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Phosphates possess a relatively large UV/DUV cutoff edge, but these compounds usually have very small
birefringence. Recently the Te,P,Oq crystal was synthesized and its birefringence was reported to be as
large as 0.106 at 1013.98 nm. Herein, we investigated the electronic structure and optical properties of
Te,P,Og using the first-principles method. The obtained results are in good agreement with the
experimental values. The Born effective charges and SHG density of Te,P,Og show that the contribution
to the birefringence and SHG response mainly originates from the TeOs group. The electronic structures
and optical response of Ba,TeO(PO,4), and TezO3(PO4), were also investigated for comparison. The
results show that these two tellurium phosphates also possess a large birefringence similar to Te,P,Oq.
Also, the birefringence originates from the TeO, polyhedrons, which was confirmed by the real-space
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1. Introduction

Nowadays, nonlinear optical (NLO) materials have attracted
widespread attention because they can be used to obtain wide-
band and tunable laser sources via the second order NLO
effect.” During the past decades, numerous inorganic NLO
materials have been obtained, including infrared, visible and
ultraviolet (UV) materials.**® Also, borates, phosphates and
carbonates are thought to be good candidates for Uv/deep-UV
NLO compounds, such as BBO,"** LiB;O5 (LBO),"*™"* CsLiBg-
0,, (CLBO),'**® CsB;0; (CBO),'*** and KBe,BO;F, (KBBF).*2* It
has been proven that the introduction of fluorine into borates is
beneficial to obtain short UV cutoff edges and suitable bire-
fringence and large NLO responses,**** and new deep-UV fluo-
rooxoborates with good performances were obtained such as
Li,B¢OoF,,”* AB,O,F (A = NH,, K, Rb, and Cs),”** and
SrB;O,F5.%°

Recently, phosphates have been reported to be good candi-
dates as UV and deep-UV NLO crystal materials because of their
short UV cut-off edge,**** including Rb,Ba;(P,0;); (<200 nm),*>
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atom-cutting results and distortion indices.

BasP¢0,, (about 167 nm),** and KLa(PO3), (162 nm).** However,
phosphates also have drawbacks. Most of the reported phos-
phates have a relatively small birefringence, which has rela-
tionship with the regular tetrahedron of the PO, units. First
principles investigations show that the anisotropic polarization
of the regular PO, unit is relatively small. Thus, to overcome this
inherent drawback, different types of d° transition metal
cations (Ti**, Mo®, etc.}*® and lone pair electrons (Bi**, Te'",
Pb**, etc.) are introduced to phosphates. Wang et al. at Shan-
dong University*® obtained large-size Te,P,0Oq4 crystals via the
Czochralski method. The crystals had the acentric polar space
group Cc, and their basic building units were the PO, tetrahe-
dron and TeOs square pyramid. Their linear and nonlinear
optical properties were also investigated.*® The SHG response
and birefringence of Te,P,0, are relatively large, which is 1.3 x
KDP, and 0.13786-0.10615 at 404.66-1013.98 nm, respectively.
Curiously, how can it possess such a large birefringence in
comparison with other phosphates? Also, what is the origina-
tion of this large birefringence in phosphates?

Herein, we calculated the electronic structure and optical
properties of Te,P,0o. The obtained refractive indices, bire-
fringence and SHG tensor agree well with the experimental
values. Utilizing its electronic structures, Born effective charges,
and the SHG density method, the atomic contribution to the
birefringence and SHG tensors of Te,P,0 are investigated. The
results show that the TeOs polyhedrons give the main contri-
bution to the optical anisotropic birefringence and SHG
response. Furthermore the optical response of the other tellu-
rium phosphates Ba,TeO(PO,), (ref. 37) and Te;03(PO,), (ref.
38) were also investigated for comparison. These two
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compounds possess similar basic building units as Te,P,0,
which are an isolated PO, tetrahedron and TeO, polyhedrons
(more details can be found in Table S1 in the ESIt). These two
compounds also have very large birefringence like Te,P,0,. The
large birefringence in these tellurium phosphates originate
from the TeO, polyhedrons, which was further confirmed by the
real-space atom-cutting results and the distortion indices.

