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Recent advancements in synthetic methodologies
of 3-substituted phthalides and their application in
the total synthesis of biologically active natural
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We have provided a critical review that focuses on key developments in the area of 3-substituted phthalides
and their role in the development of important biologically active natural products. 3-Substituted phthalides
are vital molecules owing to their fascinating biological activity. The scope, isolation, and characterization of
various naturally occurring racemic and chiral 3-substituted phthalides have been covered. We have put
significant emphasis on recently developed research methodologies for the synthesis of racemic and
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Accepted 6th March 2020 chiral 3-substituted phthalides. These newer approaches are essential for the development of newer and
elegant strategies for the synthesis of phthalide-based or similar molecular architecture with broader

DOI: 10.1035/d0ra00701c substrate scope and higher stereoselectivities. Also, we have discussed the application of 3-substituted
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1. Introduction

One of the prime areas of research in organic chemistry has
been concerned with the development of small-molecule
natural products. A considerable number of modern-day drug
developments are inspired by various sets of natural products,
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phthalides as a precursor for the synthesis of natural products and their analogs.

such as amino acids, flavonoids, alkaloids, terpenoids, quino-
noid, and steroids.! This area of research has paved the way for
an important class of chemistry, known as medicinal chemistry.

An extensive series of biologically important natural prod-
ucts consist of phthalide frameworks.> Phthalides are a prom-
inent branch of natural products due to their biological
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R, =H, OH, OMe, alkyl, halogen
R, =H, alkyl, aryl

Fig. 1 1(3H)-Isobenzofuranones 1 (phthalides) and their derivatives.

importance. The fundamental core structure of phthalide
consists of a benzene ring fused with a y-lactone between
carbons 1 and 3 (Fig. 1). All the known phthalide compounds
have been recognized as derivatives of 1(3H)-isobenzofuranone.
Mainly, phthalides have been found commonly in plant genera
and also in fungi, bacteria, and liverworts.

More than 180 naturally occurring phthalide derivatives have
been identified. Among them, nearly 140 phthalides were iso-
lated from a wide variety of plant species. These isolated
phthalides have shown a broad spectrum of important clinical
properties, such as anti-platelet accumulation, anti-smooth
proliferation, anti-thrombosis, protection against cerebral
ischemia, anti-angina, and cardiac function modulation and
actions on the central nervous system.?

In ancient times, many phthalide-containing plants were
used as herbal medicines. In China, phthalide-containing herbs
have been recognized as some of the most commonly used
natural medicines in traditional medicinal practice. Rhizoma
Chuanxiong (Chinese name Chuanxiong) and Radix Angelicae
sinensis (Chinese name Danggui) have been used for the
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Fig. 2 Structure of mycophenolic acid 2 and 3-n-butylphthalide 3.

treatment of cerebral- and cardiovascular diseases and female
irregular menstruation for more than 2000 years.*

Phthalide containing drugs have gained worldwide popu-
larity because of the wide range of pharmacophore activities of
the moiety.” For example, a significant problem during organ
transplantation is a rejection of the transplanted organ. Myco-
phenolic acid (mycophenolate) 2 is a phthalide-containing
immunosuppressant drug given to facilitate organ trans-
plantation. It was the first antibiotic synthesized in a pure
crystalline state. The US Food and Drug Administration has also
approved this for use in kidney transplantation.® Similarly, n-
butylphthalide (NBP) 3 also became a successful anti-platelet
drug for ischemia-cerebral apoplexy’ (Fig. 2). The Chinese
government had approved this as an anti-ischemic stroke drug
in 2002. Taking these facts into consideration, we can state that
phthalide moiety has been used as a valuable framework in
synthesizing many pharmaceutical drugs.’

Some phthalide-containing natural products are also re-
ported in the literature. Phthalide plays a vital role as a building
block® in the synthesis of many natural products. For example,
fuscinarin 4 is a potent human CCR5 antagonist, used to block
the entry of HIV into host cells.” However, the bioactivities of
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Fig. 3 Naturally occurring 1(3H)-isobenzofuranones 4-7.

(=)-typhaphthalide 5, (+)-spiroxaline 6,"* and monascodilone
7'? are still not known (Fig. 3).

There are several available reactive sites of phthalides which
have been explored, i.e., a nucleophilic attack on C; carbonyl
group, nucleophilic substitution reactions at C; position carb-
anion, and reactions on the C,, Cs, Cs and C; positions of the
phthalide.”® The 1(3H)-isobenzofuranone was initially synthe-
sized in 1922 by Perkin and coworkers, via thermal decompo-
sition of ethyl 2-(bromomethyl)benzoate.** Later in 1955, Eliel
and coworkers performed the reduction of methyl phthalate to
phthalide in good yield using LiAlH,." In 1989, Watanabe and
coworkers utilized a Diels-Alder reaction between substituted
furanones and silyloxydienes to provide substituted phthalides
in moderate to excellent yields.'® Recently, directed ortho-met-
allation, the reaction between homophthalic anhydride and
benzil,”” the Heck-Matsuda reaction,” and many more
methods have been introduced to synthesize substituted
phthalides.

1.1 Scope for 3-substituted phthalides

As we have already discussed, phthalide moiety is present in
many natural products. Phthalides that are substituted at the C-
3 positions possess an extensive range of biological and physi-
ological activities.” This moiety has been an essential inter-
mediate to synthesize versatile natural products.® This fact has
led extensive efforts in the field of 3-substituted phthalides in
the past two decades (Fig. 4). Different synthetic methodolo-
gies of selected natural products using 3-substituted phthalides
as intermediates are described in the later part of the review.

Statistically, more than 60% of the drugs currently available
on the market are chiral molecules. As a result, asymmetric
synthesis of chiral phthalides introducing C-3 chirality has also
achieved considerable attention.** Subsequently, an extensive
number of asymmetric synthetic methodologies have been
established for a variety of naturally occurring molecules with
the potential treatment of different kinds of diseases.

The attention of this review is primarily on the synthesis and
reactivity of the active methylene compounds, i.e., 1(3H)-iso-
benzofuranones. Previously, Mal et al. and Renoux et al. pub-
lished two excellent reviews on the chemistry of phthalides.>*®
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Fig. 4 Classification of phthalides and their examples.

However, as per our knowledge, in previous literature reviews,
the chemistry of racemic and chiral 3-substituted 1(3H)-iso-
benzofuranones and its application in total synthesis of
important natural products was not discussed in detail. In this
review, the synthetic methodologies for racemic and chiral 3-
substituted 1(3H)-isobenzofuranones are discussed with
particular emphasis on recent advances. Also, the application of
racemic and chiral 3-substituted 1(3H)-isobenzofuranones as
precursors for the synthesis of other critical molecular moieties
are discussed.

The work presented here can benefit researchers in devel-
oping newer efficient strategies. This review paper contributes
to ongoing efforts in seeking to develop and expand the utility of
3-substituted phthalides as precursors for much broader
objectives.

1.2 Sources of a different kind of phthalides

Plants, fungi, bacteria, and liverworts have been different
sources for phthalides. More than 180 naturally occurring
phthalides appear in the literature. Most of these (~137) are
extracted from 202 diverse species of plants; as a result,
phthalide-containing plants were long used as herbal medi-
cines.” Most naturally occurring phthalides are obtained from
two plant species, Ligusticum and Angelica, in the Umbelliferae
family. Some of the isoquinoline type phthalides such as
noscapine 8 and bicuculine 48 are isolated from the poppy
family. From the genus Ligusticum, more than 53 naturally
occurring phthalides have been isolated from Ligusticum, and
38 biologically phthalides have been isolated from Angelica.”**

1.3 Extraction, isolation, and characterizations of
phthalides

The extraction of naturally occurring biologically active phtha-
lides is one of the critical steps of analysis. It involves tech-
niques such as pre-washing, grinding, and drying of plant
materials to obtain a homogenous sample. It should be taken
care that potential plant constituents are not degraded during

This journal is © The Royal Society of Chemistry 2020
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Table 1 Important biologically active natural products encompassing 3-substituted phthalide framework

S. no. Natural products Isolation sources Biological activities
1 (ref. 30) Cultivated opium poppy Anti-tussive, anti-cancer, and
’ plants potential antineoplastic activities
2 (ref. 31) ?;gll flus parvus BCC Not known
L Cytotoxic against HeLa (cervical
3 (ref. 32) Pestalotiopsis virgatula epithelium) cells
L Cytotoxic against HeLa (cervical
4 (ref. 17) Pestalotiopsis virgatula epithelium) cells
(i) Virgatolide B (C3 = a) 11
(ii) Virgatolide C (C3 =) 12
0]
HO

o)

5 (ref. 33) HO Cytosora sp. CR200 Anti-microbial
OH 4
Cytosporone E 13
0O
MeO
@)
0
Penicillium . .

