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Introduction

The use of natural products as drug leads has resulted in great
demand for the synthetic community to develop effective strate-
gies for the single-step synthesis of rare complicated heterocycles.
Spiro-fused polycyclic pyrrolidine frameworks are the core skele-
tons of various architecturally complex molecules and natural
product-like compounds as potential drug candidates.® Accord-
ingly, direct access to spiro-fused polycyclic pyrrolidine derivatives
in the minimum number of steps is an easily expanded approach
for very quick optimization of their biological properties. Thus,
versatile synthetic strategies have been developed, e.g., [3 + 2]
cycloaddition,”> Pictet-Spengler,> Morita-Baylis-Hillman,* and
Michael/Mannich [3 + 2] cycloaddition reactions.® The Lewis acid-
catalyzed cascade annulation of heteroarenes has gained consid-
erable attention for the development of fused pyrrolidines
based on the tethered built-in nucleophilicity (ring-opening of
aziridine) on the C-3 position and electrophilicity (intramolecular
annulation) on the C-2 position of heteroarenes, thereby
providing considerable synthetic benefits from the viewpoint of
easy availability and accessibility to react with distinct reaction
partners.°

Indole and benzofuran are the most important class of het-
eroarenes, exhibiting a broad spectrum of biological activities
such as anti-tumor, analgesic, anti-microbial, anti-malarial,
anti-diabetic, anti-tubercular, anti-HIV, and anti-oxidant
activity, and thus are considered important templates for drug
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spiro-fused polycyclic pyrrolidines in a one-pot and sustainable manner with good yields and high
diastereoselectivity. In addition, the structure of 3d was confirmed by single X-ray crystallography analysis.

discovery.” Simultaneously, (hetero)arene-annulated tricyclic
pyrrolidine frameworks are frequently encountered in
numerous natural products and biologically significant mole-
cules such as physostigmine and physovenine as acetyl
cholinesterase inhibitors, and (—)-flustramine B as an anti-
cancer agent (Fig. 1).* In addition, spiro-fused pyrrolidine
functionalization at the C-3 position of oxindole has occupied
a remarkable position in synthetic chemistry. A large group of
diverse skeletons of spiro-fused pyrrolidines exists in natural
products such as spirotryprostatine A and B, elacomine, and
horsifiline, with various types of bioactivities as anti-tumor,
anti-microbial and anti-malarial agents.®

Although the abovementioned reactions have made a signif-
icant contribution, the domino ring-opening and dearomative
cyclization of activated aziridine with heteroarenes in the
presence of a Lewis acid is fascinating. Owing to the rapid
access to stereoselective heteroarene-annulated polycyclic
derivatives and advances in the synthesis of natural products,
this specific transformation has attracted attention from
synthetic chemists.' In 2014, Wang and co-workers reported an
asymmetric [3 + 2] cycloaddition for the construction of pyrro-
loindolines mediated by the in situ generation of a magnesium
catalyst."* Subsequently, in 2015, Chai and co-workers estab-
lished a copper-catalyzed [3 + 2] annulation of indoles with 2-
arylaziridines, which could concisely furnish pyrroloindolines
bearing multiple contiguous stereogenic centers with excellent
regio-, diastereo- and enantioselectivity in one synthetic oper-
ation (Scheme 1a)."> Recently, the catalyst-free “on-water” regio-
and stereospecific ring-opening of spiro-aziridine oxindole was
described by Hajra and co-workers to give enantiopure
unsymmetrical 3,3'-bisindoles (Scheme 1b)."*

Based on these established methods, in continuation of our
research interest in the synthesis of spiro-oxindole derivatives,**
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Fig.1 (a) Spiro-oxindole-fused mono and tricyclic pyrrolidine alkaloid
natural products and (b) heteroarene-fused tricyclic pyrrolidine natural
products.
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Scheme 1 Lewis acid-catalyzed ring-opening of spiro-oxindole azir-
idines with heteroarenes.

herein, we report the Lewis acid-catalyzed domino ring-opening
(Friedel-Craft-type C-C bond formation) of activated spiro-
aziridine oxindole with heteroarenes followed by intra-
molecular C-2 annulation. Although the ring-opening version of
this reaction was promoted by copper and scandium triflates
with moderate yields, C2 annulation was promoted using BF;-
-OEt, as a Lewis acid with good control of the diaster-
eoselectivity. Irrespective of C3 substitution on heteroarenes,
the reactions progressed smoothly with excellent regio- and
diastereoselectivity.
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Table 1 Optimization of the reaction conditions®

[eNgye]
Y
oY
%/ N
A\, Lewis acid HN | Q
o + —_— —
N N~ reaction
) H  conditions O o
N

1a 2a 3'a

Yield® (%)

Entry Catalyst (10 mol%) Solvent Temp. (°C) Time (h) 3'a 3a

1 Sc(OTf), CH,CN 25 4 46 0

2 Bi(OTf); CH,CN 25 12 25 0

3 Yb(OTf); CH;CN 25 10 Nr Nr
4 Cu(OTf), CH,CN 25 6 35 0

5 Sc(OTf); CH,Cl, 25 7 40 Trace
6 Sc(OTf), CH,Cl, 0 30min 0 0

7 Sc(OTf); CH;CN 80 30min 20 0

8 Sc(OTf); CH;CN 80 4 o4

9 Sc(OTf), CH,Cl, 40 4 30 0
10  BF;-OEt, CH,CN 25 3 0 35
11°  BF;-OEt, CH;CN 80 3 0  Trace
12 BF;-OEt, CH,Cl, 25 30min 0 45
13°  BF;-OFt, CH,Cl, 0 5min 0 82
14°  BF;-OEt, (20) CH,Cl, 0 5min 0 80

“ All reactions were performed with 1.0 mmol of 1a and 1.0 mmol of 2a
in (5 mL) of solvent in the presence of a Lewis acid catalyst (10 mol%) at
room temperature. ? Isolated yields. ¢ The reaction was performed at
0 °C. 9 TLC was not clear. ° The reaction was carried out at 80 °C. Nr:
no reaction.

