13-7.05
(2H, m), 6.87-6.76 (2H, s), 6.11 (2H, s), 5.25 (1H, d, J = 7.0 Hz),
4.79 (1H, d, J = 7.0 Hz), 4.03-3.09 (3H, m), 3.82-3.76 (12H, m),
2.95 (1H, dd, J = 8.4, 12.9 Hz), 2.69 (1H, dd, J = 2.8, 16.9 Hz),
0.96 (1H, t,J = 7.1 Hz); *C NMR (100 MHz, CDCl;) 172.6, 167.3,
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161.9, 160.1, 143.3, 127.8, 127.4, 123.1, 120.3, 118.3, 116.8,
104.4, 90.8, 62.4, 55.7, 55.6, 55.4, 52.3, 51.9, 43.0, 37.3, 13.6;. FT-
IR (KBr, 7) 3396, 2940, 2841, 2236, 1734, 1606, 1468, 1333, 1202,
1156, 1122, 809, 749 cm ™ *; LRMS-EI" (m/2) 469.37 [M + H]" (100),
467.38 (4.39); HRMS-TOF-ES' (m/z) [M + H]' caled for
C,5H,0N,0; 469.1975, found 469.1972.

Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(naphthalen-1-yl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 5b

White powder; mp 138-140 °C; "H NMR (400 MHz, CDCl;) 8.27
(1H, d, J = 8.0 Hz), 8.06 (1H, d, J = 8.0 Hz), 7.92-7.87 (2H, m),
7.62-7.51 (3H, m), 7.15-7.10 (2H, m), 6.86-6.83 (1H, m), 6.68-
6.66 (1H, m), 5.68 (1H, b), 4.59-4.56 (1H, m), 4.24 (1H, m), 3.79
(3H, s), 3.70-3.52 (2H, m), 3.02 (1H, dd, J = 7.9, 17.1 Hz), 2.75
(1H, dd,J = 3.5,17.1 Hz), 0.53-0.49 (3H, m); "*C NMR (100 MHz,
CDCl;) 172.3, 166.8, 143.0, 133.8, 132.4, 131.1, 129.9, 129.0,
128.2, 127.5, 126.6, 126.0, 125.7, 125.4, 122.5, 120.3, 119.5,
115.2, 63.0, 55.9, 54.8, 52.4, 41.6, 37.4, 13.0; FT-IR (KBr, 7) 3382,
2912, 2253, 1737, 1602, 1487, 1435, 1372, 1245, 1169, 1040, 856,
748 cm™'; LRMS-EI" (m/z) 451.33 ([M + Na]*, 100), [M + H]"
429.58 (12.92); HRMS-TOF-ES™ (m/z) [M + H]" caled for
Ca6H25N,0,4 429.1814, found 429.1814.

Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(naphthalen-2-yl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 5c

White solid; mp 136-138 °C; 'H NMR (400 MHz, CDCl;) 8.04
(1H, s), 7.89-7.85 (3H, m), 7.71-7.69 (1H, d J = 8.1 Hz), 7.54-7.52
(2H, m), 7.15-7.12 (2H, dd, J = 7.4, 7.6 Hz), 7.06 (1H, d, J = 8.0
Hz), 6.82 (1H, dd, J = 7.7, 7.7 Hz), 6.68 (1H, d, ] = 8.0 Hz), 4.90
(1H, s), 4.42-4.39 (1H, m), 4.34 (1H, s), 4.0-3.94 (2H, m), 3.79
(3H, s), 3.01 (1H, dd, J = 7.9, 17.1 Hz), 2.74 (1H, dd, J = 3.7, 17.2
Hz), m), 0.82 (3H, t, / = 7.9 Hz); >C NMR (100 MHz, CDCI;)
172.2,142.7,133.9, 133.7,1331, 128.8, 128.3,127.7, 127.7, 127.3,
126.8, 126.6, 125.0, 120.1, 119.4, 115.1, 63.0, 62.4, 55.3, 52.4,
41.2, 37.2, 13.6; FT-IR (KBr, 7) 3379, 2954, 2242, 1740, 1608,
1483, 1436, 1369, 241, 1160, 1042, 854, 781, 748 cm ™ '; LRMS-EI"
(m/z) 451.33 ([M + Na]', 100), 443.52 (17.75), [M + H]" 429.46
(12.92); HRMS-TOF-ES" (m/z) [M + H]" caled for CpeH,5N,04
429.1814, found 429.1812.

Ethyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(4-methoxyphenyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 5e

White powder; mp 128-130 °C; "H NMR (400 MHz, CDCl;) 7.49
(2H,d,J = 8.8 Hz), 7.11 (1H, dd, ] = 7.7, 7.7 Hz), 7.02 (1H, d, ] =
7.7 Hz), 6.92 (2H, d, ] = 8.8 Hz), 6.79 (1H, dd, J = 7.5, 7.5 Hz),
6.63 (1H, d,j = 7.7 Hz), 4.68 (1H, s), 4.33 (1H, m,J = 3.7, 7.7 Hz),
4.22 (1H, s), 4.04 (2H, q, J = 7.2 Hz), 3.82 (3H, m), 3.78 (3H, m),
2.97 (1H, dd, J = 7.9, 17.1 Hz), 2.71 (1H, dd, J = 3.7, 16.9 Hz),
1.02 (3H, t, ] = 7.2 Hz); "*C NMR (100 MHz, CDCl;) 172.2, 167.0,
160.6, 142.8, 129.1, 128.3, 128.2, 127.3, 112.0, 119.2, 115.0,
114.2, 63.0, 61.7, 55.5, 55.4, 52.4, 41.1, 37.2, 13.8; FT-IR (KBr, »)
3381, 2955, 2247, 1734, 1610, 1532, 1485, 1299, 1249, 1176,
1033, 841, 749 cm™'; LRMS-EI" (m/z) 409.49 (M + HJ', 100),
333.43 (13.60), 407.36 (5); HRMS-TOF-ES" (m/z) [M + H]" calcd
for C,3H,5N,05 409.1763, found 409.1764.
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Ethyl 6-chloro-3-cyano-4-(2-methoxy-2-oxoethyl)-2-(2-
methoxyphenyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 9a

White solid; mp 164-166 °C; "H NMR (400 MHz, CDCl;) 7.86
(1H, d,J = 7.8 Hz), 7.38-7.35 (1H, m), 7.08-7.02 (3H, m), 6.89-
6.87 (1H, m), 6.58-6.56 (1H, m), 5.27 (1H, s), 4.40-4.38 (1H, m),
4.15 (1H, s), 4.03-3.96 (2H, m), 3.86 (1H, s), 3.80 (3H, b), 3.78
(34, b), 2.93 (1H, dd,J = 7.9,17.1 Hz), 2.71 (1H, dd, ] = 3.4, 17.0
Hz), 0.97 (3H, t, ] = 7.2 Hz); "*C NMR (100 MHz, CDCl;) 172.0,
166.2, 157.1, 141.7, 130.5, 128.1, 127.31, 124.4, 123.8, 122.0,
121.3,116.3,115.8, 110.5, 62.9, 55.5, 54.2, 53.6, 52.5, 13.5; FT-IR
(KBr, ) 3389, 2952, 2225, 1722, 1602, 1492, 1465, 1368, 1296,
1258, 1170, 1051, 1023, 862, 824, 755 cm '; LRMS-EI" (m/2)
465.40 ([M + Na]’, 100), 443.60 (43.69), 444.70 (16.67), 445.66
(13.54); HRMS-TOF-ES" (m/z) [M + H]" caled for C,3H,,CIN,O;
443.1374, found 443.1373.

Ethyl 6-chloro-3-cyano-2-(3,5-dimethoxyphenyl)-4-(2-methoxy-
2-oxoethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 9b

White powder; mp 179-181 °C; 'H NMR (400 MHz, CDCl;),
7.08-7.06 (1H, d, J = 8.0 Hz), 6.99 (1H, b), 6.69 (2H, b), 6.59 (1H,
d,J = 8.8 Hz), 6.48 (1H, m), 4.62 (1H, s), 4.29-4.27 (2H, m), 4.11-
4.05 (2H, m), 3.79 (9H, b), 2.94 (1H, dd, J = 8.1, 17.2 Hz), 2.71
(1H, dd,J = 3.7, 17.2 Hz), 1.04 (3H, t, ] = 7.2 Hz); ">C NMR (100
MHz, CDCl;) 171.8, 166.6, 161.1, 141.1, 138.0, 128.3, 127.2,
123.9, 121.5, 116.2, 115.2, 105.7, 101.8, 63.2, 62.3, 55.5, 54.8,
52.5,41.0, 36.9, 13.7; FT-IR (KBr, 7) 3379, 2955, 2242, 1734, 1599,
1493, 1470, 1353, 1300, 1245, 1156, 1060, 850, 696 cm ™ '; LRMS-
EI' (m/z) 495.47 ([M + Na]’, 100), 473.48 ([M + H]', 13.13), 493.43
(15.24), 494.28 (15.19); HRMS-TOF-ES" (m/z) [M + H]" caled for
C4H,6CIN,Og 473.1479, found 473.1475.

