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ion of artificial neural networks for
the multivariable optimization of mesoporous NiO
nanocrystalline: biodiesel application

Soroush Soltani, *a Taha Roodbar Shojaei,b Nasrin Khanian,c Thomas Shean Yaw
Choong,a Umer Rashid,d Imededdine Arbi Nehdief and Rozita Binti Yusoffg

In the present research, artificial neural network (ANN) modelling was utilized to determine the relative

importance of effective variables to achieve optimum specific surface areas of a synthesized catalyst.

Initially, carbonaceous nanocrystalline mesoporous NiO core–shell solid sphere composites were

produced by applying incomplete carbonized glucose (ICG) as the pore directing agent and polyethylene

glycol (PEG; 4000) as the surfactant via a hydrothermal-assisted method. The Brunauer–Emmett–Teller

(BET) model was applied to ascertain the textural characteristics of the as-prepared mesoporous NiO

catalyst. The effects of several key parameters such as metal ratio, surfactant and template

concentrations, and calcination temperature on the prediction of the surface areas of the as-synthesized

catalyst were evaluated. In order to verify the optimum hydrothermal fabrication conditions, ANN was

trained over five different algorithms (QP, BBP, IBP, LM, and GA). Among five different algorithms, LM-4-

7-1 representing 4 nodes in the input layer, 7 nodes in the hidden layer, and 1 node in the output layer

was verified as the optimum model due to its optimum numerical properties. According to the modelling

study, the calcination temperature demonstrated the most effective parameter, while the ICG

concentration indicated the least effect. By verifying the optimum hydrothermal fabrication conditions,

the thermal decomposition of ammonium sulphate (TDAS) was applied to the functionalized surface

areas and mesoporous walls by –SO3H functional groups. In addition, the catalytic performance and

reusability of the produced mesoporous SO3H–NiO catalyst were evaluated via the transesterification of

waste cooking palm oil, resulting in a methyl ester content of 97.4% and excellent stability for nine

consecutive transesterification reactions without additional treatments.
Introduction

The huge consumption of conventional diesel fuel has caused
the rapid exhaustion of petroleum resources. Besides, the threat
of climate change and environmental pollution due to the
emission of hazardous greenhouse gases is the one of the most
critical issues across the world. Among alternative possible
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sources, biodiesel has prompted intense interest as a capable
substitute for current fuel.

The most favourable approaches of biodiesel production are
the conventional esterication of free fatty acids (FFAs) or the
transesterication of triglycerides (TG) along with alcohol over
a proper base/acid catalyst. Recent advances in reusable solid
acid catalysts are being paid great attention in many chemical
reactions such as esterication, transesterication, hydrolysis,
and hydration. This class of catalysts, containing both Lewis
and Brønsted types, has been proposed as an alternative to the
un-reusable homogeneous acid/base catalysts. In contrast with
homogeneous base/acid catalysts, heterogeneous acid catalysts
possess a number of advantages such as easy separation from
the reaction medium, eradication of washing procedure, and
minimization of corrosion. Hydrophobicity is another merit of
heterogeneous acid catalysts, which prevents the access of polar
by-products to a majority of the active sites. It is noteworthy to
mention that the distribution of polar reagents into the exterior
active surface of the catalyst may cause the de-activation of the
catalyst.1 In addition, these type of catalysts can be merely
recovered and reused, which considerably diminish the rate of
This journal is © The Royal Society of Chemistry 2020
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fabrication.2 As a result, the environment friendly heteroge-
neous acid catalysts are likely to be swapped with ecologically
unfavourable homogeneous acid catalysts.

Moreover, conventional heterogeneous acid catalysts have
lost their position in inorganic syntheses because of their poor
structural, physicochemical, and textural properties that limit
the reach of the reagents to the active sites through catalytic
reactions. In this case, synthesizing novel mesoporous catalysts
with a high specic surface area (SBET) and exible and homo-
geneous pore diameters (Dp) have attracted the most attention
in inorganic syntheses. In general, the fabrication of meso-
structured materials can be done through templating
approaches in the presence of a surfactant.3,4 Nevertheless,
there are several key parameters such as metal ratio, surfactant
and template concentrations, and annealing temperature that
inuence the SBET of the synthesized catalyst.5 However, it is
quite difficult to estimate the relative importance of these crit-
ical parameters on the specic surface areas of the synthesized
catalyst. Therefore, well-known multi-variate semi-empirical
approaches such as response surface methodology (RSM) and
articial neural networks (ANNs) can be applied to optimize the
possible relative condition.6–9