Results and discussion

As illustrated in Table 1, the feasibility of the proposed domino
reaction was first evaluated between activated spiro-
aziridineoxindole 1a and indole 2a with Sc(OTf); as a catalyst;
however, the corresponding tetrahydropyrrolo[2,3-bJindole 3a
was not obtained, instead it gave 3,3'-bisindoles at room
temperature (entries 1 and 5, Table 1). Lewis acids such as
Bi(OTf);, Yb(OTf); and the less acidic Cu(OTf), also failed to
afford the desired product 3a (entries 2-4, Table 2). To check the
impact of Sc(OTf); on the intramolecular cyclization, the reac-
tion was performed for different reaction times at varying
temperature, but we were unsuccessful in obtaining the
preferred product 3a (entries 6-9, Table 2). We then investigated
the reaction by employing BF;-OEt, as a Lewis acid for different
reaction times at varying temperature (entries 10-14, Table 2).
Next, by lowering the temperature to 0 °C, the reaction pro-
ceeded smoothly to afford the corresponding product 3a with
good yield (82%) and enhanced diastereoselectivity (dr: 9 : 1)
(entry 9, Table 2). An increase in the catalyst loading up to
20 mol%, did not affect the reaction yield to a great extent.
Thus, the use of 10 mol% of BF;-OEt, in CH,Cl, at 0 °C (entry 9,
Table 1) was found to be the optimum reaction conditions for
this transformation. The strength of the Lewis acid critically
influenced the formation of 3'a and 3a. Co-ordination of the
Lewis acid on the nitrogen atom of the heteroarene was

This journal is © The Royal Society of Chemistry 2020
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Table 2 Lewis acid-catalyzed domino ring-opening and annulation
reaction of spiro-oxindole aziridines with indoles®

BF;.0Et,
B ————

CH,Cl,,0°C R!
5-10 min.

3g, 77%

3h, 78% 3i, 60%

“ Reactions were performed with 1.0 mmol of 1a and 1.0 mmol of 2a in
CH,Cl, (5 mL) in the presence of BF;-OEt, (10 mol%) at 0 °C for 5-
10 min.

promoted by BF;-OEt, because of its binding nature towards
the weak bases.

With the optimized reaction conditions in hand, we next
generalized the protocol with regard to different spiro-aziridine
oxindole derivatives and 3-methyl indole, and the correspond-
ing substituted tetrahydropyrrolo[2,3-b]indole products were
obtained in moderate to good yields (Table 2). Spiro-aziridines
la-e, derived from substituted isatins, were prepared accord-
ing to the previous literature methods.” The results showed
that both the electron-donating and electron-withdrawing
functional groups were well tolerated to give the desired prod-
ucts 3a-i. For example, the electron-neutral and donating
substituents (R', e.g. H and CHj; in 3a-c and 3f-h, respectively)
on the C5 position of oxindole reacted much faster with better
yields (77-89%) than that with electron with-drawing groups
(RY, e.g. Cl and Br in 3d, 3e and 3i) (60-65%). Subsequently, for
the spiro-aziridines bearing different substituents on the N-
atom of oxindole, that with benzyl groups were generally more
sluggish (3e, 62% yield) in the reaction than that with ethyl and
methyl groups, which is certainly due to bulky effect of benzyl
group. Then, we explored the reaction scope with regard to
different N-substituted indoles. Notably, the reaction of indole
with a free N-H group was more time-consuming compared to
that for the N-protected indole.

This journal is © The Royal Society of Chemistry 2020
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Then, the same set of reaction parameters were studied to
extend the scope of various substituted spiro-aziridine oxin-
doles with benzofurans, and the results are compiled in Table 3.
Under the optimized conditions, the transformation proceeded
more smoothly using benzofurans than indole with respect to
yield (5a-m, 55-89%) and diastereoselectivity. The reactions
furnished the desired tetrahydropyrrolo[2,3-b]benzofurans in
moderate to good yield and high diastereoselectivity with
different substituents at the C5- and N1- positions of spiro-
aziridine oxindoles 5a-i. However, electron-donating substitu-
ents (5¢ and 5k) at the C5-position of oxindole proved to be
more efficient in this transformation, proceeding with higher
yields (86% and 77%, respectively) than that with electron with-
drawing groups (5d-f, 5h, 5i and 5m, 79-55% yield). Particu-
larly, spiro-aziridine bearing a fluoro substituent at the C5-
position reacted very slowly, and even after a prolonged reac-
tion time resulted in a low conversion (5d, 59% yield). Inter-
estingly, the oxindole bearing an N-benzyl group was also
tolerable in the reaction to afford the corresponding cyclized
adducts in comparatively moderate yields (5g-i and 51, 79-68%)
with different electronic nature at the C5-position of oxindole.
Furthermore, C5-bromine-substituted benzofurans were tested,
and the stereochemical integrity was uniformly maintained
regardless of the substituent on the C5 and N1-positions of

Table 3 Lewis acid-catalyzed dearomative domino ring-opening and
annulation of spiro-oxindole aziridine with benzofurans®

R3

BF;.OEt,

CH,Cl,, 0 °C
5-10 min.

5i, 68%
O
Sm, 55%

¢ Reactions were performed with 1.0 mmol of 1a and 1.0 mmol of 4a in
CH,Cl, (5 mL) in the presence of BF;-OEt, (10 mol%) at 0 °C for 5-
10 min.
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Scheme 3 Plausible reaction mechanism.

oxindole, but the yields were altered depending on their elec-
tronic nature (5j-1, 81-68%). Unfortunately, C5-brominated N-
benzyl oxindole required a higher catalyst loading and longer
reaction time to react with Cé6-bromo benzofuran, and the
analogous cyclized product 5m was obtained in poor yield
(55%).

To determine the scalability of this method, a gram-scale
reaction was performed under the optimized conditions.
Satisfyingly, the reaction proceeded smoothly and afforded the
desired product 5a in 78% yield (Scheme 2).

The plausible mechanism for the synthesis of tetrahy-
dropyrrolo [2,3-b] indoles 3a-i, and tetrahydropyrrolo [2,3-b]
benzofurans 5a-m is depicted in Scheme 3. Specifically, highly
reactive aziridine intermediate A is generated via the delocal-
ization of a lone pair of electrons followed by the weakening of
the C-N bond of the spiro-aziridine. In this process, the

Fig. 2 Single X-ray crystal analysis of compound 3d.
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Fig. 3 Optimized B3LYP/6-31G** structures of the reaction; 3D
structures represented in cyan color.

nucleophilic centre (C3) of the heteroarene attacks intermediate
A via a Friedel-Crafts-type C-C bond formation, providing
iminium/carbonium species B. The co-ordination of the Lewis
acid on the heteroatom of the arene ring promotes the intra-
molecular nucleophilic attack of the nitrogen of the aziridine
ring leading, to the formation of the corresponding dearomative
cyclized spiro-fused tricyclic pyrrolidine 3 with the dissociation
of BF;- OEt,. The stereochemical outcome of one of the cyclized
compounds, 3d, was confirmed by single X-ray diffraction
analysis (Fig. 2).