Ethyl 6-chloro-3-cyano-4-(2-methoxy-2-oxoethyl)-2-
(naphthalen-2-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylate,
9c

White powder; mp 172-174 °C; white powder; "H NMR (400
MHz, CDCl;) 8.01 (1H, s), 7.91-7.84 (3H, m), 7.69-7.65 (1H, m),
7.55-7.51 (2H, m), 7.12-7.07 (1H, m), 7.03 (1H, s), 6.64-6.60 (1H,
m), 4.87 (1H, s), 4.40-4.33 (2H, m), 4.00-3.91 (2H, m), 3.80 (3H,
s),2.97 (1H, dd, J = 8.1, 17.2 Hz), 2.74 (1H, dd, J = 3.7, 17.2 Hz),
0.81 (3H, t,J = 7.2 Hz); ">*C NMR (100 MHz, CDCl;) 171.8, 166.6,
161.1, 141.1, 138.1, 128.3, 127.2, 123.9, 121.5, 116.2, 115.2,
105.7, 101.8, 63.2, 62.3, 55.5, 54.8, 52.5, 41.0, 36.9, 13.7; FT-IR
(KBr, #) 3376, 2953, 2247, 1737, 1605, 1493, 1369, 1311, 1245,
1169, 1048, 818, 758, 672 cm™ '; LRMS-EI" (m/z) 485.43 ([M +
Na]’, 100), 463.54 (30.42). HR-MS-EI" (m/z) [M]" caled for
C,6H,;CIN,O, 462.1346, found 462.1347.

Ethyl 6-chloro-3-cyano-4-(2-methoxy-2-oxoethyl)-2-
(naphthalen-1-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylate,
ad

White solid; mp 230-232 °C; 'H NMR (400 MHz, CDCIl;) 8.23
(1H, d, J = 7.3 Hz), 8.03 (1H, d, J = 8.1 Hz), 7.93-7.88 (2H, m),
7.62-7.49 (3H, m), 7.11-7.08 (2H, m), 6.62-6.59 (1H, m), 5.65
(1H, m), 4.54-4.51 (1H, m), 4.26 (1H, b), 3.80 (3H, s), 3.68-3.52
(2H, m), 2.99 (1H, dd, ] = 7.9, 17.1 Hz), 2.74 (1H, dd, ] = 3.2, 17.0
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Hz), 1.29-1.24 (1H, m), 0.51 (3H, t, J = 7.0 Hz); "*C NMR (100
MHz, CDCl;) 171.9, 166.5, 141.6, 133.8, 132.0, 131.0, 130.1,
129.0, 128.3, 127.4, 126.7, 126.1, 125.7, 125.3, 124.1, 122.3,
121.8, 116.3, 115.6, 63.1, 55.8, 54.4, 52.5, 41.5, 37.2, 13.0; FT-IR
(KBr, ) 3372, 2951, 2236, 1728, 1706, 1610, 1508, 1435, 1294,
1234, 1190, 1116, 1068, 784 cm™'; LRMS-EI* (m/z) 485.22 ([M +
Na]', 100), 463.32 (M + H]', 15.47), 443.39 (18.56); HRMS-TOF-
ES" (m/z) [M + H]" caled for CpeH,4CIN,O5 463.1425, found
463.1427.

Ethyl 6-chloro-3-cyano-4-(2-methoxy-2-oxoethyl)-2-(pyridin-2-
yD)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 9e

White solid; mp 136-138 °C; "H NMR (400 MHz, CDCl;) 8.68
(14, d,J = 4.7 Hz), 7.78-7.73 (1H, m), 7.44 (1H, d, J = 7.7 Hz),
7.35 (1H, dd, J = 5.0, 6.96 Hz), 7.11 (1H, dd, ] = 1.9, 8.6 Hz), 7.03
(1H, s),6.74 (1H, d, ] = 8.8 Hz), 5.00 (1H, d, ] = 4.2 Hz), 4.87 (1H,
d,J = 4.2 Hz), 4.29 (1H, dd, J = 2.8, 7.9 Hz), 4.19-4.12 (2H, m),
3.81(3H, s), 2.95 (1H, dd, J = 8.1, 17.2 Hz), 2.74 (1H, dd, ] = 3.3,
17.2 Hz), 1.12 (3H, dd, J = 7.2, 7.2 Hz); *C NMR (100 MHz,
CDCl3) 171.9, 161.2, 154.5, 149.6, 140.5, 137.1, 128.4, 127.0,
124.6, 124.0, 122.7, 122.4, 118.1, 114.5, 63.2, 62.2, 52.8, 52.5,
41.1, 36.6, 13.8; FT-IR (KBr, 7) 3368, 2954, 2242, 1737, 1590,
1493, 1471, 1437, 1243, 1170.3, 1049, 816, 753 cm™'; LRMS-EI"
(m/z) 436.20 (M + Na]", 100), 414.24 (M + H]" 93.14); HRMS-
TOF-ES" (m/z) [M + H]" caled for C,,H,5CIN;0, 414.1221, found
414.1215.