2. Computational details

To better understand the relationship between the structure
and optical properties, the electronic structure and Born effec-
tive charges were investigated using the first-principles method
implemented in the CASTEP package.***® During the calcula-
tion, the exchange-correlation functional with the Perdew-
Burke-Ernzerhof (PBE)*** functional and the norm-conserving
pseudopotentials (NCP) was adopted. The kinetic energy cutoffs
were set as 830 eV for Te,P,0q, 830 eV for Te;03(PO,),, and
830 eV for Ba,TeO(PO,),. The k-point mesh in the Monkhorst-
Pack was set as 5 x 5 X 3 (TeyP,0q), 2 X 3 x 3 (Te303(PO,)s),
and 4 x 4 x 3 (Ba,TeO(PO,),). After the electronic structures
were obtained, the refractive indices and the birefringence were
further calculated via the OPTADOS code.**** The nonlinear
optical tensors of Te,P,0, were further investigated using the
method described in ref. 45-47. For comparison, the electronic
structures and optical properties of Te,P,09 were also investi-
gated using the LDA(CA-PZ), GGA(PW91) and GGA(RPBE)
functionals (shown in Table S2 in the ESIt). The results show
that the GGA-PBE functional gives more reliable results in
comparison with the experimental values. Hence, herein, we
only discuss the GGA-PBE results.

3. Results and discussions
3.1 The electronic structures of Te,P,0,

Using the method described above, the band structures and the
projected density of states of Te,P,Oo were obtained. It can be
seen clearly from Fig. 1 that Te,P,0, is an indirect bandgap
compound with the bandgap of 3.43 eV. The obtained bandgap
is smaller than the experimental value (about 4.30 eV).*® This
underestimation of the bandgap may be related with the
derivative discontinuity of the exchange-correlation energy.*
The projected density of states (PDOS) of Te,P,0q is shown in
Fig. 2. For the Te,P,0, compound, the states of the valence
bands (VB) from —10 eV to the Fermi level are mainly the Te sp,
P sp and O sp states. The states at the bottom of the conduction
bands (CB) from 3 eV to 6.5 eV are dominated by the Te 5p and O
2p orbitals. From the states at the valence band and the
conduction band, the hybrid states of the P-O and Te-O
chemical bonds can be determined. According to the revised
model,'***-** the lone pair states from the Te-O chemical bond
can be deduced. The optical properties of the material are
closely related to the electronic transition between the top of the
valence band and the bottom of the conduction band. Hence,
we believe that the Te-O and P-O chemical bonds play an
important role in determining the optical properties of Te,P,0q.
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Fig. 1 Obtained band structures of Te;P>0s.

3.2 The refractive indices and Born effective charges of
Te,P,09

The obtained refractive indices and birefringence of Te,P,0q
are shown in Fig. 3. From the data shown in Fig. 3, it can be
determined that the calculated refractive indices follow the
order of n, > ny > n,. The calculated birefringence is 0.12496~
0.09236 in the wavelength range of 404.65-1013.61 nm. It is
interesting to note that the reported experimental birefringence
of Te,P,0y is 0.13786-0.10615 in the wavelength range of
404.66-1013.98 nm. Thus, it is obvious that the calculated value
matches well with the experimental value.