The RSM projects the related conditions, ts the detected
practical outcomes of the executed model at that point, and
then proposes the most suitable model for further authentica-
tion. In this method, the conrmedmodel is typically applied to
gain the maximum yield of the nal product. However, the
modelling process involves some complex numerical calcula-
tions such as tting and the reversion process. On the other
hand, the ANN modelling is free of any complications due to
high reliability in obtaining non-linear association amongst the
input and output variables.10–12 Unlike RSM, the ANNmodelling
is not funded on mathematical models and can be simply
applied for simulation of such a complex system.13–16 Through
ANN modelling, the output is typically generated aer accu-
mulation of input data via processing of the fundamental
elements. On the other hand, the output is identied upon
learning from a sequence of cases without knowing about the
relation between them.17–19 However, the main challenge is to
verify a suitable algorithm among various algorithms [quick
propagation (QP), Levenberg–Marquardt (LM), genetic algo-
rithm (GA), incremental back-propagation (IBP), and batch
back-propagation (BBP)] through the learning procedure.20

Through the process, the weights and biases should improve to
simultaneously lessen the inaccuracies and enhance the capa-
bility of the method. Subsequently, the miscalculation value is
determined between the predicted and real output data.21,22

Furthermore, ANN as a non-linear statistical analysis tech-
nique has been vastly applied in various nanotechnology
applications.6,23–27 Generally, it is considered as a promising
simulation technique, which hugely diminish the rate of
fabrication by predicting the output results with a short level of
error in the prediction.

In this research work, the carbonaceous mesoporous NiO
core–shell solid sphere composites were produced using
incomplete carbonized glucose (ICG) as the pore directing agent
and polyethylene glycol (PEG; 4000) as the surfactant via
This journal is © The Royal Society of Chemistry 2020
hydrothermal assisted method. The effect of different hydro-
thermal reactions such as metal ratio, surfactant and template
concentrations, and calcination temperature on the prediction
of the surface areas of the synthesized catalyst were modelled by
ANN. Aerwards, the thermal decomposition of ammonium
sulphate (TDAS) was applied to enrich the surface areas and
mesopore walls with –SO3H functional groups. It is known that
introducing hydrophobic organic species via post-synthetic
approaches results in severe lessening of the textural proper-
ties. The reduction of porosity and surface area could be
assigned to the growth of functional species into the mesopore
channels as the exterior and interior surface areas were drasti-
cally improved in the presence of hydrophobic species. By
having this knowledge, the effect of only the hydrothermal
parameters was evaluated and post-sulfonation treatment was
only applied to maximize the functionality of the catalyst
through transesterication reaction. Furthermore, the catalytic
activity and reusability of the produced mesoporous SO3H–NiO-
ICG catalyst were determined via transesterication of waste
cooking palm oil (WCPO).
Materials and methods
Materials

The analytical chemicals polyethylene glycol [PEG, Mn ¼ 4000 g
mol�1], nickel nitrate [Ni(NO3)2$6H2O], and methanol (CH3OH;
$99.5%) were acquired from Fisher Scientic. D-Glucose
(C6H12O6), ammonium sulphate [(NH4)2SO4;$99.5%], and urea
[CO(NH2)2] were acquired from Sigma-Aldrich. The basic methyl
esters for gas chromatography (GC) analysis (heptadecanoate,
methyl-myristate, methyl-stearate, methyl-linoleate, methyl-
palmitate, and methyl-oleate) were delivered by Fluka, USA.

The WCPO [holding 17.0% FFAs, acid value of 34.0 mg KOH
per g, saponication value of 171.0 mg KOH per g, density (15
�C) of 0.91 g cm�3, and kinematic viscosity (40 �C) of 33.0 mm2

s�1] was obtained from a local market, Malaysia. The supplied
WCPO contained ve most important FFAs including myristic
acid (C14:0, 2.70%), stearic acid (C18:0, 7.13%), linoleic acid
(C18:2, 12.59%), palmitic acid (C16:0, 34.80%), and oleic acid
(C18:1, 42.78%).
Synthesis of the mesoporous SO3H–NiO-ICG catalyst

Synthesis of mesoporous NiO-ICG catalyst. In this study,
mesoporous NiO-ICG catalysts were synthesized hydrothermally
in the presence of PEG as the surfactant and ICG as the
template, as per our previous study.28 Initially, 10 g of D-glucose
was placed into a muffle furnace tube where the pyrolysis
process took place in the presence of N2 gas ow (at the rate of
100 mL min�1) at 400 �C for 12 h. The synthesized powder was
milled at 1000 rpm for 1 h and pounded to develop a uniformly
ne ICG powder.

The autoclave-assisted system was used to fabricate a poly-
meric mesoporous NiO-ICG catalyst where nickel nitrate (2 g),
PEG (10 g), urea (5 mmol), and ICG : Ni (5 : 1) were mixed into
150mL deionized water under constant stirring. Next, the Teon-
lined stainless-steel autoclave was taped up and sustained at
RSC Adv., 2020, 10, 13302–13315 | 13303
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200 �C for 18 h under autogenous-pressure. Aerwards, post-
calcination at 600 �C for 4 h in the presence of N2 gas ow
took part to get rid of any kind of outstanding components as
a result of the initial decomposition of the materials.