Ethyl 6-chloro-3-cyano-4-(2-methoxy-2-oxoethyl)-2-(thiophen-
3-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (9f)

White solid; mp 116-118 °C; 'H NMR (400 MHz, CDCl;) 7.86
(1H, d,J = 7.3 Hz), 7.36 (1H, t, ] = 7.9 Hz), 7.09-7.01 (3H, m),
6.90-6.87 (1H, m), 6.58-6.54 (1H, m), 5.26 (1H, s), 4.38 (1H, m),
4.15 (1H, s), 4.00 (2H, q,J = 7.1 Hz), 3.79-3.80 (6H, b), 2.97-2.88
(1H, dd, J = 7.7, 16.9 Hz), 2.71 (1H, dd, J = 3.1, 17.1 Hz), 0.96
(3H, t, ] = 7.2 Hz); *C NMR (100 MHz, CDCl;) 172.0, 166.2,
157.1,141.7,130.6, 128.1,127.3, 124.5, 123.8, 122.0, 1213, 116.3,
115.8, 110.5, 62.9, 55.5, 55.2, 53.6, 52.5, 41.0, 37.2, 13.5; FT-IR
(KBr, #) 3380, 2954, 2247, 1739, 1606, 1492, 1244, 1170, 1049,
814, 751, 606 cm'; LRMS-EI" (m/z) 441.33 ([M + NaJ*, 100),
419.28 (M + H]" 7.96); HRMS-TOF-ES" (m/z) [M + H]" calcd for
C,oH,,CIN,0,S 419.0832, found 419.0829.

Ethyl 6-chloro-3-cyano-4-(2-methoxy-2-oxoethyl)-2-(thiophen-
2-y1)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 9g

White solid; "H NMR (400 MHz, CDCl;) 7.36 (1H, d, J = 5.0 Hz),
7.26 (1H, m), 7.08-7.01 (3H, m), 6.59 (1H, d, J = 8.4 Hz), 5.03
(1H,s), 4.38 (1H, s), 4.27 (1H, dd, J = 3.9, 7.5 Hz), 4.16-4.05 (2H,
m), 3.78 (3H, m), 2.94 (1H, dd,J = 7.7, 17.2 Hz), 2.74 (1H, dd, ] =
3.9,17.3 Hz), 1.08 (3H, t,] = 7.2 Hz); ">*C NMR (100 MHz, CDCI;)
171.8, 166.6, 140.8, 138.0, 128.4, 127.4, 127.3, 127.0, 126.7,
124.3,121.7,116.4, 115.0, 63.4, 58.2, 55.8, 52.5, 40.8, 37.0, 13.7;
FT-IR (KBr, 7) 2918, 2857, 2335, 1739, 1657, 1599, 1575, 1487,
1361, 1380, 1306, 1246, 1161, 1045, 815, 705 cm ™ *; LRMS-EI" (m/
) 441.07 (M + Na]", 100), 419.03 ([M + H]", 24.40). HRMS-TOF-
ES" (m/z) [M + H]" caled for CyoH,CIN,0,S 419.0832, found
419.0833.

This journal is © The Royal Society of Chemistry 2020
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3-Ethyl 6-methyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-
(naphthalen-2-yl)-1,2,3,4-tetrahydroquinoline-3,6-
dicarboxylate, 9h