6 (ref. 34) OMe 74 ) vermiculatum DANG Cytotoxic against tumor cells

)

Vermistatin 14

This journal is © The Royal Society of Chemistry 2020
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S. no. Natural products Isolation sources Biological activities
OMe o)
MeO
o)
: O . . Anti-paclitaxel - resistant anti-
7 (ref. 35) = 7 Corydails stricta p . .
4 cancer (ovarian) activity
—N

(-)-Hydrastine 15

8 (ref. 36)

Rubiginone 16
(Stereochemistry at C-3 position

unknown)
OH o
MeO
° 0

9 (ref. 37) MeO \)\\\;

Colletotrialide 17

10 (ref. 38)
Alcyopterosin E 18
OR, o
MeO
0
R
11 (ref. 39)
(i)R1=Rp=H19
(ii)) R1 =OMe, R, =H 20
(iii) R1 = OMe, Ry = Me 20
12 (ref. 40)

Catalpalactone 22

12630 | RSC Adv, 2020, 10, 12626-12652

Anti-bacterial activity, prevents
the growth of specific Gram-
positive bacteria and cytotoxic
against diverse tumor cells

Streptomyces sp.

Anti-oxidant and chemo

Collectotrichum sp. . .
P preventive properties

Cytotoxicity toward human larynx

Alcyonium paessleri .
carcinoma

In vitro inhibitory activity on

Pittosporum illicioides neutrophil pro-inflammatory
response
Catalpa ouata G. Anti-tumor promoting activity
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S. no. Natural products

Isolation sources

Biological activities

13 (ref. 41) HO Q

COOH
Cryphonectric acid 23
OH o

O

14 (ref. 42)
COOH

R =H, Isoochracinic acid 24
R = OH, Herbaric acid 25

15 (ref. 43) MeG 04
e

0
(-)-Arnottin II 26

OH ¢

O Me
n. p_#, ~COOH

O

16 (ref. 44) MeO

(0]
Altenuic acid 27

17 (ref. 45)

Tilifodiolide 28
/O

N
(@)

18 (ref. 46) HON HN .vf—coome
o Ph

Dermacozine D 29
OH o

O
19 (ref. 47) (CH,)sCHs
OH

Corollosporine 30

This journal is © The Royal Society of Chemistry 2020

Cryphonectria parasitica

Alternaria kikuchiana
(isoochracinic acid),
Cladosporium herbarum
(herbaric acid)

Xanthoxylum
arnottianum

Alternaria tenuis

Salvia tiliaefolia and
Salvia puberula

Dermacoccus abyssi

Corollospora maritima

Anti-fungal activity, (inhibits the
formation of tomato seedings)

Anti-bacterial and anti-biotic

Not known

Not known

Plant growth stimulator

Cytotoxic against different tumor
cells lines

Anti-bacterial activity against
Staphylococcus
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S. no. Natural products Isolation sources Biological activities
0]
o)
20 (ref. 48) Apium graveolens, Anti-convulsant, anti-stroke and
’ Angelica sinensis anti-proliferative
n-Butylphthalide 2
21 (ref. 49) Subantarctic soft coral Toxic towards Hep-2 (human
’ Alcyonium paessleri larynx carcinoma) cell line
Alcyopterosin E 31
OMe 0
0 Funeus Sporotrichum Anti-tumor and active against
22 (ref. 50) HO L . s Zaxu%nu P Helicobacter pylori, also, lower the
(CHQ)“\\ 0 }“ cholesterol level in the body
5 0
(+)- Spirolaxine 6
OH o
o Anti-bacterial activity against
23 (ref. 51) Fungus Paecilomyces pathogenic bacteria including
’ variotii Staphylococcus aureus 3089 and
5 Vibrio parahaemolyticus 7001
Paecilocin A 32
OH o
e
24 (ref. 52) OH Pe'stalotlop 518 Anti-fungal activity
microspora
o
Isopestacin 33
OH o
Chineses medicinal
o herb Matteuccia
25 (ref. 53) HO orientalis for the Not reported
Ph treatment of
HO hemostatics and
reliving ostalgia
Matteucen C 34
OH o
O
¥ Solid culture of an
HO . S .
26 (ref. 54) \ isolate of Pestalotiopsis Anti-fungal

N

HO

(3S)- Pestaphthalides A 35a
(3R)- Pestaphthalides A 35b
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S. no. Natural products Isolation sources Biological activities
(0}
Solid culture of .
27 (ref. 55) Paecilomyces sp. SC0924 Anti-fungal
Paecilomycin C (R! = H, R>= OH) 36
Paecilomycin D (R' = OH, R?>= H) 37
O
O
A diuretic for bladder and kidney
28 (ref. 56) HOH,C Celery seed complaints and adjuvant in
HO 0 arthritic conditions
HO S
oH ©
Celephthalide A 38
o}
O H
29 (ref. 57) 0 Ascomycete Daldinia Anti-HIV-1
\ concentrica
Concentricolide 39
Traditional Chinese Immunosuppressants and anti-
30 (ref. 58) medicine consisting of " ku upp
; Salvia miltiorrhiza stroke
Danshenspiroketallactone 40
OH o
e} Leaves and stem of
a popular vegetable . . ..
31 (ref. 59) s Chrysanthemum Anti-feeding activity
4 coronarium
—
Chrycolide 41
OH o
32 (ref. 60) 0 Rhizomes of Typha Anti-bacterial activity against
’ H capensis diarrhea and dysentery
Ph
Typhaphthalide 42

This journal is © The Royal Society of Chemistry 2020
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S. no. Natural products

Isolation sources

Biological activities

33 (ref. 61)

3a- [4’- Methoxy-4°,5’-
methyllenedioxybenzyl]-5,7-
dimethoxyphthalide 43

-0

AN
34 (ref. 62) 0 00

HO 0
Colletotrialide 44
OH o

35 (ref. 63)

(R)-3-acetyl-7-hydroxy-5-methoxy-
3.4-dimethylisobenzofuran-1(3H)-
one 45

OH o

36 (ref. 64)

Chrysoarticulin C 46
CHj,

/

37 (ref. 65) 0

(0}
Z-Ligustilide 47

H
(0]
38 (ref. 66) O

(+)- Bicuculine 48

extraction. The selection of solvent also plays a crucial role in
the extraction of phthalides, and it largely depends upon the
nature of the phthalides. Most phthalides are non-polar, so for

12634 | RSC Adv, 2020, 10, 12626-12652

Frullania sp.

Euryops hebecarpus

Endophytic fungus

Leptosphaeria sp.