Post-functionalization through TDAS. The as-synthesized
material was further treated by TDAS to improve the hydro-
phobic character of the catalyst by growing the aromatic groups
and lessening the aliphatic rings. Here, 2 g of the as-prepared
NiO-ICG nanocrystalline was added to 50 mL of ammonium
sulphate and sonicated for 60 min. Aerwards, the blend was
transferred into an autoclave, which was taped up and sus-
tained at 200 �C for half an hour under autogenous-pressure.
The prepared product was rigorously cleaned with a blend of
deionized water and ethyl alcohol to diminish the unreacted
components attached to the catalyst. Next, the product was
dried up in an electric vacuum oven at 100 �C for 24 h. Ulti-
mately, post-annealing treatment took place at 600 �C for 4 h in
the presence of N2 gas ow to diminish the residual volatiles
and to fully activate the mesoporous SO3H–NiO-ICG catalyst.

Catalyst characterization

The evaluation of the textural properties of the produced mes-
oporous NiO-ICG nanocrystalline material was performed using
the Brunauer–Emmett–Teller (BET; Thermo Finnigan appa-
ratus) model. The specic surface areas (SBET) were determined
by adsorption–desorption isotherm method while the pore
distribution diameters were evaluated by Barrett–Joyner–
Halenda (BJH) method. Prior to analysis, the catalyst went
through pre-treatment to eliminate moisture and was degassed
at 150 �C for 120 min over H2 ow, and later the catalyst was
submerged into a gassy vessel of N2 with the temperature of
�196 �C. At the end, the adsorption of N2 was computed at the
relative pressure.

To determine the acidity of the active sites, ammonia
temperature-programmed desorption (NH3-TPD; Thermo Fin-
nigan TPDRO 1100) was introduced. Initially, a certain amount
of mesoporous catalyst (0.4 g) was rst treated with Ar gas at
150 �C and later, it was subjected to a frequent ow of NH3 for
60 min. Finally, the adsorption of NH3 was measured and
computed along with heating the catalyst up to 900 �C with
a thermal conductivity detector (TCD) while the rate of heating
system was 15�C min�1 in 50 mL min�1 He gas.

X-ray diffraction (XRD; 6000 Shimadzu) was utilized to assess
the physical and structural characteristics of the produced
nanocrystalline material.

The microscopic morphology of NiO-ICG was characterized
using transmission electron microscopy (TEM, Hitachi H-7100)
and eld emission scanning electron microscopy (FESEM, FEI
Novanano 240) tted with an energy dispersive X-ray (EDX)
spectrometer (DMAX microscope at 200 kV).

The ANN modelling and learning procedure

In the process of ANN modelling, there are three majors layer
including input, hidden, and output; each single layer contains
several nodes that are typically linked by either multilayer feed-
back or feed-forward connection equation. In this case, the
13304 | RSC Adv., 2020, 10, 13302–13315
nodes of certain layers can be correlated to the nodes of the
subsequent layers. In general, the characteristics of the bio-
logical neural networks can be simulated by articial neurons
(nodes). In this procedure, the data of input layer's nodes with
special weight will be transformed to the hidden layer and then
the output layer's nodes. The simulation is fullled via related
weights throughout learning progression by well-known
learning algorithms.29

During this study, a multilayer feed-forwards neural network
(NN) was applied via ve well-known common learning systems
including quick propagation (QP), batch back propagation
(BBP), incremental back propagation (IBP), Levenberg–Mar-
quardt (LM), and genetic algorithm (GA).30,31 Series of reactions
were conducted to evaluate the impact of hydrothermal reaction
factors on the textural properties. The inputs are metal ratio,
surfactant and template concentrations, and calcination
temperature while the output is the specic surface area. Over
the synthetic procedure, one parameter was varying and the
other three parameters were kept constant. All the tentative data
utilized for ANN modelling using NeuralPower soware version
2.5 and are reviewed in Table 1. The test, training, and
authentication outputs were selected randomly by using RSM.

Throughout the learning procedure, the hidden layer and the
output of the jth in the output-layer is calculated through eqn
(1):

yi ¼
Xi

j¼1

xiwij þ bj (1)

whereas, yi is the input of the system to j node in the hidden
layer, i is the nodes' numbers, b is the bias terms, xi is the output
of the ex-layer, and wij is the inuence of linking between the ith

node and jth node.
However, the main challenge is to minimize the errors by

verifying the proper summation of interconnection weights
through the training process.32 It is highly essential to assess the
prediction ability of the ANN simulation system. The root
means square error (RMSE) is known as a unique assessment
equation which is calculated by eqn (2):33

RMSE ¼
 
1=n

Xn
i¼1

ðyi � ydiÞ2
!1=2

(2)

where n is the sum of the points, yi is the anticipated amount,
and ydi is the actual amount.