White powder; mp 196-198 °C; "H NMR (400 MHz, CDCl;) 8.02
(1H, s), 7.99-7.80 (6H, m), 7.68-7.66 (1H, d, J = 8.5 Hz), 7.62-
7.45 (2H, m), 6.69 (1H, d, J = 8.4 Hz), 5.00 (1H, s), 4.79 (1H, s),
4.41-4.34 (1H, m), 4.05-3.94 (2H, m), 3.87 (3H, s), 3.83 (3H, s),
3.07 (1H, dd, J = 8.1, 16.9 Hz), 2.73 (1H, dd, J = 3.8, 16.9 Hz),
0.85 (3H, t,J = 7.2 Hz); ">*C NMR (100 MHz, CDCl;) 171.9, 166.8,
166.6, 146.5, 134.0, 133.0, 132.9, 130.2, 129.6, 129.0, 128.3,
127.7,127.7,127.1, 126.8, 124.70, 119.0, 115.0, 114.2, 63.3, 62.1,
54.5, 52.5, 51.8, 41.3, 36.5, 13.6; FT-IR (KBT, 7) 3376, 2952, 2236,
1737, 1713, 1611, 1515, 1436, 1370, 1298, 1241, 11 112, 1049,
855, 767 cm™'; LRMS-EI" (m/z) 509.17 ([M + Na]", 100), 487.26
(IM + H]", 12.21), 443.31 (16.46); HRMS-TOF-ES" (m/z) [M + H]"
calcd for C,gH,,N,O4 487.1869, found 487.1865.

3-Ethyl 6-methyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-
(naphthalen-1-yl)-1,2,3,4-tetrahydroquinoline-3,6-
dicarboxylate, 9i

White solid; mp 230-232 °C; "H NMR (400 MHz, CDCl;) 8.22 (1H,
d,J = 7.3 Hz), 8.03 (1H, d,] = 8.2 Hz), 7.94-7.80 (4H, m), 7.62-7.52
(3H, m), 6.64 (1H, d,J = 8.3 Hz), 5.76 (1H, ), 4.70 (1H, s), 4.55 (1H,
dd, J = 3.2, 7.7 Hz), 3.87 (3H, s), 3.82 (3H, s), 3.68-3.52 (2H, m),
3.06 (1H, dd, J = 8.1, 16.8 Hz), 2.73 (1H, dd, J = 3.4, 16.8 Hz), 0.52
(3H, t, J = 7.2 Hz); "*C NMR (100 MHz, CDCl;) 171.98, 166.8,
166.4, 146.8, 133.8, 131.7, 130.9, 130.3, 130.2, 129.8, 129.1, 126.2,
125.7,125.4,122.3,120.5,119.1, 115.4, 114.2, 63.2, 55.5, 53.9, 52.5,
51.9, 41.6, 36.8, 13.0; FT-IR (KBr, ) 3372, 2951, 2236, 1728, 1707,
1610, 1508, 1435, 1334, 1293.9, 1234, 1190, 1116, 1068, 784 cm ™ ;
LRMS-EI" (m/z) 509.20 (M + Na]', 100), 487.25 (M + H]', 10.25),
443.23 (16.84); HRMS-TOF-ES" (m/z) [M + H]" caled for
C,5H,,N,0¢ 488.1869, found 487.1876.

3-Ethyl 6-methyl 3-cyano-4-(2-methoxy-2-oxoethyl)-2-(2-
methoxyphenyl)-1,2,3,4-tetrahydroquinoline-3,6-
dicarboxylate, 9j

White solid; mp 212-215 °C; "H NMR (400 MHz, CDCl;) 7.86
(1H, d, J = 8.8 Hz), 7.78-7.76 (2H, m), 7.37 (1H, dd, J = 7.7, 7.7
Hz), 7.06 (1H, dd, J = 7.5, 7.5 Hz), 6.89 (1H, d, J = 8.4 Hz), 6.60
(1H, d,J = 8.8 Hz), 5.39 (1H, s), 4.55 (1H, 5), 4.38 (1H, dd, J = 2.8,
7.9 Hz), 4.11-3.92 (2H, m), 3.85 (3H, s), 3.82 (3H, s), 3.79 (3H, s),
3.01 (1H, dd, J = 8.1, 16.7 Hz), 2.70 (1H, dd, J = 3.3, 16.7 Hz),
0.99 (3H, t,J = 7.2 Hz); *C NMR (100 MHz, CDCl;) 172.0, 166.9,
166.1, 157.1, 147.0, 130.7, 130.0, 129.6, 128.0, 124.1, 121.3,
120.2,119.2,115.6, 114.5, 110.6, 63.0, 55.5, 53.8, 53.2, 52.4, 51.7,
41.1, 36.8, 13.5; FT-IR (KBr, ) 3374, 2945, 2396, 2242, 1739,
1709, 1611, 1436, 1298, 1241, 1113, 767 cm™ '; LRMS-EI* (m/z):
489.16 ([M + Na]’, 100), 467.23 ([M + H]", 8.41); HRMS-TOF-ES"
(m/z) [M + H]" caled for C,5H,,N,0, 467.1818, found 467.1816.