In silico DFT calculations

For further insight into mechanistic investigations and defining
the different transition states, in silico density functional theory
(DFT) calculations were performed using Schrdodinger.'® Full
geometry optimizations were carried out using the B3LYP
method and 6-31G** as the basis set. Single point energy for all
the structures including reactants, probable transition states®
(favored and disfavored), intermediates and products were
calculated using Jaguar. According to the AG values, it was
observed that the activation barrier for the formation of the
favored and disfavored transition 351.38 and
428.38 keal mol ™" respectively. Fig. 3 clearly presents the energy
barrier for the formation of the acyclic intermediate and
product via two transition states (TS). Moreover, the energy
barrier through route A necessitates additional energy in
comparison to route B, which supports the formation of
a favourable TS in this reaction.

state is

This journal is © The Royal Society of Chemistry 2020
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Conclusion

In summary, we developed a Lewis acid-mediated domino ring-
opening with a concomitant annulation strategy for the
synthesis of biologically significant spiro-fused tricyclic pyrro-
lidines. In particular, a variety of heterocyclic nucleophiles was
investigated with different electronic nature on the aromatic
ring of oxindole, which offered a one-step protocol for the
synthesis spirocyclic scaffolds. The present protocol enables
facile access to a variety of spiro-oxindole-fused pyrrolidines
with distinct substitutions in a highly convergent and diaster-
eoselective manner.

Experimental section
General information

All reagents and solvents were obtained from commercial
suppliers and used without further purification. Analytical thin
layer chromatography (TLC) was performed on MERCK pre-
coated silica gel 60-F,54 (0.5 mm) aluminum plates. Visualiza-
tion of the spots on the TLC plates was achieved using UV light.
'H and *C NMR spectra were recorded on a Bruker 500 MHz
spectrometer using tetramethylsilane (TMS) as the internal
standard. Chemical shifts for "H and '*C are reported in parts
per million (ppm) downfield from tetramethylsilane. Spin
multiplicities are described as s (singlet), bs (broad singlet),
d (doublet), dd (double doublet), t (triplet), q (quartet), and m
(multiplet). Coupling constant (J) values are reported in hertz
(Hz). HRMS was performed using an Agilent QTOF 6540 series
mass spectrometer. Wherever required, column chromatog-
raphy was performed using silica gel (60-120 or 100-200) or
neutral alumina.

General procedure for the synthesis of dihydrospiro[benzo [e]
indole-1,3'-indolin]-2"-one (3a-i) and (5a-m)

A solution of indole (1.0 equiv.) and spiro-oxindole aziridine
(1.0 equiv.) was added to 5 mL of dry DCM under an argon
atmosphere at 0 °C. Then, a catalytic amount of BF;-OEt,
(10 mol%) was added and the progress of the reaction was
monitored by TLC. After completion of the reaction, the
suspension was extracted with ethyl acetate (3 x 5.0 mL), and
washed with a 1:1 mixture of brine. The combined organic
extracts were dried over anhydrous sodium sulphate. After
removal of the solvent under reduced pressure, the crude
product was purified by column chromatography on silica gel to
afford the pure product.

1'-(tert-Butylsulfonyl)-1-ethyl-1’,3a',8',8a’-tetrahydro-2' H-spiro
[indoline-3,3"-pyrrolo[2,3b]indol]-2-one (3a)

White solid; yield: 82%; mp: 204-207 °C; FT-IR (cm™'): 3245,
2925, 1677, 1609, 1462, 1319, 740; 'H NMR (500 MHz, DMSO-
de): 6 11.09 (s, 1H), 7.35 (d, J = 2.2 Hz, 1H), 7.32 (dd, J = 7.7,
3.8 Hz, 1H), 7.19 (d,] = 7.3 Hz, 1H), 7.14 (d, ] = 7.8 Hz, 1H), 6.99
(t,] = 7.4 Hz, 1H), 6.85 (d, ] = 8.0 Hz, 1H), 6.67 (t, ] = 7.5 Hz,
1H), 6.63 (t, ] = 6.3 Hz, 1H), 3.99 (d, ] = 6.3 Hz, 2H), 3.80-3.77
(m, 2H), 2.89 (s, 1H), 2.73 (s, 1H), 1.22 (t,J = 7.2 Hz, 3H), 1.18 (s,

This journal is © The Royal Society of Chemistry 2020
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9H); *C NMR (125 MHz, DMSO-d,): 6 176.4, 143.6, 137.0, 131.1,
128.7, 125.8, 125.5, 124.1, 122.3, 121.5, 119.6, 119.0, 112.1,
108.7, 59.5, 53.3, 48.6, 34.8, 31.2, 24.5, 13.0; HRMS (ESI): m/z
calc. for C,3H,,N;0;S 426.1851, found 426.1861 [M + HJ".

1'-(tert-Butylsulfonyl)-1,3a',8'-trimethyl-1',34',8',8a’-
tetrahydro-2' H-spiro[indoline-3,3'-pyrrolo[2,3b]indol]-2-one
(3b)

Cream solid; yield: 87%; mp: 201-204 °C; FT-IR (cm™"): 2922,
2852, 1709, 1610, 1308, 1122, 741; 'H NMR (500 MHz, DMSO-
de): 6 7.48 (d, ] = 7.1 Hz, 1H), 7.38 (t, ] = 8.3 Hz, 1H), 7.13-7.08
(m, 3H), 6.77 (d,J = 7.5 Hz, 1H), 6.62 (t,/ = 7.0 Hz, 1H), 6.58 (d, J
= 7.8 Hz, 1H), 5.45 (s, 1H), 3.76 (d, J = 10.4 Hz, 1H), 3.44 (d, ] =
10.4 Hz, 1H), 3.10 (s, 3H), 3.03 (s, 3H), 1.34 (s, 9H), 0.96 (s, 3H);
13C NMR (125 MHz, DMSO-dg): 6 174.0, 151.4, 144.0, 131.5,
129.2,129.1, 128.9, 125.4, 125.2, 122.1, 118.0, 109.0, 108.2, 92.2,
61.1,59.7, 58.7, 56.4, 36.7, 26.7, 24.8, 24.1; HRMS (ESI): m/z calc.
for C,,H,oN30;S 440.2008, found 440.2000 [M + HJ".