Ligusticum porteri

Fumaria capreokzta L
and Fumaria bella

Cytotoxic against human
promyelocytic leukemia

Not known

Anti-oxidant activity

Anti-fungal activity

Anti-proliferative activity (sedative
and relaxant)

Potent GABa receptor antagonist
and used to block Ca** activated
potassium channels

the extraction of such molecules, hexane or petroleum ether can
be used as an initial extraction solvent. To extract polar
phthalides, we use polar solvents, such as ethanol, chloroform,

This journal is © The Royal Society of Chemistry 2020
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methanol, and ethyl-acetate.”** The extraction process for
phthalides has remained mostly unchanged over the years;
however, some upgraded extraction procedures have been
reported.>>?¢

Phthalides are usually isolated via column chromatography,
thin layer chromatography (TLC), and HPLC, with column
chromatography being the most common. Silica, alumina, and
LH-20 are frequently used adsorbents for column chromatog-
raphy.>”*® Other techniques that have been used for some
specific phthalides include preparative TLC (PTLC), centrifugal
circular TLC (CCTLC), medium-pressure liquid chromatog-
raphy (MPLC), high-speed countercurrent chromatography
(HSCCC), droplet-countercurrent chromatography (DCCC), and
high-vacuum low-temperature distillation.*

Initially, the characterization of naturally occurring phtha-
lides was carried out through melting points, boiling points,
saponification, UV spectroscopy, and hydrolysis techniques.
After the development of NMR, IR, GC-MS, and X-ray crystal-
lography, characterizing phthalides has become much easier.

2. Isolated natural products
encompassing 3-substituted phthalide
framework

Table 1 summarises examples of isolated natural products
encompassing 3-substituted phthalide framework

3. Synthetic routes for 3-substituted
1(3H)-isobenzofuranones

We have classified synthetic routes to access 3-substituted
(£)-1(3H)-isobenzofuranones in two major titles. First, we have
emphasized recent approaches to generate racemic 3-
substituted (4)-1(3H)-isobenzofuranones, and later we have
described recent approaches to generate optically pure 3-
substituted 1(3H)-isobenzofuranones.

3.1 Recent methodologies for the synthesis of 3-substituted
(£)-1(3H)-isobenzofuranones

3.1.1 Metal catalyzed synthesis of 3-substituted (+)-1(3H)-
isobenzofuranones. Fan and co-workers®” have reported 3-
substituted phthalides 51 via a ruthenium-catalyzed intermo-
lecular cascade reaction of aromatic acids 49 with aromatic
aldehydes 50. The synthesis involves the direct insertion of the
C-H bond of the aromatic acids into a polar C=0 bond of
aromatic aldehydes, which is followed by the consecutive

View Article Online

RSC Advances

intramolecular nucleophilic substitution. The polarity (electro-
philicity) of the C=0 bond in aromatic aldehydes was increased
by having electron-withdrawing groups (NO,, CF3, F, Cl, Br) on
the aromatic ring (Scheme 1).

Nguyen and co-workers® demonstrated a direct route to
obtain phthalides 53 via carboxylation of benzoxasiloles 52 with
carbon dioxide, using Cul as a catalyst. Several advantages of
this methodology are the use of copper salt as a catalyst,
economical starting materials and convenient reaction setup
(Scheme 2). The main challenge of this methodology was the
unexplored reactivity of organosilanes with CO,.

Arcadi and co-workers® have described a palladium-
catalyzed hydroarylation and hydrovinylation reaction of vy-
propargylic alcohols 54 with aryl iodides 55 to afford crude v,y-
disubstituted allylic alcohols 56. Allylic alcohols 56 were treated
with NaOH followed by acidification afforded 3,3-disubstituted
phthalides 59 in good to moderate yields (Scheme 3).

Matsuda and co-workers” described an oxidative cyclization
of phthalaldehydes 60 and alcohols catalyzed by rhodium(ur)
catalyst and copper acetate to afford 3-alkoxyphthalides 61 in
good to moderate yields (Scheme 4). The reaction is believed to
be proceeding via Rh-Cu relay catalytic system.

The work was further extended to explore the utility of 1,3-
dicarbonyl compounds 63 as nucleophiles for the reaction with
phthalaldehydes 62 under similar conditions. This led to the
synthesis of 3-alkylphthalides 64 in excellent yields (Scheme 5).

Gandeepan and co-workers™ demonstrated rhodium(iu)-
catalyzed regio- and stereoselective synthesis of disubstituted E-
phthalides 67 from aryl acids 65 and allenes 66. The reaction
proceeded via ortho C-H bond activation followed by an annu-
lation pathway. The scope of the methodology was further
investigated on a variety of aryl acids 65 and allenes 66 (Scheme
6).

3.1.2 Hydroiodination-triggered synthesis of 3-substituted
(£)-1(3H)-isobenzofuranones. Hydroiodination-triggered
cascade reaction is demonstrated by Kawaguchi and co-
workers” by using I,, PPh;, and H,0 in CDCIl; to furnish 3-
substituted phthalides 69 in excellent yields. The reaction
proceeds via a four-step sequence, ie., desilylation, hydro-
iodination, cyclization, and reduction, in one pot (Scheme 7).
The present method eliminates the need for a metal catalyst to
form phthalides.

The substrate scope of 2-ethynylbenzoates 70 was also
studied by using cyano, chloro, phenyl, and ester groups on the
side chain. They were tolerated during the four-step sequence to
provide 3-substituted phthalides 71 (Scheme 8).

[RuCly(p-cymene)l, (5 mol %)

COOH 0
R1€[ + J
= H H Ar

R" = Alkyl

49 50

Nach3, DCE, 150 OC,

AgOTf (25 mol %) _ R TN o

24 h (52-90 %) Ar

51

Scheme 1 Ruthenium catalyzed the synthesis of 3-substituted phthalides.
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R'=6-Me, R2=H (77 %)
R'=6-NMe,, R? =H (72 %)

Pry pr Cul (1 mol%) O R'=6-F, R?=H (77 %)
RI—C D S CO, (balloon) HOL | i STy R1=6-CLR?=H (80%)
= CsF (1.5 equiv.), DMSO  RT,12h = R" = 5-OMe, R? = H (68 %)
R2 60 °C. 24 h R2 R'=4-OMe, R?=H (76 %)
) 53 R'=4-Me, R2=H (77 %)

R'=6-Me, R = Me (82 %)
R!=5-OMe, RZ = Me (83 %)
R' = 4-OMe, R% = Me (79 %)
R'=4-Me, R2 = OH (68 %)

Scheme 2 Synthesis of benzoxasiloles via copper-catalyzed direct carboxylation.

3.1.3 Synthesis of 3-substituted (£)-1(3H)-iso-
benzofuranones using B-keto acids as a nucleophile center. Jia
and co-workers” developed a one-pot cascade aldol/cyclization
reaction of 72 wherein B-keto acids 73 were directly employed
as a nucleophilic center, and glycerol was used as a solvent.
Here, B-keto acids functioned as ketone enolate equivalents. An
extensive substrate scope for [-keto acids was explored,
affording a wide variety of 3-substituted phthalides in good to
excellent yields (Scheme 9).

3.1.4 Synthesis of 3-substituted (£)-1(3H)-iso-
benzofuranones using Schiff base. Perillo and co-workers™
developed cascade reaction of glycine Schiff base 77 with 2-
carbomethoxy benzaldehyde 76, which involved aldol conden-
sation followed by cyclization under the acidic conditions to
provide a-amino ester 3-substituted phthalides 80 in good yield
(Scheme 10). The methodology was further extended to develop
an enantioselective version of the reaction to obtain chiral 3-
substituted phthalides in high ee's.”

A variety of bifunctional phase-transfer catalysts (PTC) were
examined to obtain 3-substituted phthalides in excellent
enantioselectivity. Bifunctional PTC 75 (Fig. 5) gave the desired
product in moderate ee's (51-71%).7

3.1.5 Oxa-Michael addition reaction to generate 3-
substituted (+)-1(3H)-isobenzofuranones. Youn and co-
workers” have developed NHC-catalyzed domino oxidation of 2-
alkenylbenzaldehydes 81, followed by oxa-Michael addition
reaction to afford 3-substituted phthalides 83. The protocol
developed has a broad substrate scope and wide functional
group tolerance. The success of the domino process could be
achieved in two ways; by exploiting atmospheric oxygen as an
oxygen atom source and by adding an electron-deficient olefin
bearing hetero atom with lone pair of electrons. Also, molecular
oxygen in air could play an essential role in transformation, as
similar NHC-catalyzed reactions of the same substrates under
inert atmosphere produce follow different reaction pathways
(Scheme 11).