Ethyl 3-cyano-2-(3,5-dimethoxyphenyl)-4-(2-methoxy-2-
oxoethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 9k

White powder; mp 110-112 °C; "H NMR (400 MHz, CDCl;) 7.81-
7.78 (2H, m), 6.69 (2H, s), 6.64 (1H, d, ] = 8.4 Hz), 6.48 (1H, s),
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4.73 (1H, s), 4.31 (1H, dd, J = 3.0, 7.6 Hz), 4.18-4.04 (2H, m),
3.86-3.79 (12H, m), 3.05 (1H, dd,J = 8.0, 16.9 Hz), 2.72 (1H, dd,
= 3.6, 16.9 Hz), 1.12-1.06 (3H, t, J = 7.12 Hz); *C NMR (100
MHz, CDCl;) 171.8, 166.8, 66.5, 161.2, 146.4, 137.7, 130.2, 129.6,
120.5, 118.9, 115.0, 114.2, 105.7, 101.9, 63.3, 62.0, 55.5, 54.3,
52.5,51.8, 41.2, 36.5, 13.7; FT-IR (KBr, 7) 2954, 2841, 2242, 1737,
1709, 1610, 1514, 1466, 1436, 1299, 1240, 1205, 1113, 992, 850,
768 cm ™~ ; LRMS-EI" (m/z) 519.55 ([M + Na]*, 100), 577.00 (2.36),
581.12 (5.13). HRMS-TOF-ES" (m/z) [M + H]" caled for
Cr6HoN,0g 497.1924, found 497.1921.

Ethyl 3-cyano-2-(naphthalen-2-yl)-4-(2-oxo-2-phenylethyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 91

White solid; mp 196-198 °C; 'H NMR (400 MHz, CDCl;) 8.09-
8.07 (3H, m), 7.90-7.85 (3H, m), 7.74-7.72 (1H, d, J = 8.2 Hz),
7.63 (1H, t,J = 7.3 Hz), 7.54-7.50 (4H, m), 7.11 (1H, t,] = 7.5 Hz),
6.87-6.85 (1H, d, ] = 7.8 Hz), 6.72 (2H, dd, ] = 8.1, 16.5 Hz), 4.98
(1H, s), 4.82-4.77 (1H, m), 4.39 (1H, s), 3.92 (2H, q, ] = 7.2 Hz),
3.80 (1H, dd, J = 7.7, 18.3 Hz), 3.30 (1H, dd, J = 2.9, 18.3 Hz),
0.79 (3H, t,J = 7.2 Hz); ">C NMR (100 MHz, CDCl;) 196.9, 166.9,
142.8, 136.1, 133.9, 133.8, 133.1, 128.9, 128.8, 128.4, 128.3,
128.1,127.7,126.8, 126.6, 125.1, 120.6, 119.3, 116.1, 115.1, 63.0,
62.3, 55.7,42.0, 39.9, 13.6; FT-IR (KBr, 7): 3377, 3057, 2247, 1739,
1686, 1607, 1485, 1366, 1318, 12 445, 1052, 820, 751, 639 cm ™ *;
LRMS-EI" (m/z) 497.19 ([M + Na]’, 100), 475.21 ([M + H]" 21.10);
HRMS-TOF-ES* (m/z) [M + H]" caled for C3,H,,N,0; 475.2022,
found 475.2021.

Ethyl 3-cyano-2-(2-methoxyphenyl)-4-(2-oxo-2-phenylethyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 9m

White solid; mp 86-88 °C; "H NMR (400 MHz, CDCl;) 8.07 (2H,
m,J = 7.2 Hz), 7.93 (1H, d, J = 7.6 Hz), 7.62 (1H, t, ] = 7.2 Hz),
7.52 (2H, m), 7.36 (1H, t,J = 7.9 Hz), 7.09-7.04 (2H, m), 6.86 (2H,
dd,J = 8.1, 26.8 Hz), 6.69 (1H, t, ] = 7.3 Hz), 6.63 (1H, d,J = 7.9
Hz), 5.39 (1H, s), 4.83 (1H, d,J = 7.7 Hz), 4.15 (1H, s), 4.02-3.88
(2H, m), 3.81-3.73 (4H, m), 3.25 (1H, dd, J = 2.2, 18.3 Hz), 0.93
(3H, t, J = 7.2 Hz); *C NMR (100 MHz, CDCl;) 196.9, 189.4,
166.5, 157.2, 143.2, 136.3, 133.6, 130.3, 128.8, 128.7, 128.4,
128.2,127.7,125.1,121.3,121.0, 119.2, 116.8, 115.2, 110.6, 62.7,
55.5, 54.4, 54.2, 42.2, 39.8, 13.5; FT-IR (KBr, 7) 3382, 2923, 2346,
1740, 1687, 1602, 1493, 1289, 1248, 1052 753 cm ™ '; LRMS-EI"
(m/z) 477.17 (M + Na], 100), 455.30 (M + H]", 15.55); HRMS-
TOF-ES' (m/z) [M + H]" caled for C,gH,,N,0,4 455.1971, found
455.1972.