1'-(tert-Butylsulfonyl)-1,3a’,5,8'-tetramethyl-1',3a’,8',8a’-
tetrahydro-2' H-spiro[indoline-3,3'-pyrrolo[2,3b]indol]-2-one

(3¢)

White solid; yield: 89%; mp: 205-208 °C; FT-IR (cm™"): 2922,
1709, 1609, 1308, 742; "H NMR (500 MHz, DMSO-dj): 6 7.05 (t, ]
= 7.5 Hz, 1H), 7.01 (d, J = 7.7 Hz, 1H), 6.84 (d, ] = 7.9 Hz, 1H),
6.60 (t, ] = 12.1 Hz, 2H), 6.45 (t, ] = 7.3 Hz, 1H), 6.39 (d, J =
7.1 Hz, 1H), 5.34 (s, 1H), 3.79 (d, J = 10.7 Hz, 1H), 3.46 (d, ] =
10.7 Hz, 1H), 3.14 (s, 3H), 3.03 (s, 3H), 2.06 (s, 3H), 1.39 (s, 9H),
1.31 (s, 3H); ">C NMR (125 MHz, DMSO-de): 6 176.3, 151.5,
141.7, 131.7, 130.5, 129.1, 129.0, 127.4, 126.8, 124.4, 117.9,
108.2, 108.2, 93.3, 61.5, 59.0, 56.5, 35.9, 26.6, 24.3, 23.4, 21.0;
HRMS (ESI): m/z calc. for C,sH3;N303S 454.2164, found
454.2163 [M + H]'.

1'-(tert-Butylsulfonyl)-5-chloro-1,3a’,8'-trimethyl-1',3a',8',8a’-
tetrahydro-2’' H-spiro[indole ne-3,3'-pyrrolo[2,3b]indol]-2-one
(3d)

White solid; yield: 65%; mp: 205-208 °C; FT-IR (cm™"): 2922,
2852, 1709, 1610, 1308, 1122, 787, 741; 'H NMR (500 MHz,
DMSO-dy): 6 7.22 (d,] = 8.1 Hz, 1H), 7.05 (d, ] = 9.8 Hz, 1H), 6.97
(d,J = 10.5 Hz, 1H), 6.88 (s, 1H), 6.63 (d, J = 9.2 Hz, 1H), 6.55—
6.27 (m, 2H), 5.33 (s, 1H), 3.88 (d,J = 10.1 Hz, 1H), 3.53 (d, ] =
8.1 Hz, 1H), 3.18 (s, 3H), 3.04 (s, 3H), 1.43 (s, 9H), 1.25 (s, 3H);
13C NMR (125 MHz, DMSO-de): 6 151.6, 142.7, 131.4, 130.5,
129.3, 128.4, 125.9, 125.5, 123.2, 118.4, 109.8, 108.6, 93.6, 61.5,
59.2, 58.9, 56.5, 36.1, 26.8, 24.3, 23.2; HRMS (ESI): m/z calc. for
C14H,5CIN;0,S 474.1618, found 474.1616 [M + H]'".

1-Benzyl-5-bromo-1'-(tert-butylsulfonyl)-3a’,8'-dimethyl-
1',3d',8',8a'-tetrahydro-2' H-spiro[indoline-3,3'-pyrrolo[2,3b]
indol]-2-one (3e)

White solid; yield: 62%; mp: 206-208 °C; FT-IR (cm™*): 2977,
1713, 1609, 1487, 1308, 994, 752; 'H NMR (500 MHz, DMSO-d):
67.35 (s, 1H), 7.34 (d,J = 9.6 Hz, 1H), 7.32-7.29 (m, 3H), 7.24 (t, ]
= 9.3 Hz, 2H), 7.11 (t, ] = 7.6 Hz, 1H), 6.92 (d, ] = 8.4 Hz, 1H),
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6.71(d,J = 7.4 Hz, 1H), 6.59 (t,J = 8.7 Hz, 2H), 5.48 (s, 1H), 4.96
(d,J=15.9 Hz, 1H), 4.75 (d,J = 16.0 Hz, 1H), 3.88 (d,J = 10.6 Hz,
1H), 3.50 (d, J = 4.6 Hz, 1H), 3.02 (s, 3H), 1.35 (s, 9H), 1.03 (s,
3H); *C NMR (125 MHz, DMSO-dg): 6 173.7, 151.5, 142.5, 136.4,
131.7, 131.0, 129.1, 128.6, 127.9, 127.6, 125.2, 118.2, 114.4,
111.5, 108.3, 92.2, 61.2, 60.0, 59.2, 56.5, 43.7, 36.8, 25.0, 24.2,
21.3, 14.5; HRMS (ESI): m/z calc. for C3oH3,BrN3;03S 596.1406,
found 596.1401 [M + 2H]".

8'-Benzyl-1'-(tert-butylsulfonyl)-1,3a’-dimethyl-1',34',8',8a’-
tetrahydro-2' H-spiro[indoline-3,3'-pyrrolo[2,3b]indol]-2-one

(3f)

Cream solid; yield: 79%; mp: 251-254 °C; FT-IR (cm '): 2983,
1711, 1611, 1306, 748; "H NMR (500 MHz, DMSO-dq): 6 7.35 (d, ]
= 7.4 Hz, 1H), 7.24 (t,] = 7.7 Hz, 1H), 7.18 (d, ] = 4.3, 4H), 7.11-
7.09 (m, 1H), 7.08 (dd, J = 13.6, 7.8 Hz, 3H), 6.82 (d, ] = 7.3 Hz,
1H), 6.75 (d,J = 7.9 Hz, 1H), 6.59 (t,J = 7.4 Hz, 1H), 5.67 (s, 1H),
4.78 (d, J = 15.7 Hz, 1H), 4.62 (d, ] = 15.8 Hz, 1H), 3.72 (d, ] =
10.4 Hz, 1H), 3.43 (d, J = 10.5 Hz, 1H), 3.12 (s, 3H), 1.35 (s, 9H),
0.58 (s, 3H); *C NMR (125 MHz, DMSO-de): 6 173.7, 149.4,
143.8, 138.7, 131.4, 129.4, 129.0, 128.8, 128.3, 127.7, 126.0,
125.1,122.3,118.0, 109.1, 108.8, 89.0, 61.1, 59.8, 58.7, 56.7, 50.4,
26.8, 24.2, 23.3; HRMS (ESI): m/z calc. for C;oH;33N303S
516.2321, found 516.2325 [M + H]".