3.1.6 Friedel-Crafts alkylation reaction to generate 3-
substituted (+)-1(3H)-isobenzofuranones. Tang and
workers” have developed an efficient methodology to synthesize
3-indolyl-substituted phthalides 86 via Friedel-Crafts alkylation of
indoles 85 with 3-hydroxy phthalide 84 using TsOH as the catalyst.
The usefulness of the process was studied with variously
substituted indoles which reacted efficiently at room temperature
to afford phthalides in excellent yields (Scheme 12).

CO-

° )
Pd(OAC), (4 mol %) NaOH (5 %)
OMe o TBACI (1 equiv.) OMe  MeOH, EtOH
. R —— =N AT e
S EtzN, HCOOH —\ OH 60°C,1h
X__OH 55 THF, 60 °C R R?
54 RR2  RX=Phl, 3-CFy-CeHal, R
1 . 4-F-CgHyl, 4-Me-CgHyl, 56
R'=Me, R“*=Me 4-MeO-CgHyl
R'=Me, R?=Et
R"=R?=-(CHp)s-
0 0
QAR Hy50, (M) _ 0 R
__/ R 60°C, 45 min A
_
4 R R1
57 »
(40-70 %)

Scheme 3 Synthesis of 3-vinyl phthalides.
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[CP*RhCly], (2 mol %)

Cu(OAc), (2.0 equiv.) R

R CHO
1L, -
R CHO

ROH 0
80 °C, under air R
40-65 %
R = H, Me, OMe, CI ( R OR
60 61
Scheme 4 Synthesis of 3-alkoxy phthalides.
R!'=H,R*=R’>=0Me
[Cp*RhC12]2 (2 mol %) Rl =H, R2 - R3 = OFt

Cu(OAc), (1.5 equiv.)

R!=H,R2=R3*=0Pr

CHO R!
@[ + RWN
CHO 5 O

62 63

(62-94 %)

Scheme 5 Synthesis of 3-alkyl phthalides.

O
X OH R!
R " R}—zc——R3
65 66

R = H, 4-Me, 4-OMe, 4-F,
4-Cl, 4-Br, 4-1, 4-NO,, 4-CN,
2-Me, 2-Cl, 3-Me, 3-F, 3|,
3-OMe, 3-Cl, 3-Br

THF, reflux, under air

R'=3-Me-Ph, R?=R3=H
R' =1-napthyl, R=R3=H
R'=CH,Ph,R2=R%=H
R'=CH,CH,Ph, R?=R%=H
R' = C(CH3),Ph, R? =

R!=H, R? ="Bu, R? = OEt
R!=H, R?2=Ph, R = OEt
R!=Me, RZ=R3=0OMe
R!=Me, R?=R3 = OEt

O
[RhCI,Cp*]; (2 mol %)
AgOAc (2.1 equiv.) 0 R2
CH4CN, 60 °C, 20 h Z R
(57-92 %) 67 (E) “Rr3

R'=CH,0OH,R2=R3=H
R'=SiMe;, RZ=R3=H
R'=Ph,R2=H, R®=CH,Ph
R'=Ph,R?=H, R®=Me

R®=H R'=CO,Et,R?=H, R®=Me

R'=Ph,R2=Me, R®=H
R'=CO,Et,R?2=R%=H

Scheme 6 Scope of arenecarboxylic acids and allenes (synthesis of disubstituted phthalides).

Q 0
I, PPhs, H,O
RI— h OMe (3 equiv.) R1_1i A o
= > ! _—
AN CDCl3, 30 °C,
68 SiMes 17 h (74-91 %) 69

R' = Me, OMe, F, CI, CF,

Scheme 7 Hydroiodination-triggered
methylphthalides.

synthesis of 3-

3.1.7 NBS mediated free-radical bromination to generate 3-
substituted (+)-1(3H) isobenzofuranones. Li and co-workers”
have devised a four-step strategy for the synthesis of 3-
substituted phthalide. The condensation reaction of 3-ethox-
yphthalide 89 with diethylmalonate carbanion followed by
decarboxylation and hydrolysis gave 3-substituted phthalides 92
in 44% overall yield over four steps (Scheme 13). NBS mediated
free-radical bromination of phthalide 87 gives 88. The crude 88

This journal is © The Royal Society of Chemistry 2020

was treated with hot ethanol, then cooled to give 89 as white
solid.

3.1.8 Photochemical catalyzed synthesis of 3-substituted
(£)-1(3H)-isobenzofuranones. ~ Tatsugi and co-workers™
demonstrated that the degassed alcoholic solution of indane-
1,2,3-trione 93 could be photochemically irradiated to afford
3-alkoxycarbonylphthalides 94 as the major product. During the
process, 3-alkoxyphthalide 95 was also obtained in minor
quantities (Scheme 14).

The initial step of the photochemical process could be the
cleavage of a C-O bond to form semidione radical 93a, which
under rearrangement forms 93b. Thus, 93b can follow two
pathways: (i) it can form the compound 93¢, which on reaction
with ROH forms 93d followed by protonation to give 3-alkox-
ycarbonylphthalides 94 or (ii) 93f rearranges to 93g followed by
decarbonylation gave phthalides carbene which on quenching
with ROH gave 3-alkoxyphthalide 95 (Scheme 15).
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I, PPhg, H,O
R1—: o OMe (3 equiv.) R1— : e
A CDCl3, 30 °C,
0 R 17 h (64-81 %) n R
R' = Me, OMe R2 = -H, -(CH,)3Cl, -(CH,)3l, (CH,);CN

-(CHy)3Ph, -(CH;);COOMe

Scheme 8 Synthesis of 3-substituted phthalides triggered via hydroiodination.

O O
R? J\/U\OH 0
2 —
CHO R ‘;3Aryl N
R1—:\/i[ » R/ 0
A NcooH pl-anisicliirées (028 n318| %) = R2
R' = H. OMe gyceroe,5 859 min
72 (65-85 %) 74 O
Scheme 9 Synthesis of 3-substituted phthalides using B-keto acids as a nucleophile center.
_ o _
Q 0 K,COs (1 equiv.) OMe
OMe Ph\(/ N o, _ CHaCN/DCM OH
+ >
H Ph BuO N= Ph
(@] O Ph
76 77 L [73] _
0 HCI, H,0, THF 0
'BUO ’(‘>\Ph BuO— e
© ph o
dr = 67:33 (80 %) (80 %)
79 80

Scheme 10 Synthesis of a.-amino ester 3-substituted phthalide.

3.2 Recent methodologies to synthesize enantiomerically
pure 3-substituted 1(3H)-isobenzofuranes

In this section, we have described recent approaches to
synthesize enantiomerically pure 3-substituted 1(3H)-
isobenzofuranes.

3.2.1 Synthesis of 3-substituted 1(3H)-isobenzofuranones
using diverse organozinc reagents. Huang and co-workers”™
demonstrated a new protocol for the synthesis of chiral 3-
substituted phthalides 99 by carrying out catalytic asymmetric
1,2-addition of methyl 2-formylbenzoates 98, followed by lac-
tonization, using diverse organozinc reagents (Scheme 16).

12638 | RSC Adv, 2020, 10, 12626-12652

They developed a chiral phosphoramide ligand-Zn(i1) complex,
which was synthesized from (1R,2R)-diphenylethyelendiamine
100 as catalyst. The efficiency of the process is highlighted by
the fact that the enantiopure phthalide 99 was obtained in
excellent yields (~95%) and good enantioselectivities (~89%).