It should be noted that the learning process keeps repeating
to avoid casual connotation between the weights. The factor of
determination (R2) imitates the t rate for the numerical
pattern, which is calculated via eqn (3):34

R2 ¼ 1�
Xn
i¼1

ðyi � ydiÞ2
,Xn

i¼1

ðydi � ymÞ2 (3)

where, ym is the average of the actual values.
The absolute average deviation (AAD) is one more critical

factor that commonly introduced us to assess the errors
between actual and predicted values. The ADD is calculated by
eqn (4):17
This journal is © The Royal Society of Chemistry 2020
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Table 1 Experimental outputs (training, testing, and validation), actual, and predicated values of specific surface area of the synthesized
nanocrystalline NiO-ICG composites

Run no. ICG con. PEG con. Ni con. (mmol)
Calcination
temp. (�C)

Actual surface
area (m2 g�1)

Predicted surface
area (m2 g�1)

Training data set
1 10 6 2 500 295 294.81
2 15 6 2 500 307 306.91
3 10 18 2 500 315 315.83
4 15 18 2 500 327 326.41
5 5 24 2 500 315 314.91
6 10 24 2 500 325 324.92
7 20 24 2 500 332 332.04
8 10 6 4 500 320 319.88
9 20 6 4 500 324 323.82
10 5 12 4 500 308 307.77
11 15 12 4 500 326 327.59
12 20 12 4 500 321 320.94
13 10 18 4 500 326 325.75
14 15 18 4 500 338 336.59
15 5 24 4 500 328 327.88
16 10 24 4 500 335 334.61
17 20 24 4 500 341 340.99
18 5 6 6 500 322 321.63
19 15 6 6 500 341 341.75
20 20 6 6 500 335 335.05
21 5 18 6 500 327 328.01
22 10 18 6 500 335 334.25
23 20 18 6 500 342 342.58
24 5 24 6 500 333 333.25
25 5 6 8 500 331 331.31
26 10 6 8 500 338 337.75
27 20 6 8 500 343 342.3
28 5 18 8 500 344 343.1
29 15 18 8 500 358 359.2
30 20 18 8 500 353 352.85
31 10 24 8 500 357 357.77
32 15 24 8 500 369 367.74
33 5 6 2 600 291 291.12
34 10 6 4 600 329 328.42
35 20 6 8 600 350 350.14
36 10 12 4 600 324 323.79
37 10 18 4 600 333 334.22
38 15 18 6 600 355 353.69
39 5 24 2 600 321 320.94
40 15 24 6 600 357 357.48
41 10 6 4 700 316 316.35
42 15 6 6 700 337 337.04

Training data set
43 10 12 4 700 311 310.21
44 5 18 2 700 302 301.89
45 15 18 6 700 338 338.2
46 20 18 8 700 347 348.4
47 15 24 6 700 341 340.96
48 20 24 8 700 358 356.52
49 15 6 6 800 333 332.78
50 20 6 8 800 332 332.83
51 10 12 4 800 307 307.46
52 20 12 8 800 336 334.36
53 10 18 4 800 315 314.74
54 5 24 2 800 287 287.06
55 20 24 8 800 350 350.95

Test data set
56 15 24 2 500 336 284.3

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 13302–13315 | 13305
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Table 1 (Contd. )

Run no. ICG con. PEG con. Ni con. (mmol)
Calcination
temp. (�C)

Actual surface
area (m2 g�1)

Predicted surface
area (m2 g�1)

57 15 6 4 500 330 306.39
58 10 12 4 500 317 319.13
59 5 18 4 500 319 337.13
60 20 18 4 500 333 331.17
61 15 24 4 500 344 315.92
62 10 6 6 500 330 319.29
63 5 12 6 500 315 329.42
64 10 18 8 500 349 346.23
65 5 24 8 500 350 329.33
66 20 24 8 500 364 320.89
67 15 6 6 600 348 347.47
68 5 18 2 600 314 339.49
69 20 18 8 600 360 350.01
70 10 18 4 700 320 348.23
71 5 24 2 700 297 351.5
72 10 6 4 800 310 364.68
73 5 12 2 800 286 349.47
74 5 18 2 800 297 318.09
75 15 24 6 800 334 360.61

Validation data set
76 5 6 2 500 280 284.3
77 5 18 2 500 308 306.39
78 20 18 2 500 322 319.13
79 15 18 6 500 346 347.47
80 10 24 6 500 339 339.49
81 15 6 8 500 347 350.01
82 20 24 8 600 370 368.36
83 20 6 8 700 338 336.32
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AAD ¼ 1

n

Xn
i¼1

|yi � ydi|=ydi (4)