8'-Benzyl-1'-(tert-butylsulfonyl)-1-ethyl-3a’-methyl-
1',3d',8',8a'-tetrahydro-2' H-spiro[indoline-3,3’-pyrrolo[2,3b]
indol]-2-one (3g)

White solid; yield: 77%; mp: 185-188 °C; FT-IR (cm '): 2973,
1721, 1610, 1484, 1305, 731; '"H NMR (500 MHz, DMSO-d,):
0 7.44 (d,J = 7.3 Hz, 1H), 7.35 (t, ] = 7.5 Hz, 1H), 7.25 (d, ] =
3.7 Hz, 4H), 7.19 (s, 1H), 7.14-7.05 (m, 3H), 6.77 (d, ] = 7.3 Hz,
1H), 6.73 (d,] = 7.8 Hz, 1H), 6.59 (t,] = 7.2 Hz, 1H), 5.67 (s, 1H),
4.77 (d, J = 15.8 Hz, 1H), 4.60 (d, J = 15.8 Hz, 1H), 3.75 (d, ] =
10.0 Hz, 1H), 3.62-3.57 (m, 2H), 3.46 (d,J = 10.4 Hz, 1H), 1.36 (s,
9H), 1.12 (t, J = 6.8 Hz, 3H), 0.62 (s, 3H); >*C NMR (125 MHz,
DMSO-dg): 6 173.5, 149.5, 142.8, 138.7, 131.4, 129.4, 129.1,
128.8, 128.7, 128.2, 127.6, 125.7, 125.5, 122.1, 118.0, 109.1,
108.8, 89.2, 61.1, 59.6, 58.7, 56.6, 50.5, 34.7, 24.2, 23.3, 12.9;
HRMS (ESI): m/z calc. for C;;H3sN303S 530.2477, found
530.2492 [M + H]".

8'-Benzyl-1'-(tert-butylsulfonyl)-1,3a’,5-trimethyl-1',3a’,8',8a'-
tetrahydro-2’ H-spiro[indoline-3,3'-pyrrolo[2,3b]indol]-2-one
(3h)

White solid; yield: 78%; mp: 195-198 °C; FT-IR (cm™'): 2923,
2853, 1712, 1600, 1465, 1307, 1102, 709; "H NMR (500 MHz,
DMSO-dg): 6 7.25 (t,J = 4.1 Hz, 5H), 7.20-7.16 (m, 2H), 7.06 (t, J
= 7.7 Hz 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.80 (d, J = 7.5 Hz 1H),
6.69 (d,J = 7.9 Hz, 1H), 6.58 (t,] = 7.8 Hz, 1H), 5.71 (s, 1H), 4.76
(d,/ =15.9Hz, 1H), 4.64 (d,J = 15.9 Hz, 1H), 3.69 (d,J = 10.4 Hz,
1H), 3.44 (d, J = 10.4 Hz, 1H), 3.09 (s, 3H), 2.31 (s, 3H), 1.35 (s,
9H), 0.65 (s, 3H); >C NMR (125 MHz, DMSO-d): 6 173.7, 149.2,
141.5, 138.7, 131.4, 131.1, 129.4, 129.1, 128.7, 128.7, 128.2,
127.6, 126.1, 125.9, 117.9, 108.7, 108.6, 89.2, 61.1, 59.6, 58.8,
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56.7, 50.3, 26.8, 24.2, 23.5, 21.4; HRMS (ESI): m/z calc. for
C31H35N;30;8 530.2477, found 530.2472 [M + H]".

8'-Benzyl-1'-(tert-butylsulfonyl)-5-chloro-1,3a’-dimethyl-
1',3d,8',8a'-tetrahydro-2' H-spiro[indoline-3,3’-pyrrolo[2,3b]
indol]-2-one (3i)

White solid; yield: 60%; mp: 184-187 °C; FT-IR (cm™"): 2980,
2928, 1719, 1605, 1488, 1308, 748; "H NMR (500 MHz, DMSO-
de): 6 7.31-7.26 (m, 5H), 7.24 (t, ] = 6.7 Hz, 1H), 7.04 (t, ] =
7.3 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.92 (s, 1H), 6.68 (d, ] =
7.9 Hz, 1H), 6.49 (t,J = 7.3 Hz, 1H), 6.45 (d,J = 7.1 Hz, 1H), 5.60
(s, 1H), 4.90 (d,J = 15.8 Hz, 1H), 4.54 (d, J = 15.9 Hz, 1H), 3.83
(d,J=10.9 Hz, 1H), 3.58 (d,/ = 10.9 Hz, 1H), 3.16 (s, 3H), 1.40 (s,
9H), 1.09 (s, 3H); **C NMR (125 MHz, DMSO-d,): 6 175.8, 150.3,
143.1, 139.0, 131.4, 129.2, 128.8, 128.7, 128.0, 127.5, 126.1,
125.9,124.5,118.2,110.0, 109.2, 90.4, 61.4, 59.1, 59.0, 56.1, 51.0,
26.7, 24.3, 22.6; HRMS (ESI): m/z calc. for C3;oH3,CIN;O3S
550.1931, found 550.1929 [M + H]".