Carlos and co-workers®® carried out the asymmetric catalytic
synthesis of 3-aryl phthalides 102 via sequential asymmetric
arylation-lactonization pathway. In the presence of a chiral
amino naphthol ligand, the reactive arylating agents, generated
by boron-zinc exchange, were reacted with 2-formylbenzoates
101, which was followed by lactonization to yield the corre-
sponding chiral phthalides 102 in excellent yields and

This journal is © The Royal Society of Chemistry 2020
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CF,

Fig. 5 Bifunctional phase-transfer catalyst.

enantioselectivities (~87-90% ee) (Scheme 17). The place of the
substituent at the aryl ring was found to have a slight effect on
the efficiency of the arylation reactions. The asymmetric addi-
tion of an aryl zinc reagent to the 2-formylbenzoate is the
enantio determining step.

3.2.2 Synthesis of chiral 3-substituted phthalides via
palladium-catalyzed Heck-Matsuda arylation of arenediazo-
nium salt. Kattela and co-workers® have described an enan-
tioselective synthesis of chiral 3-substituted phthalides via
palladium-catalyzed Heck-Matsuda arylation of arenediazo-
nium salt 104 with 2,3-dihydrofurans 105, followed by NaBH,
mediated reduction and lactonization pathway to give chiral
phthalides 107 in overall yields and excellent enantioselectiv-
ities (up to 98% ee). The strategy was further extended for the
synthesis of medicinally important chiral lactones, amines, and
olefins (Scheme 18).

R 82 (20 mol %)
R2 CHO EtsN (40 mol %)
B ——— e
R3 = R4 toluene, air

80 °C (52-92 %)
81

View Article Online

RSC Advances

3.2.3 Novel derived metal complex ligand as a catalyst for
the synthesis of chiral 3-substituted phthalides. Ge and co-
workers®* have developed the first asymmetric hydrogenation of
3-alkyl/arylidenephthalides 108 to furnish an extensive range of
3-substituted chiral phthalides 109 in admirable enantiomeric
excesses (~98% ee). The hydrogenation process was catalyzed
by a novel derived Ir' complex of a spiro-{4,4]-1,6-nonadiene-
based phosphine-oxazoline ligand (SpinPHOX) 110 as a cata-
lyst. The effectiveness of the protocol further extended for the
asymmetric synthesis of enantioselective drugs as well as the
bioactive natural products (Scheme 19).

Zhang and co-workers** demonstrated a novel route for the
reductive cyclization of 2-acylarylcarboxylate 111 via asymmetric
transfer hydrogenation. The reaction was promoted by a new
Ru(u)-diamine complex 113, which catalyzes asymmetric transfer
hydrogenation and in situ lactonization to provide enantiomeri-
cally pure 3-substituted phthalides 112 (Scheme 20).

The observed excellent enantioselectivity can be explained by
a preferable transition state of the Ru-TsDBuPEN complex and
ethyl 2-acylarylcarboxylate substrates, which determines the
chirality. Hydrogen bonding with the neighboring ester func-
tion group of the 2-acylarylcarboxylate substrate might also be
accountable for the observed selectivity (Fig. 6).

Kumbhar and co-workers®* synthesized bipyridyl ligands.
These chiral ligands were applied in the synthesis of chiral
phthalides. The reaction sequence involved chromium-
catalyzed enantioselective Nozaki-Hiyama-Kishi allylation of

R1
&
0] S}
Cl
4
83 R 82

R'=R2=R3=H,R*=CO,Et !
R'=R2=R3=H, R*=CO,Me !
R'=R2=R3=H,R*=CO,"Bu !
R'=R?=R%®=H,R*=CO,/Bu :
R'=R?=R®=H, R*= CONMe;
R'=R?=R3=H,R*=CN .
R'=R?=R3=H,R*=COMe
R'=R?=R3=H,R*=COEt !

R'=R?2=R3®=H, R*=COPh
R'=R2=R3=H, R* = PO(OEt),
R'=R?=H, R3=Me, R* = CO,Et
R'=H, R?=OMe, R® = H, R* = CO,Et
R'=H, R2=OMe, R®=H, R* = CO,/Bu
R"=H, R2= OMe, R® = OMe, R* = CO,Et
R"=0OMe, R?=H, R®= H, R* = CO,Me
R'=H, R2=Cl, R®=H, R* = CO,Et
R'=H, R?=F, R®=H, R* = CO,Et

Scheme 11 NHC-catalyzed domino oxidation/oxa-Michael addition of 2-alkenylbenzaldehydes.

O
O + @ >
H DCM,20°C, 3 h

84 85

Scheme 12 Synthesis of 3-indolyl-substituted phthalides.
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Scheme 13 Synthesis of 3-substituted phthalides.
0]
b o) . o
ROH COOR
R = Me, Et, Pr H y OR
93 94 95
R=Me 57 % 21%
R=Et 54% 12 %
R="Pr 35 % 5%

Scheme 14 Photochemical reactions of indane-1,2,3-trione.

substituted benzaldehydes 114, followed by lactonization gave
enantiopure phthalides 116 with an optimal ee of 99%. Chiral
Cr(un) complex developed using bipyridine alcohol and CrCls.
This utility of the protocol was further extended by accom-
plishing the synthesis of (S)-cytosporone E in three steps
(Scheme 21).

Lu and co-workers® established an extremely effective and
enantioselective approach towards the synthesis of bioactive 3-
substituted chiral phthalides 119. The protocol involved
ruthenium-catalyzed hydrogenation followed by lactonization
of 2-acylarylcarboxylates 117 to furnish 3-substituted chiral
phthalides. Different chiral phosphine ligands were employed
to obtain good enantioselectivity, the best among them was (S)-
SunPhos 118, which helped in the induction of enantiose-
lectivity >99% ee (Scheme 22).

3.2.4 Chiral bifunctional cinchonine as an organocatalyst
for the synthesis of chiral 3-substituted phthalides. Youn and
co-workers®*® developed an asymmetric domino oxidation/oxa-
Michael addition reaction wherein an N-heterocyclic carbene
(NHC) 121 and a chiral bifunctional cinchonine organocatalyst
122 work cooperativity to furnish the chiral 3-substituted
phthalides 123. The use of a bifunctional cinchonine catalyst
helps in achieving excellent enantioselectivity, where it func-
tions both as a base (quinuclidine) and hydrogen bond donor,
thus activating nucleophile and electrophile, respectively.
Cinchonine works both as a Brgnsted base for the generation of

12640 | RSC Adv, 2020, 10, 12626-12652

NHC as well as a bifunctional catalyst for asymmetric induction
(Scheme 23).

3.2.5 Synthesis of chiral 3-substituted phthalides via
a nucleophilic addition reaction. Zhang and co-workers®
described a two-step asymmetric route for 3-substituted
phthalides 130. The chiral amide 126 was subjected to the
treatment with isopropyl magnesium chloride followed by
reaction with various aldehydes 128 (Scheme 24). Intra-
molecular cyclization of the substrate allowed the synthesis of 3-
substituted phthalides 130 (~88% ee).

Davis and co-workers®® developed an enantioselective
approach towards the synthesis of 3-substituted phthalides by
the addition of phthalide anions 133 to chiral-sulfinimines (N-
sulfinyl imines) 132. The present approach was extended for the
synthesis of chiral 3-substituted isoquinolones and 3-
substituted 4-hydroxy isoquinolines, respectively (Scheme 25).

3.2.6 Tandem aldol-lactonization reactions for the
synthesis of chiral 3-substituted phthalides. Ray and co-
workers® carried out chiral Brensted acid 140 catalyzed,
tandem mannich-lactamization, and aldol-lactonization reac-
tions to achieve the enantioselective synthesis of phthalides 143
in good to excellent enantioselectivities (Scheme 26). The
developed protocol has broad substrate scope, and a variety of
substituted aromatic aldehydes and aromatic amine were used.

This journal is © The Royal Society of Chemistry 2020
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100 (20 mol%) X" R=4-Cl, 82% yield (78% ee)
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Scheme 16 Asymmetric 1,2-addition/lactonization tandem reaction of methyl 2-formylbenzoate.