It is known that the greatest NN model should possess the
least RMSE value and maximum AAD and R2 values.35
Fig. 1 The chosen RMSE versus node number of mean specific
surface area of the NiO-ICG catalyst network's hidden layer for BBP,
QP, IBP, GA, and LM.
Transesterication procedure and characterization

Prior to the reaction, WCPO was pre-treated (at 120 �C for
20 min and then ltered) to get rid of moisture and other
remainders. The autoclave-assisted transesterication of
WCPO was performed to evaluate the catalytic activity and
recyclability of SO3H–NiO-ICG over the optimized conditions:
the mesoporous catalyst amount of 1 wt%, methanol to
WCPO molar ratio of 9 : 1, operating temperature of 100 �C
and a mixing intensity of 450 rpm. By the end of every single
reaction, the blend was centrifuged, residual methanol was
vaporized, and later, the remaining mixture was located in
a splitting funnel to separate glycerol from the produced
ester.

The content of produced fatty acid methyl ester (FAME) was
further determined by gas chromatography ame ionization
detector (GC-FID; Agilent 7890A) whereas methyl heptadeca-
noate was used as an internal standard and methyl-myristate,
methyl-stearate, methyl-linoleate, methyl-palmitate, and
13306 | RSC Adv., 2020, 10, 13302–13315
methyl-oleate were employed as the orientation standards. The
content of produced methyl ester was calculated by the EN
14103 standard method via eqn (5):

C ¼PA �PAmeh/Ameh � Cmeh � Vmeh/Wt � 100% (5)
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 The scatter plots of the forecasted specific surface areas
against the actual crystal range for the training set of data for improved
topologies of all the chosen algorithms.

Fig. 3 The scatter plots of the forecasted specific surface areas
against the testing data set for optimized topologies of all the selected
algorithms.

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 13302–13315 | 13307
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Fig. 4 The scatter plots of the predicted surface areas versus actual
specific surface areas for validation set of data for the selected LM-4-
7-1 model.

Fig. 5 Schematic representation of multilayer perception neural
network.
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where, C is the proportion of ester yield,
P

A is the summation
of the full area for the FFA peaks, Ameh is the peak area of the
internal-standard, Cmeh is the total loading of methyl heptade-
canoate, Vmeh is the total volume ofmethyl heptadecanoate, and
Wt is the mass of the produced FAME.

Results and discussions
ANN modelling results

The topology of the algorithms. Fig. 1 demonstrates the
RMSE versus node number of the mean specic surface area of
the mesoporous network's hidden layer for BBP, QP, LM, IBP,
and GA. The selected topologies for all the ve algorithms were
4-6-1, 4-15-1, 4-13-1, 4-7-1, and 4-15-1 for QP, BBP, IBP, LM, and
GA algorithms, respectively. Obviously, LM-4-7-1 was chosen as
the optimum algorithm because it has the lowest RMSE value as
the conditional version for the specic surface area of the
mesoporous NiO-ICG nanocrystalline material. Therefore, the
selected LM-4-7-1 model was further studied to choose a supe-
rior model.

Model selection. To verify the excellent model for the eval-
uation of specic surface area, the RMSE, R2, and AAD values
were determined comparatively among all the highlighted
topologies. Fig. 2 depicts the actual and predicted values of
specic surface areas for the training data. Similarly, the R2

values for the training data were calculated, as shown in Fig. 3.
It is evident that LM-4-7-1 topology had the maximum R2 value
of 0.986 for the testing set of data and 0.998 for the training
outputs.

Moreover, the AAD values of the training and testing outputs
for all the preferred topologies are summarized in Table 2.
Evidently, LM-4-7-1 with the lowermost AAD value in the testing
and training was preferred as the superior model because of
possessing the highest R2 value and the lowest RMSE and AAD
values in comparison with others.

Validation of the model. The actual and predicted specic
surface area values for the validation set of data for the selected
LM-4-7-1 model are demonstrated in the scatter plot (see Fig. 4).
As represented, the high R2 value of 0.991 and low RMSE value
of 2.405 and AAD value of 0.665 validated the ultimate analytical
accuracy of the optimized pattern.

The network of the selected model. The schematic repre-
sentation of the selected multilayer perception NN model for
the specic surface areas of the mesoporous NiO-ICG catalyst is
shown in Fig. 5. The selected model possessed three layers
Table 2 Improved topologies, QP-4-6-1, IBP-4-13-1, BBP-4-15-1, GA-
mesoporous NiO-ICG nanocrystalline material

Learning algorithm Architecture

Training data set

RMSE R2 A

QP 4-6-1 1.354 0.994 0
IBP 4-13-1 1.286 0.994 0
BBP 4-15-1 1.031 0.996 0
GA 4-15-1 6.722 0.851 1
LM 4-7-1 0.702 0.998 0

13308 | RSC Adv., 2020, 10, 13302–13315
containing one input layer, one hidden layer, and one output
layer. The four nodes of the input layer corresponded as the
disseminator for the 6 nodes of the hidden layer, which was
evaluated through the learning process.