1-(tert-Butylsulfonyl)-1'-methyl-1,2,3a,8a-tetrahydrospiro
[benzofuro[2,3b]pyrrole-3,3'-indolin]-2'-one (5a)

White solid; yield: 89%; mp: 233-236 °C; FT-IR (cm™'): 2981,
2920, 1721, 1609, 1471, 1315, 753; "H NMR (500 MHz, DMSO-
de): 6 7.52 (d, J = 7.1 Hz, 1H), 7.45-7.36 (m, 2H), 7.28 (t, ] =
7.6 Hz, 1H), 7.16-7.06 (m, 2H), 6.94 (t, /] = 7.4 Hz, 1H), 6.86 (d, ]
= 8.0 Hz, 1H), 5.97 (d, J = 6.9 Hz, 1H), 5.21 (d, ] = 6.9 Hz, 1H),
3.84 (d,J = 10.9 Hz, 1H), 3.60 (d, J = 10.9 Hz, 1H), 3.17 (s, 3H),
1.24 (d, 9H); >C NMR (125 MHz, DMSO-d): 6 172.2, 160.5,
143.6, 130.9, 129.4, 129.2, 127.6, 125.9, 123.8, 122.7, 121.0,
110.4, 109.1, 90.9, 66.5, 60.7, 56.7, 56.1, 26.8, 24.4; HRMS (ESI):
m/z cale. for C,,H,,N30;S 413.1535, found 413.1533 [M + H|".

1-(tert-Butylsulfonyl)-1"-ethyl-1,2,3a,8a-tetrahydrospiro
[benzofuro[2,3b]pyrrole-3,3'-indolin]-2"-one (5b)

White solid; yield: 87%; mp: 185-188 °C; FT-IR (cm™"): 3245,
2925, 1677, 1609, 1462, 1319, 1034, 740; '"H NMR (500 MHz,
DMSO-d¢): 6 7.53 (d,J = 7.4 Hz, 1H), 7.43 (d,J = 7.4 Hz, 1H), 7.38
(t,J = 7.7 Hz, 1H), 7.29 (t, /] = 7.7 Hz, 1H), 7.13 (dd, J = 17.4,
7.7 Hz, 2H), 6.95 (t,] = 7.4 Hz, 1H), 6.87 (d,J = 8.1 Hz, 1H), 5.97
(d,J = 6.9 Hz, 1H), 5.21 (d, J = 6.9 Hz, 1H), 3.84 (d, J = 10.0 Hz,
1H), 3.80-3.68 (m, 2H), 3.61 (d, J = 10.9 Hz, 1H), 1.24 (s, 9H),
1.18 (t, ] = 7.1 Hz, 3H); **C NMR (125 MHz, DMSO-d): 6 171.8,
160.5, 142.5, 130.9, 129.4, 129.2, 127.6, 126.0, 124.0, 122.6,
121.0, 110.3, 109.1, 91.0, 66.3, 60.6, 56.6, 55.9, 34.8, 24.4, 12.9;
HRMS (ESI): m/z calc. for C,3H,6N,0,5427.1692, found 427.1688
M + H]".

1-(tert-Butylsulfonyl)-1',5'-dimethyl-1,2,3a,8a-tetrahydrospiro
[benzofuro[2,3b]pyrrole-3,3’-indolin]-2’-one (5¢)

Cream solid; yield: 86%; mp: 210-214 °C; FT-IR (cm™"): 2923,
2858, 1704, 1620, 1499, 1308, 1129, 750; '"H NMR (500 MHz,
DMSO-d): 6 7.52 (d, J = 7.1 Hz, 1H), 7.33-7.22 (m, 2H), 7.19 (d, ]
= 8.5 Hz, 1H), 7.01-6.90 (m, 2H), 6.85 (t,] = 8.1 Hz, 1H), 5.96 (d,
J=6.9 Hz, 1H), 5.19 (d, ] = 6.9 Hz, 1H), 3.80 (d, ] = 10.8 Hz, 1H),
3.59 (d, ] = 10.8 Hz, 1H), 3.14 (s, 3H), 2.31 (s, 3H), 1.23 (s, 9H);
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BCNMR (125 MHz, DMSO-dg): 6 172.2, 160.5, 141.2, 131.7,
130.9,129.4, 129.3, 127.6, 126.0, 124.6, 121.0, 110.3, 108.8, 90.9,
66.4, 60.7, 56.7, 56.0, 26.8, 24.4, 21.5; HRMS (ESI): m/z calc. for
C,3H,6N,0,S is 427.1692, found 427.1682 [M + HJ".

1-(tert-Butylsulfonyl)-5'-fluoro-1'-methyl-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3'-indolin]-2"-one (5d)

White solid; yield: 59%; mp: 234-236 °C; FT-IR (cm ™~ '): 2923, 2858,
1704, 1620, 1499, 1308, 1263, 750; "H NMR (500 MHz, DMSO-d;):
6 7.52 (d, J = 7.3 Hz, 1H), 7.31-7.24 (m, 3H), 7.10-7.08 (m, 1H),
6.95 (t, ]/ = 7.3 Hz, 1H), 6.86 (d,J = 8.0 Hz, 1H), 6.00 (d, /= 7.0 Hz,
1H), 5.25 (d, J = 7.0 Hz, 1H), 3.87 (d,J = 11.0 Hz, 1H), 3.60 (d, ] =
11.0 Hz, 1H), 3.16 (s, 3H), 1.25 (s, 9H); ">*C NMR (125 MHz, DMSO-
de): 6 172.1, 160.5, 159.6, 157.7 (d, Jo_¢ = 237.2 Hz), 140.0, 131.0,
130.7 (d, Jor = 8.4 Hz), 127.6, 125.8, 121.2, 115.5 (d, Jor = 23.1
Hz), 112.2 (d, Jo_r = 25.8 Hz), 110.4, 109.9 (d, Jc_r = 8.0 Hz), 90.6,
66.3, 60.7, 57.1, 55.9, 27.0, 24.4; HRMS (ESI): m/z calc. for
CyoH,3FN,0,S 431.1441, found 431.1438 [M + H]".

1-(tert-Butylsulfonyl)-5'-chloro-1’-methyl-1,2-dihydrospiro
[benzofuro[2,3b]pyrrole-3,3'-indolin]-2’-one (5e)

Off-white solid; yield: 79%; mp: 227-230 °C; FT-IR, (cm ™ ): 3340,
2923, 1726, 1477, 1114, 763; "H NMR (500 MHz, DMSO-d,):
67.52(d,J = 7.3 Hz, 1H), 7.49 (d, J = 1.9 Hz, 1H), 7.47-7.45 (m,
1H), 7.28 (t,J = 8.2 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 6.96 (t, ] =
7.3 Hz, 1H), 6.86 (d,J = 8.1 Hz, 1H), 6.00 (d, /= 7.0 Hz, 1H), 5.27
(d,J = 7.0 Hz, 1H), 3.88 (d,J = 11.0 Hz, 1H), 3.60 (d,J = 11.1 Hz,
1H), 3.16 (s, 3H), 1.25 (s, 9H); >C NMR (125 MHz, DMSO-d,):
6 171.9, 160.3, 142.7, 131.1, 130.9, 129.1, 127.6, 126.7, 125.7,
124.2,121.2, 110.5, 110.4, 90.6, 66.3, 60.7, 56.9, 55.9, 27.0, 24.4;
HRMS (ESI): m/z calc. for C,,H,3CIN,0,4S is 447.1145, found
447.1142 [M + H]".