4. Application of 3-substituted 1(3H)_ substituted 1(3H)-isobenzofuranones for the construction of

isobenzofuranones for the

construction of crucial molecular

architecture

As discussed in Table 1, we can state that phthalide moiety is
present in various biologically active natural products. In this
section, we aim to provide some of the examples of 3-

This journal is © The Royal Society of Chemistry 2020

important molecular architecture.

4.1 Annulation of stabilized phthalide anions with Michael
acceptors

Annulation with stabilized phthalide anions along with Michael
acceptors is a powerful and convenient tool for obtaining the
quinoid natural products. Many natural products consist of
a standard quinone unit. The exciting structures and vital

RSC Adv, 2020, 10, 12626-12652 | 12641
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Scheme 17 Asymmetric arylation—lactonization sequence.
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Scheme 18 Heck—Matsuda arylation of dihydrofurans.
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Scheme 19 Asymmetric hydrogenation of the 3-alkyl/arylidenephthalides.
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R = Ph, R" = 5-Br; 93% yield (99% ee)

R = Ph, R" = 4,5-Cl,; 98% yield (98% ee)

R = Ph, R" = 4,5-CaHy; 97% vield (98% ee)

R =R"=H; 97% yield (98% ee)

R = Me, R" = H; 95% vyield (98% ee)

R = CICH,(CH,),, R" = H; 95% yield (99% ee)
R =Ph, R" = H; 96% yield (99% ee)

R = 4-CICgH,4, R = H; 98% yield (99% ee)

R = 4-MeCgH,, R' = H; 93% yield (99% ee)

R = 4-MeOCgH,4, R' = H; 96% yield (99% ee)
R = 4-MeSCgH,4, R' = H; 99% yield (99% ee)
R = 4-CF3CgH,, R' = H; 96% yield (99% ee)

Scheme 20 Asymmetric synthesis of 3-substituted phthalides by ruthenium-catalyzed transfer hydrogenation.
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Fig. 6 Proposed transition state.

biological activities® of these natural products have provided an
influential forum for organic chemists to explore this area of
research. The general protocol for this reaction was discovered
in the late 1970s simultaneously by Hauser®* and Kraus.®

The phthalide annulation involves the deprotonation of
a stabilized phthalides 144 by a strong base and in situ capture of
anion by a suitable Michael acceptor 145 followed by Dieckmann-
like condensation to afford a bicyclic compound 148 (Scheme

View Article Online

RSC Advances

27). Compound 148 undergoes mild oxidation to form biphenol
derivatives 149. This methodology presents an elegant way to
synthetic naphthol derivatives via phthalide chemistry.

Chaturvedi and co-workers® developed a novel route to
utilize unsaturated phosphonates for annulation reaction as
Hauser acceptors. Good yields of phosphorylated 1,4-dihydrox-
ynaphthalenes 153 are obtained, which on further oxidation
results in their corresponding 1,4-naphthoquinones 154. The
reaction is successful in providing an efficient, straightforward,
and powerful approach for synthesizing disubstituted
naphthalene-1,4-diols 153. Naphtha-1,4-diones 154 consist of
avarious (hetero) aryl groups positioned at 3 and a phosphonate
group positioned at 2 (Scheme 28).

4.1.1 Metal-free catalytic annulation to develop enantior-
iched highly functionalized dihydronaphthoquinones. A metal-
free catalytic annulation is developed by Zhuang and co-
workers,* which involves Lewis base-mediated asymmetric allylic
alkylation and a novel asymmetric intramolecular acyl cyanation
of alkenes. This route provides a novel method to obtain enan-
tioriched highly functionalized dihydronaphthoquinones 160
and chiral 3,3-disubstituted phthalides 158 having quaternary

4 R*
. R* O CrCls (20 mol%), Mn, Ar = 0 “
0,
OEt THF, 115 (30 mol%), 4A MS o | N SN
R2 H Et;N (60 mol%), allylbromide R2 N Ph T NOH
R' O TMSCI, rtto 0 °C, 48 h, TBAF; R! N . Ph
114 p-TSOH 116 Ligand (115)

R'=H, R?= OCHj, R®= H, R* =OCHj3; 87% yield (97% ee)
R'=H, R?= OCHj, R®= OCHj3, R* =H; 85% yield (94% ee)
R'= OCH3, R?= OCHj, R3= OCHj, R* =H: 89% yield (99% ee)
R'=H, R?= H, R®= H, R* =H; 86% yield (96% ee)

R'=H, R?= H, R3= OCHj, R* =H: 90% yield (97% ee)

R'=H, R?= H, R®= N(CH3),, R* =H; 70% yield (96% ee)
R'=H, R?= Br, R3%= N(CHs),, R* =H; 90% yield (98% ee)

Scheme 21 Enantioselective Nozaki—Hiyama—Kishi allylation.

0}

o
i OR! [RuCl(benzene)(S)-SunPhos]CI 118 =~
n\ 2 ,\ o)
NS R H, R -

2

117 (0] 119 R
(75-99 %)
>99 % ee

3 C
o PPh,
0 PPh,
X1

(S)-SunPhos (118)

R' = Me, R? = Me; 95% yield (99.6% ee)
R = Et, R? = Me; 98% yield (99.6% ee)
R' =Pr, R? = Me; 98% yield (99.2% ee)
R' = H, R? = Me; 92% yield (99.4% ee)
R' = Me, R? = Et; 94% yield (99.6% ee)
R' = Me, R2 = "Pr; 94% yield (99.2% ee)
R' = Me, R2 = "Bu; 96% yield (99.4% ee)
R' = Me, R? = fBu; 58% yield (99.6% ee)

R' = Me, R2 = CgHs5; 95% yield (98.2% ee)

R" = H, R? = C4Hs; 95% yield (96.2% ee)

R' = Me, R2 = 0-CH;CgH,; 75% yield (99.2% ee)
R" = Me, R? = p-CH3CgH.; 87% yield (33.8% ee)
R' = Me, R2 = 0-CF3CqHa; 98% yield (99.4% ee)

i Methyl 2-acetyl-5-methylbenzoate; 98% yield (99.0% ee)

Methyl 2-acetyl-5-chlorolbenzoate; 98% yield (99.4% ee)
Methyl 3-acetyl-2-napthoate; 98% yield (99.4% ee)

Scheme 22 Asymmetric hydrogenation of 2-acylarylcarboxylate.

This journal is © The Royal Society of Chemistry 2020
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R’ 121 (20 mol %) R" o N NP
R2 CHO 122 (40mol %)  R? &z e©
—_—
|
R? = R4 toluene (0.05 M) R3 o c
) o o o 3
120 air, 80 °C (55-90 %) 123 -

er upto 92:8 Cinchonine 122

R'=R2=R3 =H, R* = CO,Et; 72% vield (96% !
R R - RS- Ri= O OZMe ; Oz/y"?el d( ( 952/‘3:;) IR"=R2=R3=H, R* = PO(OEt),; 90% yield (94% ee)
2 oy ° 1=R2=H, R3 = Me, R* = CO,Et; 75% yield (95.5% ee)

R'=R?2=R%®=H, R* = CO,"Bu; 71% vield (95.5% ee) |
' R"=H, R? = OMe, R® = H, R* = CO,'Bu; 70% yiel 9
R'=R2=R3=H, R* =CO,Bu; 71% yield (96.5% ee) | OMe, CO, Bu; 70% yield (95.5% ee)

'R'"=H, R? = OMe, R® = OMe, R* = Et; 63% yield (94.59
R1=R?=R%=H,R"=CN; 55% yield (90.5% ee) |y _ OMe, RZO = : R3 = SM: RY= ggzmte6734A;/y|?e(|jd(s(;965°//0e§
R'=R2=R3=H, R*= COMe; 72% yield (75.5% ee) ! 2 oy ?

