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Introduction

Azulene is a bicyclic aromatic hydrocarbon with a deep blue
colour and a dipole moment of about 1.08 D.* Such properties
are in striking contrast with those of the isomeric naphthalene
that is colourless and has a dipole moment of 0 D. The polarity
of azulene and in turn the appearance of the blue colour can be
explained by the charge-separated resonance structure in
which the bicyclic core of azulene is regarded as a fusion of 6
m-electron cyclopentadienyl anion and 6 m-electron tropylium
cation.

Owing to the unique structural and photophysical properties
of the azulene core, a number of azulene-based advanced
organic materials®> has been developed targeting the applica-
tions in sensors,® bioimaging,* non-linear optics (NLO),® opto-
electronics,® molecular electronics” and so on. Furthermore,
azulene derivatives have been successfully incorporated in solar
cells® and organic field-effect transistors (OFETs)***° demon-
strating high potential for further exploration in this type of
devices.
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elaborated to access a series of azulene derivatives. Some of these azulene-containing adducts were
further subjected to post-MCR transformations to assemble azulene—heterocycle conjugates.

Consequently, this sparked a growing interest in the devel-
opment of novel synthetic methodologies for azulene
construction® and functionalization'* with a special emphasis
being given to the assembly of azulene-fused heterocycles,'
azulene-heterocycle conjugates™ and azulene-containing
polymers.8@ed14

Several recent methodologies for azulene functionalization
involve one-pot and/or multicomponent approaches.” On the
other hand, in recent years, a number of multicomponent
transformations have been developed based on the ability of
aryl glyoxals to react with 1,3-dicarbonyl compounds and
additional nucleophiles resulting in the formation of structur-
ally diverse (heterocyclic) adducts.® We decided to take an
advantage of this strategy towards the synthesis of azulene
derivatives through exploration of the nucleophilic potential of
the five-membered ring of azulene core.

Results and discussion

Knowing that the treatment of an aryl glyoxal 2 with a 1,3-
dicarbonyl compound 3 results in the Knoevenagel condensa-
tion,' we envisaged that the presence of an azulene 1 would
trigger the Michael addition of 1 onto the Knoevenagel adduct
A. A subsequent proton transfer in the intermediate B would
produce the desired azulene derivative 4 (Scheme 1). After
conducting a brief screening of the reaction conditions
(see ESIt), we were pleased to find that such a three-component
transformation could be successfully accomplished at
the elevated temperature of 80 °C using isopropanol as
a solvent.

The scope of the resulting process is outlined in Scheme 1. In
order to evaluate the reactivity of a 1,3-dicarbonyl component 3,
several barbituric acid derivatives and cyclic 1,3-diketones were
reacted with unsubstituted azulene and phenyl glyoxal mono-
hydrate resulting in the formation of products 4a-f with the
yields ranging from 37% to 91%. Interestingly, according to
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Scheme 1 Scope of the three-component reaction of azulene 1, aryl
glyoxal monohydrate 2 and 1,3-dicarbonyl compound 3.
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Scheme 3 Synthesis of azulene—dihydroindol-4-one conjugates 7.
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NMR analysis, products 4a, b, f derived from either barbituric
acids or cycloheptane-1,3-dione were observed in a keto form in
solution (CDCl; for 4a and 4f, [D¢]DMSO for 4b). In contrast,
products 4c-e obtained using various cyclohexane-1,3-diones
were observed in a enolized form, with the compound 4e
existing as a mixture of two interconvertible diastereomeric enol
forms.

With respect to an aryl glyoxal component 2, a number of
variously substituted phenyl glyoxal monohydrates along with
a heteroaromatic thiophen-2-yl glyoxal monohydrate have been
tested allowing to acquire an array of azulene-containing
adducts 4g-o (Scheme 1). It was found that the presence of
either electron-withdrawing or electron-donating substituent in
the phenyl ring of glyoxal could be well tolerated.