5'-Bromo-1-(tert-butylsulfonyl)-1'-methyl-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3'-indolin]-2’-one (5f)

White solid; yield: 72%; mp: 231-234 °C; FT-IR (cm™'): 3340,
3245, 2923, 1726, 1477, 1300, 997, 662; "H NMR (500 MHz,
DMSO-dg): 6 7.60-7.57 (m, 2H), 7.52 (d, ] = 6.9 Hz, 1H), 7.29 (t, ]
= 7.1 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 6.95 (t, /] = 6.8 Hz, 1H),
6.86 (d, J = 7.7 Hz, 1H), 5.98 (d, J = 6.6 Hz,1H), 5.27 (d, J =
6.6 Hz, 1H), 3.88 (d, J = 11.0 Hz, 1H), 3.60 (d, J = 10.9 Hz, 1H),
3.15 (s, 3H), 1.25 (s, 9H); *C NMR (125 MHz, DMSO-d): 6 171.8,
160.4, 143.1, 132.0, 131.5, 130.9, 127.6, 126.9, 125.7, 121.1,
114.4,111.0, 110.3, 90.5, 66.4, 60.7, 56.9, 55.9, 26.9, 24.4; HRMS
(ESI): m/z calc. for C,,H,3BrN,0,S 493.0620, found 493.0618 [M
+2H]".

1’-Benzyl-1-(tert-butylsulfonyl)-1,2,3a,8a-tetrahydrospiro
[benzofuro[2,3b]pyrrole-3,3’-indolin]-2’-one (5g)

White solid; yield: 79%; mp: 228-231 °C; FT-IR (cm™'): 2965,
2935, 1713, 1729, 1466, 1307, 1128, 745; "H NMR (500 MHz,
DMSO-dg): 6 7.56 (d, J = 7.3 Hz, 1H), 7.49 (d, ] = 7.4 Hz, 1H),
7.37-735 (m, 4H), 7.29 (t,J = 7.1 Hz, 3H), 7.11 (t,] = 7.5 Hz, 1H),
6.96 (t, ] = 7.9 Hz, 2H), 6.86 (d, J = 8.1 Hz, 1H), 5.99 (d, J =
7.3 Hz, 1H), 5.34 (d, J = 7.3 Hz, 1H), 5.02 (d, J = 15.9 Hz, 1H),
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4.85 (d,J = 15.9 Hz, 1H), 3.93 (d, J = 10.8 Hz, 1H), 3.68 (d, ] =
10.8 Hz, 1H), 1.27 (s, 9H); *C NMR (125 MHz, DMSO-d,):
6 172.7, 160.5, 142.6, 136.6, 130.9, 129.4, 129.1, 128.9, 127.8,
127.8, 127.5, 125.9, 124.0, 122.9, 121.0, 110.2, 109.6, 90.8, 66.1,
60.7, 56.9, 55.8, 43.3, 24.4; HRMS (ESI): m/z calc. for
CpsH,5N,0,S 489.1848, found 489.1846 [M + H]".

1'-Benzyl-1-(tert-butylsulfonyl)-5'-chloro-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3’-indolin]-2-one
(5h)

White solid; yield: 74%; mp: 231-234 °C; FT-IR (cm ™~ '): 3044, 2845,
1615, 1588, 1373, 1284, 834, 722, 585; "H NMR (500 MHz, DMSO-
dg): 67.58 (d,J = 6.3 Hz, 3H), 7.37 (m, 6H), 6.96 (d, ] = 6.9 Hz, 2H),
6.86 (d,J = 7.0 Hz, 1H), 6.01 (d,J = 6.4 Hz, 1H), 5.39 (d, ] = 6.0 Hz,
1H), 5.02 (d,J = 15.6 Hz, 1H), 4.84 (d, /= 16.5 Hz, 1H), 3.98 (d,/ =
10.6 Hz, 1H), 3.67 (d,J = 11.2 Hz, 1H), 1.29 (s, 9H); *C NMR (125
MHz, DMSO-dg): 6 172.4, 160.5, 141.6, 136.3, 130.9, 130.8, 129.1,
127.9, 127.7, 127.5, 127.0, 125.7, 124.5, 121.1, 111.0, 110.2, 90.4,
66.0, 60.8, 57.2, 55.6, 43.4, 24.4; HRMS (ESI): m/z calc. for C,q-
H,,CIN,0,S 523.1458, found 525.1452 [M + H]".

1'-Benzyl-5'-bromo-1-(tert-butylsulfonyl)-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3'-indolin]-2"-one (5i)

White solid; yield: 68%; mp: 224-227 °C; FT-IR, (cm™'): 2970,
2113, 1737, 1709, 1305, 1119, 758; "H NMR (500 MHz, DMSO-
de): 67.69 (d,J = 1.8 Hz, 1H), 7.55 (d, /] = 7.4 Hz, 1H), 7.48 (dd, J
= 8.3, 1.9 Hz, 1H), 7.34 (dd, J = 13.4, 6.9 Hz, 4H), 7.31-7.25 (m,
2H), 6.95 (t, ] = 7.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.84 (d, ] =
8.0 Hz, 1H), 5.98 (d, = 7.4 Hz, 1H), 5.38 (d,J = 7.4 Hz, 1H), 5.00
(d,/ = 16.0 Hz, 1H), 4.82 (d,J = 15.9 Hz, 1H), 3.97 (d,/ = 10.9 Hz,
1H), 3.65 (d, J = 10.9 Hz, 1H), 1.27 (s, 9H); "*C NMR (125 MHz,
DMSO-dg): 6 172.3, 160.5, 142.1, 136.3, 131.9, 131.2, 130.9,
129.1, 127.9, 127.7, 127.5, 127.2, 125.7, 121.1, 114.7, 111.5,
110.2, 90.5, 66.1, 60.86, 57.2, 55.9, 43.4, 24.4; HRMS (ESI): m/z
calc. for C,gH,,BrN,0,S 569.0933, found 569.0930 [M + 2H]".