Scheme 23 Asymmetric oxidative cyclization of 2-alkenylbenzaldehydes.

(0]

N PrMmgClI
c_H 125 125 (or 'PrMgCl then ZnCly)
| EtsN, DCM, 0°C

-70°C MgCl
124 127

128 O R=Ph; 70% yield (88% ee)
RCHO, then H30% p-TsOH, toluene, reflux R =2-Cl-CgHy; 67% yield (82% ee)
O R =4-Br-CgHy; 67% yield (88% ee)
R = 2-Me-CgHy4; 63% yield (86% ee)

L R = 4-Me-CgHy,; 64% vyield (88% ee)
129 130 R = 4-CI-CgH,; 65% vield (88% ee)
R = "Pr; 65% yield (80% ee)
R =Pr; 62% yield (77% ee)
R ='Bu; 60% yield (66% ee)

Scheme 24 Direct asymmetric synthesis of 3-substituted phthalides.

? o
N'Pr, (1) s-BuLilTMEDA NPr,  TsOH
] OH 110°C oh 0
MeO (2 CH0(9)  mMeo 110°C,9h 0
131 (72%) 132 (74 %) 133

(1) KHMDS, THF/Et,0 (2:1)

.. H _p-Tolyl -Tolyl
O » - MeO ~a-P-10ly
( ) /S\ /)\ ’I’.' "/‘.
p-Tolyl N™ "Ph
(S)
132 135 136

Scheme 25 Reaction of phthalide anion with enantiopure sulfinimines.

12644 | RSC Adv, 2020, 10, 12626-12652 This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra00701c

Open Access Article. Published on 27 March 2020. Downloaded on 10/23/2025 5:33:00 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances

Review
COOMe N2 NH, 140 (5 mol%), DCM
cr e ot R
CHO OEt MeO 96% (95% ee)
137 138 139

PtO,, H, (ballon)
EtOAc, -30 Oc

NalQ4 (5 equiv.)
EtOAc/H,O (2:1)
0% tort

68% (71% ee)

Scheme 26 Tandem aldol-lactonization reactions.

)
6 T 7a1 2
20 . | R! Base
S 3a \3
4 X R?
144 145
X = CN, SPh, SO,Ph, R' = alkyl, alkoxy
PO(OMe),, COOMe  R? = alkyl, aryl

O O
R1
RZ
o
148

70% (71% ee)

(O . O@ (0]
CLp D — QL
1 R2
146 X R? R 147(x

OH O
L
—_—
R2
OH

149

Scheme 27 Annulation of stabilized phthalide anions with Michael acceptors.

carbon centers (Schemes 29 and 30). The reaction involves the
use of chiral bifunctional thiourea organocatalyst.

4.1.2 Hauser-Kraus annulation to give naphthoquinol-
carbohydrate hybrids. Chakraborty and co-workers® described
a regioselective approach to naphthoquinone/naphthoquinol-
carbohydrate hybrids using 3-cyano phthalides 161 as one of the
essential precursors. In this approach, anionic annulation of 3-
cyano phthalides 161 takes place with an acrylate appended sugar
moiety 162 (Scheme 31).

4.1.3 Total synthesis of uncialamycin via Hauser-Kraus
annulation. Nicolaou and co-workers® described the total
synthesis of uncialamycin, and a Hauser-Kraus annulation was
employed as one of the critical reactions for the synthesis of
uncialamycin core (Scheme 32).

4.1.4 Total synthesis of the griseusin B scaffold (bioactive
natural product) via Hauser-Kraus annulation. Naysmith and
co-workers?” developed a convergent route for the synthesis of
the griseusin B scaffold (bioactive natural product). The main
steps of the synthetic journey include the highly effective one-
pot Hauser-Kraus annulation followed by methylation and

This journal is © The Royal Society of Chemistry 2020

double deprotection-spirocyclization sequence that directly
results in the target tetracyclic ring system (Scheme 33).

4.2 Total synthesis of (—)-o-noscapine

(—)-a-Noscapine (narcotine), which was initially isolated from
Papaver somniferum L.,°® is a non-addictive anti-tussive agent
with little to no significant toxicity.” (—)-a-noscapine also
displays other probable scientific utilities*® for the treatment of
life-threating diseases. Naturally occurring noscapine consists
of two adjacent chiral centers: one at C-5' position of tetrahy-
droisoquinoline ring and another at the C-3 position of phtha-
lide framework.

Xu and co-workers' commenced with the synthesis of
meconine-3-carboxylic acid 173, which could be synthesized
from pure 2,3-dimethoxybenzoic acid 171 and glyoxylic acid 172
in the presence of a conc. H,SO4. While the amine functionality
174 could be easily prepared from gallic acid over a nine-step
sequence. The amide bond (C5-C3 bond formation) was
formed from the acyl chloride derivative of 173 and free amine
174 to give compound 175 in 89% yield (Scheme 34). The next
step of the sequence was Bischler-Napieralski reaction in the

101
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AT po(OMe),
151
o) OR OH : o
~ Ar PO(OMe), - PO(OMe), NBS (1.1 equiv.) PO(OMe),
R 0 152 _ R THFEH,0 (3:1) g
- LiHMDS, THF & Ar RT, 20-30 min Ar
Bt 78 °C, 60-90 min OH (upto 94 %) 0
Bt = Benzotriaole 0
150 {Upto. 46 %) 153 154
B |-
L AN po(oMe), | Ar—=—PO(OMe),
R=H, Ar=Ph 56 % . 52 %
R =H, Ar = 4-NO,-CgH, ! 78 % : 75 %
R=H, Ar=4-F-CgHs ! 68% 58 %
R =H, Ar=4-Br-CgH,4 61 % I 58 %
R =H, Ar=4-CI-CgH,4 ; 52 % ! 50 %
R=H Ar=3-FCgH, 69 % ; 67 %
R=H, Ar=3-Br-CgH; | 67 % : 67 %
R=H, Ar=2-Br-CgH, ' 56 % i 56 %
R =H, Ar = 3-OMe-CgH, ! 47 % | 46 %
R =H, Ar = 1-napthyl : 52 % ! 51 %
R =H, Ar = 2-thiophene ! 45% 43 %
R=H,Ar=4-FCgH, | 45 % : 43 %
R = 6-Br, Ar = 4-Br-CgH, ! 42 % i 39 %
R =6-Br, Ar = 2-Br-CgH, ! 43 % 5 42 %
R =7-Br, Ar=Ph i 42 % H 38 %
R=Ph, Ar=4-FCgH, ! 47 % 5 47 %
R=Ph, Ar=3-Br-CgH, 41 % | 39 %
Scheme 28 Hauser—Kraus annulation of 3-substituted phthalides.
oTBS R =H, R! =Et, R2 = H; 99% yield (92 % ee)
/H/\Pth R =4-Me, R! = Et, R? = H; 92% yield (88% e¢)
HN.___S R =4-OMe, R! = Et, R? = H; 99% yield (89% ee)
HN CFs R =3-Me, R! = Et, R? = H; 92% yield (93% ee)
\©/ R =2-OMe, R! = Et, R? = H; 91% yield (90% ce)
o o8 157 I R =3,4-Me, R! = Et, R = H; 97% yield (95% ce)
S °°R1 (10 mol%) R i 4,5-01\1/1ei, R!= 2Ei R?=H; 9‘9% yield (92% ee)
_ R toluene, 1-48 h R =4-F,R"' = Et, R = H; 99% yield (96% ee)
EN R =4-Cl, R! = Et, R? = H; 99% yield (96% cc)
155 156 R =4-Br, R! = Et, R? = H; 99% yield (96% ee)
R =3-F, R' = Et, R? = H; 99% yield (96% e¢)
R =H, R! =Me, RZ = H; 98% yield (90% e¢)
R =H, R' =Butyl, R? = H; 97% yield (81% ece)

Scheme 29 Lewis base-catalyzed asymmetric allylic alkylation of 3-cyano phthalides.

presence of POCI;. The cyclization took place efficiently to give
imine, which was further reduced to afford tetrahy-
droisoquinoline 176. After extensive optimization of NaBH,/
NaBH;CN mediated reduction, it was concluded that low reac-
tion temperature was critical for the high diastereoselectivity
and moderately high yields. Subsequently, Eschweiler-Clarke
reaction was used to obtain an N-methylated compound, 177 in
75% yield. RANEY® Ni was used for hydrogenation of 177 to

12646 | RSC Adv, 2020, 10, 12626-12652

produce target compound 8. Further recrystallization of the
crude sample gave pure (+)-o-noscapine 8.