The graphical optimization. The selected network can help
to navigate the specic surface area values of the synthesized
NiO-ICG through graphical optimization of the important and
effective elements. The selected LM-4-7-1 model was introduced
in order to simulate the association between the chosen
elements on the SBET of the produced mesoporous NiO-ICG
composite. In each three-dimensional (3D) plot format, the
4-15-1, and LM-4-7-1 on the specific surface area of the synthesized

Testing data set

AD p value RMSE R2 AAD p value

.325 0.001 1.640 0.974 0.397 0.001

.316 0.001 1.301 0.993 0.327 0.001

.262 0.001 1.532 0.993 0.367 0.001

.605 0.001 7.413 0.888 1.826 0.001

.153 0.001 0.801 0.986 0.203 0.001

This journal is © The Royal Society of Chemistry 2020
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Fig. 6 The surface response of instantaneous impact of two variables on the specific surface area value of mesoporous NiO-ICG catalyst. (a)
Correlation between PEG and ICG concentrations, (b) correlation between Ni and ICG concentrations, (c) correlation between ICG concen-
tration and calcination temperature, (d) correlation between Ni and PEG concentrations, (e) correlation between calcination temperature and
PEG concentration, (f) correlation between calcination temperature and Ni concentration, where the other two variables were retained
untouched at the midpoint values in each plot.

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 13302–13315 | 13309
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Table 3 The alterations between the actual and the model-predicted specific surface area value of the mesoporous NiO-ICG composite

ICG con. (g) PEG con. (g) Ni con. (mmol)
Calcination
temp. (�C)

Actual surface
area (m2 g�1)

Predicted surface
area (m2 g�1)

Error
(%)

Optimized variable 15 12 6 600 351 317.8 9.45
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non-linear interaction between two different elements versus
the specic surface area value is graphically represented in
Fig. 6 whereas two more variables remained untouched at the
midpoint values in each plot. In the present study, the canonical
middle point for Ni concentration, PEG concentration, ICG
concentration, and calcination temperature was 6 g, 12 g, 10 g,
and 600 �C, respectively.

Fig. 6(a) illustrates the connections between the ICG ratio
and PEG concentration. As shown, by increasing the ICG
concentration from 0 to 16, the surface area increased while by
further increasing the concentration from 16 to 20, the surface
area decreased while the surface area was constant on
increasing the PEG concentration.

Fig. 6(b) presents the interaction between two variables of
ICG concentration and Ni concentration. As observed, the
surface area was increased by increasing the ICG concentration,
while the surface area decreased by increasing the Ni
concentration.

Fig. 6(c) illustrates the interactions area of calcination
temperature and ICG concentration. As presented, the surface
Fig. 7 The percentage significance of metal ratio, surfactant and
template concentrations, and calcination temperature on the specific
surface area value.

Fig. 8 Graphic illustration of the development of C@Ni using autoclave

13310 | RSC Adv., 2020, 10, 13302–13315
area was increased by increasing the ICG concentration, while
the surface area decreased by increasing the calcination
temperature.

Fig. 6(d) shows the interactions between PEG concentration
and Ni concentration. It was observed that by increasing the Ni
concentration from 0 to 4, the surface area was increased while
by further increasing the concentration from 4 to 8, the surface
area decreased. The highest SBET of the 3D plot was obtained at
higher strengths of PEG and low concentrations of Ni (at about
3 mmol).

Fig. 6(e) demonstrates the 3D plot of PEG concentration
against the calcination temperature. As demonstrated, higher
SBET was obtained using the low calcination temperature and
high PEG concentration.

Fig. 6(f) illustrates the interactions between the Ni concen-
tration and calcination temperature. By expanding the quantity
of Ni, the SBET decreased, whilst by rising the calcination
temperature, the SBET improved.

Table 3 indicates the alterations in the actual and the model-
predicted SBET of the NiO-ICG over the predicted optimum
condition. Noticeably, the actual specic surface area was fairly
near to the predicted value by means of the model with 9.45%
miscalculation.

Importance of effective parameters. The percentage of
signicance of metal ratio, surfactant and template concentra-
tions, and post-annealing temperature on the SBET value of the
authenticated model is illustrated in Fig. 7. Accordingly, the
calcination temperature with a virtual efficiency of 29.97%
showed the most effectual inuence on the specic surface area
value while the other parameters such as Ni and PEG concen-
trations also had extensive effects. It is worthy to mention that
all the variables had their specic and typical importance.
Proposed strategy of NiO heterogeneous sphere fabrication

The mechanism designed for the formation C@Ni core–shell
solids using PEG-assisted method is displayed in Fig. 8. The
-assisted method including TEM image of the C@Ni solid-spheres.