6-Bromo-1-(tert-butylsulfonyl)-1'-methyl-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3'-indolin]-2"-one (5j)
White solid; yield 81%; mp: 231-234 °C; FT-IR (cm™'): 2972,
1713, 1613, 1466, 1315, 1282, 826, 746, 507; "H NMR (500 MHz,
DMSO-dg): 6 7.73 (s, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.44-7.35 (m,
1H), 7.21 (d, J = 6.8 Hz, 1H), 7.15-7.06 (m, 2H), 6.91 (d, J =
8.2 Hz, 1H), 5.84 (d, J = 6.1 Hz, 1H), 5.35 (d,/ = 6.1 Hz, 1H), 3.84
(d,J =10.9 Hz, 1H), 3.60 (d,/ = 10.8 Hz, 1H), 3.19 (s, 3H), 1.32 (s,
9H); "*C NMR (125 MHz, DMSO-dg): 6 175.3, 159.4, 144.6, 133.6,
130.7,129.6, 129.2, 126.2, 125.0, 122.6, 112.5, 112.4, 109.2, 89.1,
66.6, 61.6, 56.6, 55.6, 26.8, 24.3; HRMS (ESI): m/z calc. for C,,-
H,;3BrN,0,S 493.0620, found 493.0618 [M + 2H]".

6-Bromo-1-(tert-butylsulfonyl)-1',5'-dimethyl-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b] pyrrole-3,3’-indolin]-2’-one
(5k)

White solid; yield: 77%; mp: 228-231 °C; FT-IR (cm™"): 3339,
2970, 2883, 1719, 1467, 1128, 950, 816, 595; "H NMR (500 MHz,
DMSO-dg): 6 7.63 (d, J = 2.0 Hz, 1H), 7.44 (dd, J = 8.6, 2.2 Hz,
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1H), 7.29 (s, 1H), 7.20 (d, = 7.8 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H),
6.84 (d, J = 8.6 Hz, 1H), 5.94 (d, J = 7.3 Hz, 1H), 5.31 (d, ] =
7.3 Hz, 1H), 3.79 (d, J = 10.7 Hz, 1H), 3.59 (d, J = 10.7 Hz, 1H),
3.12 (s, 3H), 2.32 (s, 3H), 1.29 (s, 9H); *C NMR (125 MHz,
DMSO-de): 6 172.3, 159.9, 141.3, 133.3, 131.8, 130.3, 129.6,
128.9, 128.5, 124.5, 112.4, 111.8, 108.8, 91.2, 65.7, 60.9, 56.7,
56.0, 26.8, 24.4, 21.2; HRMS (ESI): m/z calc. for Cy3H,5BrN,0,4S
507.0776, found 507.0774 [M + 2H]".

1'-Benzyl-6-bromo-1-(tert-butylsulfonyl)-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3'-indolin]-2'-one (51)

White solid; yield: 68%; mp: 245-248 °C; FT-IR (cm ™ '): 2970,
2113, 1737, 1709, 1305, 1119, 758; "H NMR (500 MHz, DMSO-
dg): 6 7.65 (s, 1H), 7.52 (d, J = 5.3 Hz, 1H), 7.43 (d, J = 6.5 Hz,
1H), 7.31 (m, 6H), 7.10 (s, 1H), 6.93 (d,J = 5.5 Hz, 1H), 6.81 (d, /
= 5.9 Hz, 1H), 5.95 (d,J = 4.2 Hz, 1H), 5.44 (d, ] = 4.7 Hz, 1H),
5.00 (d, J = 16.1 Hz, 1H), 4.78 (d, J = 14.7 Hz, 1H), 3.90 (d, ] =
9.7 Hz, 1H), 3.65 (d, J = 9.4 Hz, 1H), 1.29 (s, 9H); "*C NMR (125
MHz, DMSO-dy): 6 172.9, 160.0, 142.8, 136.6, 133.3, 130.4, 129.5,
129.1, 128.7, 128.3, 127.8, 127.5, 124.0, 123.0, 112.3, 111.9,
109.6, 90.9, 65.3, 60.9, 57.0, 55.7, 43.2, 24.4; HRMS (ESI): m/z
cale. for C,gH,,BrN,0,4S 569.0933, found 569.0928 [M + 2H]".

1'-Benzyl-5',6-dibromo-1-(tert-butylsulfonyl)-1,2,3a,8a-
tetrahydrospiro[benzofuro[2,3b]pyrrole-3,3’-indolin]-2’-one
(5m)

White solid; yield: 55%; mp:242-245 °C; FT-IR (cm ™ '): 3416, 2942,
2821, 2251, 1682, 1023, 758; 'H NMR (500 MHz, DMSO-dq): 6 7.78
(s, 1H), 7.67 (s, 1H), 7.50 (d, J = 7.0 Hz, 1H), 7.46 (d, ] = 8.2 Hz,
1H), 7.35-7.29 (m, 5H), 6.92 (d,J = 7.6 Hz, 1H), 6.82 (d, ] = 8.6 Hz,
1H), 5.95 (d, J = 7.5 Hz, 1H), 5.51 (d,J = 6.9 Hz, 1H), 5.02 (d, ] =
15.6 Hz, 1H), 4.79 (d,J = 15.6 Hz, 1H), 3.96 (d, ] = 10.2 Hz, 1H),
3.67 (d,J = 10.3 Hz, 1H), 1.31 (s, 9H); *C NMR (125 MHz, DMSO-
de): 6 172.7, 160.6, 142.7, 136.7, 130.9, 129.4, 129.1, 128.9, 127.8,
127.8, 127.6, 125.9, 124.0, 122.9, 121.0, 110.2, 109.6, 90.8, 66.1,
60.8, 56.9, 55.8, 43.3, 24.4; HRMS (ESI): m/z calc. for C,gH,eBr,-
N,0,S 645.0058, found 645.0051 [M + H]J".

In silico DFT calculations

All structures corresponding to the reactants, probable transi-
tion states and products were sketched using a 2D sketcher and
prepared by Ligprep. Geometry optimization and single point
energy calculation were performed, with DFT methods at the
B3LYP level using the 6-311** basis set in Jaguar, Schrodinger.
The optimized 3D pose of all the structures was imaged using
Schrodinger.
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