4.3 Total synthesis of olaparib

Olaparib is an FDA approved targeted therapy for the treatment of
cancer. It is a PARP inhibitor, inhibiting poly ADP ribose poly-
merase (PARP), an enzyme that plays a role in DNA repair. It targets

This journal is © The Royal Society of Chemistry 2020
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Scheme 30 Annulation reaction of 3-substituted phthalides.
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(1) Li'OBu, THF
-60 °C to RT
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R =H, R?=H; 71% yield (95% ee)

R =4-Me, R2=H; 67% yield (97% ee)
R =4-OMe, R? = H; 55% yield (99% ee)
R = 3-Me, R? = H; 52% yield (86% ee)
R = 3,4-Me, R? = H; 64% yield (95% ee)
R =4,5-OMe, R? = H; 55% yield (59% ee)
R =2-OMe, R? = H; 52% yield (52% ee)
R = 4-F, R? = H; 48% yield (95% ee)

R =4-Cl, R? = H; 47% yield (86% ee)

R = 4-Br, R? = H; 48% yield (83% ee)

R = 3-F, R? = H; 48% yield (83% ee)

(2) M62804, K2CO3
acetone, reflux, 2 h

85 %

Scheme 31 Hauser—Kraus annulation to give naphthoquinol-carbohydrate hybrids.

167

Scheme 32 Total synthesis of uncialamycin.

3HF.Et;N
R ———

cancer cells in people with hereditary BRCA1 or BRCA2 mutations,

which include some ovarian, breast, and prostate cancers.'”

Lou and co-workers'® demonstrated an effective protocol for
the synthesis of olaparib. The synthesis initiated by 3-phosphono-
phthalide 178, which on further reaction with aromatic aldehyde
179 gave 180, which further on reaction with hydrazine hydrate

This journal is © The Royal Society of Chemistry 2020

OTES  pd(PPhy),
OH ———»

O OH
Uncialamycin

underwent ring expansion to give 181. 181 on amide coupling
with 182 gave the desired drug, olaparib (Scheme 35).

4.4 Synthesis of cytogenin (a bioactive natural product)

Gadakh'* and co-workers developed a route for the synthesis of
3-carbethoxy-isocoumarins 184. The reagent system used in this

RSC Adv, 2020, 10, 12626-12652 | 12647
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Scheme 33 Total synthesis of the griseusin B scaffold.
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(i) 37% HCHO, HCOOH, 100 °C
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Griseusin B

(demonstrates variety of
antibacterial and anticancer
properties)

(i) SOCl,, reflux <
————— > 0

175 0

(ii) HCI, EtOAc (iii) recrystallization from EtOH
(52%) (75%)
g
(i) Ho, Raney Ni-W2, Et;N, EtOH 2< O Br
reflux O
(ii) recrystallization from EtOH MeO <O NH, HCI
(82%) 5
[ OMe
OMe 174

(¥)-a-noscapine 8

Scheme 34 Total synthesis of (+)-a-noscapine.
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Scheme 35 Synthesis of FDA approved the anti-cancer drug olaparib.
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R'=R2=R3=H (94 %)
R'" o DEAD (10 mol %) R" O R'=H, R2 = OMe, R3 = H (96 %)
R2 PPhs (1.5 equiv.) R? o R'=R2=0Me, R®=H (92 %)
) R' = OMe, R? = H, R® = OMe (92 %)
R3 6M T(E;H;L'"ivd)ecane R3 Z>R4  R'=R?=R3=OMe (90 %)
R* ' 4 R' = H, R? = OBn, R3 = OMe (92 %)
HO THF, 25 °C, 052 h R" = COEt
183 : ' 184 R'=H,R?=F,R®=H (95 %)
R'=H, RZ=NO,, R®=H (90 %)
Scheme 36 Intramolecular ring expansion of 3-substituted phthalides to isocoumarins.

OMe O OMe

_ NaBH,

MeOH:DCM (1:1)

COEt  goc 2 h (87 %)

MeO

186

Scheme 37 Synthesis of cytogenin'.

InBrs
(5 mol%)
H,O
(0.2 mol/L)
e
80 °C
5-48 h

Scheme 38

methodology is DEAD/PPh;/TBHP through 1,2-shift intra-
molecular ring expansion, or we can say that the simple elimi-
nation is dependent on the various functional groups present
on 3-substituted phthalides (Scheme 36).

The methodology is also used to synthesize cytogenin (a
bioactive natural product) (Scheme 37).

4.5 InBr;-catalyzed Friedel-Crafts reaction on 3-indolyl-
substituted phthalides to develop unsymmetrical bis(indolyl)
methanes (BIMs)

Lin and co-workers'® developed a convenient, efficient, and
novel synthetic route for synthesizing the unsymmetrical
bis(indolyl)methanes (BIMs) 189 via InBrs-catalyzed Friedel-
Crafts reaction by reacting indoles 188 with 3-indolyl-
substituted phthalides 187 in water to obtain 189 in excellent
yields (Scheme 38). These BIMs compounds present have
excellent anti-Alzheimer's disease activity.

5. Conclusions

In the past decade, there has been considerable attention in the
area of phthalides (more specifically 3-substituted phthalides)
due to the development of various phthalides-based drugs. This

This journal is © The Royal Society of Chemistry 2020

(@) OH O
(o) BBr3, DCM 0
ANOH J5°C,1h (76 %) meo Z~\OH
Cytogenin
R'=5-Me, R?=R3=H (91 %)
R'=5-OMe, R?=R3=H (98 %)

R"=5-0Bn, R =R3=H (92 %)

R'=5-Br, RZ=R3=H (96 %)

R'=5-Cl, R2=R3=H (94 %)

R'=5-F, R®2=R%®=H (90 %)

R'=6-F, R2=R3=H (91 %)

R"=6-NO,, R2=R3=H (87 %)

R'=H, R? =H, R® = 7-NO, (80 %)

R' = 5-OMe, R? = 3,4-(OMe),, R® = H (96 %)
R"=5-Me, R? = 3,4-(OCH,0),, R® = H (72 %)
R"=5-OMe, R2=5-Br, R® = H (70 %)

InBrz catalyzed Friedel-Crafts reaction between indole and 3-indolyl-substituted phthalides.

has led to the development of elegant research methodologies
with diverse applications in academic and industrial laborato-
ries on micro- and macroscale operations. In light of the
continued research in the area of 3-substituted phthalides, we
have made an effort to present a critical review on the chemistry
of 3-substituted phthalides. The chemistry of phthalides has
been reviewed, but an independent and detailed review on the
chemistry of 3-substituted phthalides is unavailable.

We have reviewed the isolation and biological activities of
various 3-substituted phthalides. We have presented pivotal
research methodologies for the synthesis of racemic and chiral
3-substituted phthalides. These newer approaches are essential
for the development of newer and elegant strategies for the
synthesis of phthalide-based or similar molecular architecture
with broader substrate scope and higher stereoselectivities.
Also, we have reviewed the application of 3-substituted phtha-
lides as a precursor for the synthesis of natural products and
their analogs. Through this review, we have provided enough
contextual information on the chemistry of 3-substituted
phthalides, which can inspire organic chemists to develop
methodologies for the synthesis of biologically and medicinally
important molecules.
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