This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra00892c


Fig. 9 (a) Nitrogen adsorption–desorption isotherms of the synthesizedmesoporous NiO-ICGmaterial and (b) pore size distribution determined
by BJH method.
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formation and development of C@Ni core–shell solid spheres
occurred over a sequence of the following reaction steps in
a Teon-lined stainless-steel autoclave:36,37

nNi(NO3) / nNi2+ + [NO3]2n (I)

nNi2+ + OH� / NiOH� (II)

NiOH� / NiOH + e (III)

NiOH + OH� / Ni(OH)2 + e (IV)

[Ni(OH)2]n + nPEG / [Ni(OH)2–PEG]n (V)

Under autoclave reaction restrictions (high temperature high
pressure) the ICG as the carbon source decomposed to the gassy
composites (H2, CO, and CO2). These compounds further func-
tioned as templates to build up primary spheres. Along with the
formation carbonaceous spheres, the nickel nitrate decomposed
to Ni2+ cation, which electrostatically interacted with –OH
(hydrophilic species) to form the structure Ni(OH)2 (steps (I)–
(III)). As time went by, a complex compound of [Ni(OH)2]n formed
as the neighbouring Ni(OH)2 and interacted together via hydro-
philic species (steps (IV)). Next, the oxygen atoms of PEG
components basically adsorbed at the positive charge of Ni(OH)2
Table 4 The textural characteristics of the proposed mesoporous NiO-

Sample SBET
a (m2 g�1) Dp

b (n

Optimized NiO-ICG 351.15 4.40
SO3H–NiO-ICG 335.30 3.25

a Specic surface area were obtained from Brunauer, Emmett and Teller m
using the BJH model. c Total pore volumes were calculated at P/Po ¼ 0.99 o
from the values of FWHM of the (200) diffraction peak from the Scherrer

This journal is © The Royal Society of Chemistry 2020
through H2 bonding to develop chains of [Ni(OH)2–PEG]n (step
(V)). Basically, PEG adsorbed on the exterior layer of the particles
as a result of water-soluble extended connection and hindered
the adhesion and agglomeration of metal particles. At 200 �C,
Ni(OH)2 transformed into NiO, which further interacted and was
incorporated into the carbon sphere surrounded by a shell of NiO
nanoparticles placed at the outer surface of the carbonaceous
core walls. Next, the post-annealing process was carried out to
transform the C@Ni architecture into a mesoporous structure
over nitrogen ow, which ultimately led to the formation of a so
shell of NiO nanoparticles around the carbonaceous core walls.
As illustrated in Fig. 8, the low intensication TEM picture
reveals the development of a noticeable core sphere with
a diameter of about 550 nmand shell structure with a diameter of
about 50 nm. The NiO shield and ICG nucleus were indicated in
grey and black colours, respectively.
Catalyst characterization

The N2 ads–des isotherm and pore size distribution of the
produced mesoporous SO3H–NiO-ICG are demonstrated in
Fig. 9. The N2 ads–des isotherm was characteristic of type IV
according to the BDDT isotherm classication, which
conrmed the mesoporous structure of the fabricated catalyst.31
ICG and SO3H–NiO-ICG catalyst

m) Vp
c (cm3 g�1) Crystallite sized (nm)

0.36 34.14
0.26 40.50

ethod. b Average pores size was calculated from the N2 desorption branch
n the N2 adsorption isotherms. d Average crystallite size were calculated
equation.

RSC Adv., 2020, 10, 13302–13315 | 13311
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Fig. 10 (a) XRD pattern and (b) FT-IR spectra of the synthesized NiO-ICG composites.
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The N2 ads–desorption isotherm shows a weak and strong N2

adsorption at P/Po < 0.4 and P/Po > 0.4, respectively (see
Fig. 9(a)), which conrmed the formation of mono-modal
mesopore diameter distribution.

Fig. 9(b) also evidenced the mono-modal mesopore diameter
distribution with a sharp bow at 4.40 nm. The textural charac-
teristics of the NiO-ICG catalyst are presented in Table 4.

The average crystal size of the synthesized NiO-ICG was
evaluated using XRD. As demonstrated in Fig. 10, the X-ray peak
reections of (111), (200), (220), and (331) were detected at
37.45�, 43.66�, 63.50�, and 75.75�, respectively, which were
associated with the cubic-phase NiO nanoparticles (JCPDS: #47-
1049). The degree of crystallinity of the optimized NiO-ICG was
measured with the Scherrer's formula:

D ¼ 0.98l/b cos qb
Fig. 11 EDX spectrum of the synthesized mesoporous NiO-ICG catalyst

13312 | RSC Adv., 2020, 10, 13302–13315
where D is the crystallite dimension (average), l is the wave-
length, b is the values of full width half maximum of the peaks,
and qb is the Bragg-angle. According to the calculations, NiO-
ICG had a crystallinity of about 34.14 nm.