Ethyl 3-cyano-2-(4-nitrophenyl)-4-(2-oxo-2-phenylethyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate (major), 9n

Yellow crystal; mp 156-158 °C; "H NMR (400 MHz, CDCl;) 8.31-
8.29 (1H, d,J = 7.2 Hz), 8.12-8.09 (3H, m), 7.93-7.88 (2H, dd, J =
8.3,11.6 Hz), 7.65-7.49 (6H, m), 7.13-7.09 (2H, m), 6.89 (1H, d, J
= 7.6 Hz), 6.76-6.67 (2H, m), 5.78 (1H, b), 5.00 (1H, b), 4.27 (1H,
b), 3.83 (1H, dd, J = 7.9, 18.3 Hz), 3.66-3.53 (2H, m), 3.30-3.26
(1H, m), 0.49 (3H, t, J = 7.2 Hz); >*C NMR (100 MHz, CDCI;)
196.9, 166.8, 143.1, 136.1, 133.8, 132.6, 131.1, 129.9, 128.9,
128.0, 127.9, 126.7, 126.0, 125.7, 125.3, 122.6, 120.9, 119.5,
116.6, 115.2, 63.0, 55.9, 55.1, 42.2, 40.3, 13.0; FT-IR (KBr, 7)
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3382, 3056, 2242, 1737, 1686, 1597, 1481, 1365, 1240, 1052, 781,
752, 690 cm™'; LRMS-EI" (m/z) 497.32 ([M + Na]’, 100), 475.38
(M + H]', 4.05); HRMS-TOF-ES® (m/z) [M + H|" caled for
C31H,7N,05 475.2022, found 475.2020.

Ethyl 3-cyano-4-(2-oxo-2-phenylethyl)-2-(thiophen-2-yl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 90

White powder; mp 170-172 °C; "H NMR (400 MHz, CDCI;) 8.08-
8.06 (2H, d,J = 7.5 Hz), 7.63 (1H, t,J = 7.3 Hz), 7.52 (2H, t, ] =
7.5 Hz), 7.36-7.30 (2H, m), 7.11-7.03 (2H, m), 6.84-6.82 (1H, d,
= 7.7 Hz), 6.74-6.68 (2H, m), 5.15 (1H, s), 4.72 (1H, dd, J = 2.6,
7.0 Hz), 4.39 (1H, s), 4.14-4.02 (2H, m), 3.77 (1H, dd, J = 7.5,
18.5 Hz), 3.34 (1H, dd, J = 3.1, 18.5 Hz), 1.05 (3H, t, /] = 7.2 Hz);
3C NMR (100 MHz, CDCl;) 196.8, 166.8, 142.3, 138.8, 136.1,
133.7, 128.9, 128.4, 128.1, 127.6, 127.3, 126.9, 126.5, 120.7,
119.7,115.9, 115.3, 63.1, 58.1, 56.6, 42.1, 39.5, 13.7; FT-IR (KBr,
7) 3369, 2929, 2242, 1737, 1685, 1607, 1482, 1365, 1242, 1052,
971, 855,751, 690 cm ™ '; LRMS-EI" (m/z) 453.20 ([M + Na]", 100),
451.36 (21.10), 431.33 (M + H]', 1.34); HRMS-TOF-ES" (m/z) [M +
H]" caled for C,5H,3N,05S 431.1429, found 431.1414.