Blocking one of the azulene's reactive positions with an
electron-withdrawing group did not shut down the reactivity of
the azulene core towards our transformation. Thus, we were
able to prepare a series of 1,3-disubstituted azulene derivatives
4p-s starting from either azulene-1-carbaldehyde or ethyl azu-
lene-1-carboxylate.

Considering that some of the obtained azulene derivatives,
such as for example 4c and 4d comprised a 1,4-diketo unit, we
decided to probe their reactivity in the condensations with
nitrogen nucleophiles towards the formation of azulene-
heterocycle conjugates. To our delight, reacting 4c and 4d with
hydrazine monohydrate in methanol at rt produced azulene-
tetrahydrocinnoline conjugates 5a and 5b in high yields of
94% and 93%, respectively (Scheme 2). Encouraged by these
results, we went on exploring the potential of our 1,4-dike-
tones in a Paal-Knorr synthesis of pyrroles.” Gratifyingly, the
treatment of 4c, 4d and 4o with aniline in isopropanol at 80 °C
allowed to prepare azulene-dihydroindol-4-one conjugates 7a-
¢ in moderate to good yields (Scheme 3). The molecular
structure of representative azulene-dihydroindol-4-one deriv-
ative 7b has been resolved through the X-ray crystallographic
analysis (Fig. 1, see ESI} for details). The above synthetic
strategy was also found to be amenable to a variation of an
amine component 6. Examining different aromatic and

7c, 63%

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Molecular structure of 7b, showing thermal displacement
ellipsoids at the 50% probability level. The dimethyl formamide (DMF)
molecule acquired during the crystallization process and presentin the
crystal packing is not shown.

benzylic amines in the reactions with 4c or 4d delivered ex-
pected azulene-substituted dihydroindol-4-ones 7c-h in up to
93% yield (Scheme 3).
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Scheme 4 One-pot
conjugate 7a.

synthesis of azulene-dihydroindol-4-one

In an attempt to streamline the access towards azulene-
heterocycle conjugates, we have conducted a one-pot synthesis
of compounds 7a (Scheme 4). Reacting azulene (1a), phenyl
glyoxal monohydrate (2a) and cyclohexane-1,3-dione (3c¢) in
isopropanol at 80 °C for 1 h lead to the formation of acyclic
adduct 4c. Once the formation of 4c was confirmed by the TLC
analysis, the aniline (6a) was added and the reaction was
continued for another 8 h allowing to obtain the desired
azulene-substituted dihydroindol-4-one 7a in 51% overall yield.

The optical properties of all acquired azulene derivatives 4, 5
and 7 have been assessed by measuring their UV/Vis absorption
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Fig. 2 UV/Vis absorption spectra of 4d, 4, 5b and 7b measured in dichloromethane and in methanol (both at ¢ = 5 x 107® M, left column);
magnified visible region of UV/Vis absorption spectra of 4d, 4r, 5b and 7b (right column).
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in dichloromethane and in methanol (both at ¢ = 5 x 10°¢ M,
see ESIf).I The UV/Vis absorption spectra of representative
azulene-containing products 4d, 4r, 5b and 7b are shown in
Fig. 2. Similarly to most of simple azulene derivatives, all
prepared compounds 4, 5 and 7 were characterized by a strong
absorbance in the UV region and a relatively weak absorbance in
the visible region, with the latter being responsible for the
colouration of their solutions.

Conclusions

In conclusion, we have developed a novel multicomponent
protocol for the azulene derivatization through the reaction
with an aryl glyoxal and a 1,3-dicarbonyl compound. The scope
of the process has been briefly explored resulting in generation
of a small set of branched azulene-containing adducts. Some of
these adducts could be further upgraded into azulene-hetero-
cycle conjugates through the post-MCR condensations with
nitrogen nucleophiles. Collectively, these methodologies
provide a straightforward access to three distinct types of azu-
lene derivatives.
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