The purity of NiO-ICG was veried by EDX analysis (Fig. 11),
where atomic-ratios of Ni ¼ 4.47, C¼ 50.32, and O¼ 45.21 were
identied, which were according to the accurate stoichiometry
of the elemental ratios and applied through the fabrication
procedure.

Aer verifying the optimum hydrothermal conditions, TDAS
was applied to attach –SO3H species to the active sites of the as-
prepared materials. According to the TPD result, the meso-
porous SO3H–NiO-ICG catalyst possessed NH3 acidity of
3.50 mmol g�1.

The post-sulfonation temperature got a considerable impres-
sion on the textural properties where the surface area and
porosity reduced to 335.30 m2 g�1 and 3.25 nm, respectively. It is
.

This journal is © The Royal Society of Chemistry 2020
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Fig. 12 FESEM images of (a) the synthesized NiO-ICG composites and (b) the mesoporous SO3H–NiO-ICG catalyst.
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worthy to mention that, however, the pores size sharply dropped
and the mesostructured framework was preserved, which was
corresponding to the unsuccessful bonding of sulfonic
compounds at the inner pores of the surface.

The morphology of NiO-ICG and SO3H–NiO-ICG composites
was evaluated by FESEM image, as shown in Fig. 12(a). The
formation of carbonaceous spheres with a rough shield of NiO
nanocrystalline is conrmed. Fig. 12(b) shows the morphology of
mesoporous SO3H–NiO-ICG catalyst. It proved that the core–shell
solid sphere structure slightly deformed aer post-treatment.
Fig. 13 Recyclability of SO3H–NiO-ICG catalyst for ten runs under the
optimal conditions: methanol to oil molar ratio, catalyst amount,
reaction temperature, and mixing intensity of 9 : 1, 1.0 wt%, 100 �C,
and 450 rpm, respectively.
Methyl ester production

Furthermore, the catalytic performance of the SO3H–NiO-ICG
catalyst was determined via transesterication of WCPO using
an autoclave under the optimized conditions: the mesoporous
catalyst amount of 1 wt%, methanol to oil molar ratio of 9 : 1,
temperature of 100 �C, and mixing intensity of 450 rpm. The
high FAME yield of was 97.4% achieved in the presence of the
produced catalyst.

The catalytic solidity of the produced catalyst was further
determined (see Fig. 13). Accordingly, the spent catalyst showed
superior performance for ten successive reaction cycles with
inconsequential loss of activity. The fatty acidmethyl ester content
dropped from 97.4% to 77.7% aer 10 successive trans-
esterication reaction while the leaching of the sulfonic
compounds was negligible (2.11% to 1.53%, as measured by
a CHNS elemental analyser). The superior reusability of the SO3H–

NiO-ICG catalyst was associated largely with the SBET of the catalyst
where larger pore size gives better opportunity to sulfonic func-
tional species to incorporate into the mesopore frameworks.37–39

Generally speaking, ANN as an effective quantiable procedure
was highly suitable for modelling the selected operative input
variables (such as metal ratio, surfactant and template concen-
trations, and calcination temperature) to predict the mean of
This journal is © The Royal Society of Chemistry 2020
surface area values of the synthesizedmesoporous SO3H–NiO-ICG
catalyst. Furthermore, introducing ANN examination as an effi-
cient numerical model would largely save the budget and time by
foreseeing the outputs of the analytical procedure. In addition, it
would highly ease the analytical procedure of the critical factors
and their outcomes in complex systems.
Conclusion

Nanocrystalline mesoporous NiO-ICG core–shell solid sphere
composites were successfully fabricated by hydrothermal
RSC Adv., 2020, 10, 13302–13315 | 13313
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assisted method. The ANN method was applied to predict the
specic surface area based on the input variables including
metal ratio, surfactant and template concentrations, and calci-
nation temperature. Among the four selected effective param-
eters, the calcination temperature with a relative efficiency of
29.97% was found to be the most effective variable on the
surface area values. Noticeably, the actual specic surface area
was fairly near to the predicted value by means of the model
with an error of 9.45%. Aer verifying the optimum hydro-
thermal conditions, thermal decomposition of ammonium
sulphate was applied to attach –SO3H functional groups to the
active sites. The optimized NiO-ICG composite possessed
unique structural and textural properties such as SBET of 351.15
m2 g�1, average Dp of 4.40 nm, total Vp of 0.36 cm3 g�1, and
crystallinity of 34.14 nm. Furthermore, the catalytic activity and
recyclability of the SO3H–NiO-ICG catalyst were determined via
transesterication of WCPO. The high FAME yield of 97.4% was
attained in the presence of the SO3H–NiO-ICG catalyst while the
spent catalyst showed superior catalytic activity for ten succes-
sive reaction cycles with inconsequential loss of activity.
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