Ethyl 3-cyano-2-(3,5-dimethoxyphenyl)-4-(2-oxo-2-
phenylethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate, 9p

White solid; mp 130-132 °C; "H NMR (400 MHz, CDCl;) 8.07
(2H, d,J = 7.3 Hz), 7.63 (1H, t, ] = 7.3 Hz), 7.52 (2H, t,J = 7.7
Hz), 7.09 (1H, t,] = 7.5 Hz), 6.82-6.65 (5H, m), 6.48 (1H, t, ] = 2.0
Hz), 4.74 (1H, b), 4.29 (1H, s), 4.10-3.98 (2H, m), 3.80 (6H, m),
3.76 (1H, dd, J = 3.3, 10.5 Hz), 3.25 (1H, dd, J = 2.8, 18.5 Hz),
1.01 (3H, t,J = 7.2 Hz); ">*C NMR (100 MHz, CDCl;) 196.8, 166.9,
161.0, 142.6, 138.7, 136.1, 133.8, 128.9, 128.0, 127.7, 120.5,
119.3,116.1, 115.0, 105.7, 101.7, 63.0, 62.2, 55.5, 41.9, 39.8, 13.8;
FT-IR (KBr, ) 3374, 2923, 1597, 2835, 2247, 1737, 1685, 1597,
1473, 1347, 1202, 1243, 1158, 1059, 987, 933, 749, 694,
634 535 cm~'; LRMS-EI" (m/z) 507.48 ([M + Na], 100), 485.52,
(M + H]', 4.80); HRMS-TOF-ES® (m/z) [M + H|" caled for
CpoH,9N,05 485.2076, found 485.2075.

Ethyl 3-cyano-2-(4-nitrophenyl)-4-(2-oxo-2-phenylethyl)-
1,2,3,4-tetrahydroquinoline-3-carboxylate, 9q

Yellow crystal; mp 198-200 °C; "H NMR (400 MHz, CDCl;) 8.27
(2H, d, J = 8.6 Hz), 8.06 (2H, d,J = 7.3 Hz), 7.84 (2H, d, ] = 8.6
Hz), 7.63 (1H, t,] = 7.2 Hz), 7.54-7.50 (2H, m), 7.11 (1H, t,J = 7.3
Hz), 6.87-6.85 (1H, m), 6.78-6.68 (2H, m), 4.96 (1H, s), 4.76-4.72
(1H, m), 4.26 (1H, s), 4.01 (2H, q,J = 7.1 Hz), 3.77 (1H, dd, ] =
7.3,18.7 Hz), 3.38-3.30 (1H, dd, J = 3.2, 18.6 Hz), 0.97 (3H, t, ] =
7.2 Hz); *C NMR (100 MHz, CDCl;) 196.6, 166.5, 148.8, 143.5,
142.2, 135.9, 133.9, 129.3, 128.9, 128.4, 128.3, 127.7, 124.0,
120.6, 120.0, 115.4, 115.4, 63.4, 61.2, 55.5, 42.0, 39.7, 13.8; FT-IR
(KBr, #) 3376, 2929, 2242, 1739, 1686, 1608, 1524, 1488, 1347,
1246, 1109, 659, 750, 690 cm '; LRMS-EI" (m/z) 492.50 ([M +
Nal", 100), 470.56 (M + HJ", 15.16), 443.7 (11.79); HRMS-TOF-
ES" (m/z) [M + H]" caled for C,;H,4,N;05 470.1716, found
470.1719.

This journal is © The Royal Society of Chemistry 2020
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Ethyl 3-cyano-4-(2-oxo-2-phenylethyl)-2-(2,4,6-
trimethoxyphenyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate,
9r

White powder; mp 188-190 °C; "H NMR (400 MHz, CDCl;) 8.13-
8.11 (2H, m), 7.66-7.52 (3H, m), 7.13-7.09 (1H, m), 6.88-6.75
(3H, m), 6.15 (2H, b), 5.36 (1H, d, ] = 7.7 Hz), 4.91-4.70 (2H, m),
4.06-3.78 (12H, m), 3.25 (1H, dd, J = 1.8, 16.6 Hz), 0.94 (3H, t, ]
= 7.2 Hz); *C NMR (100 MHz, CDCl;) 197.3; 167.4, 161.8, 160.1,
143.4, 136.4, 133.6, 128.8, 128.4, 127.7, 127.6, 123.5, 120.2,
118.2, 117.5, 104.5, 90.7, 62.3, 55.7, 55.4, 52.2, 42.1, 41.8, 13.6;
FT-IR (KBr, 7) 3392, 2938, 2236, 1737, 1686, 1602, 1583, 1468,
1231, 1155, 1137, 1106, 972, 816, 748, 690 cm ™ *; LRMS-EI* (m/z)
514.55 ([M + HJ', 100), 537.15 ([M + NaJ*, 55.28), 538.1 (29.63);
HRMS-TOF-ES" (m/z) [M + H]" caled for C3,H3,N,06 515.2182,
found 515.2181.
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