To better understand the atomic contribution to the optical
anisotropic birefringence, the Born effective charges®® were
also investigated in this work. Because the optical anisotropic
birefringence is closely related with the difference in the
macroscopic polarizability along different optical axes, we
focused on the anisotropic polarization.”””* The Born effective

charges are defined as:
q}_B_om — g %
Y e 6d/.

where 6, is the change in polarization along the displacement
direction 6dj. More details can be found elsewhere.®®®* The ob-
tained Born effective charges are shown in Table 1 and Table S3
in the ESL{ It is interesting to note that unlike ABCO;F
described in ref. 61, which has nondiagonal tensors of atomic
Born effective charges of almost zero, nonzero nondiagonal
tensors are found in Te,P,0q. As described in ref. 61, the base
unit of ABCO;F compounds are CO; groups, and the CO; groups
are all in a coplanar plane, which makes the nondiagonal
tensors of the Born effective charges in these carbonates vanish.
In contrast, for the Te,P,Oy compound described herein, it
crystallizes in a 3D structure with PO, tetrahedrons and a TeOs
square pyramid connected by Te-O and P-O chemical bonds.
This complicated 3D structure makes it possess nonzero Born
effective charges (shown in Table S3 in ESI{). Specifically, when
the Te,P,0, compound is exposed to an external electric field
along the special direction, the electrons move everywhere, not

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra10653g

Open Access Article. Published on 24 January 2020. Downloaded on 2/20/2026 4:14:49 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Te PO,

View Article Online

RSC Advances

~
Ny
)
-
0
3
b
W
'
>

oo NP~ OOCO DN A~ O

N

PDOS(electrons/eV)
=)
|

R mmmmeem——tad

TDOS

5 10 15

Energy(eV)

Fig. 2 Projected density of states (PDOS) of Te,P,Oq.

Te,P.O, possess a relative small difference in comparison, implying that
215 k. . . . .
—=—n_ the Te and O atoms make a relatively large atomic contribution
_a;ﬁ 2104 e, to the anisotropic birefringence. We believe that the contribu-
= 1 ——q tion to the birefringence is provided mainly by the TeOs group.
> -
g 205 "
51
“
& 2.00
1.95 Table 1 Obtained diagonal tensor of the atomic Born effective
i | charges of Te,P,0q
02T T
g 010 000000000000 o oo o oo Compound  Atom gy Gy Goz Ag®o™
S oos ] D D DD
;g 0.06 Te,P,0q Tel 4.34265 4.65936 6.63644  —2.29379
é 0.04 Te2 6.4218 5.38842 3.37218 3.04962
0027 Te3 434265  4.65936  6.63644  —2.29379
0.00 T T T v T v T
600 300 1000 1200 Te4 6.4218 5.38842 3.37218 3.04962
W P1 4.40285 3.49299 4.36297 0.03988
avelength(nm)
P2 4.70919 4.86415 3.77507 0.93412
Fig. 3 Calculated refractive indices and birefringence of Te,P,Os. P3 4.40285 3.49299 4.36297 0.03988
P4 4.70919 4.86415 3.77507 0.93412
o1 —1.78151  —1.84853  —2.74356 0.96205
02 —3.2844 -2.12701 —-1.33367 —1.95073
. o . 03 —2.85789 —1.94646 —1.32288 —1.53501
only in the direction of the external electric field, but also the 04 —1.40561 —0.89945 —3.71391 2.3083
vertical direction. Hence, nonzero nondiagonal Born effective 05 ~1.30274 —2.25599 —1.88828 0.58554
charges can be found in Te,P,0y. Furthermore, we also per- 06 -1.56074  —3.25254 —1.86712 0.30638
formed a detailed investigation into the diagonal Born effective o7 —1.54143  -1.92023 —2.76231  1.22088
. . . 08 -3.00828 —2.10674 —1.13507 —1.87321
charges along the optic principal axis and calculated the
) ) . . 09 —3.13389 —2.04796 —1.37986 —1.75403
difference in the Born effective charges. As described above, the 010 178151 —1.84853  —2.74356 0.96205
refractive indices follow the sequence of n, > n, > n,, thus the o11 _3.2844 ~212701 —1.33367 —1.95073
difference in the Born effective charges was obtained by the gy 012  —2.85789 —1.94646 —1.32288 —1.53501
— g, The obtained diagonal tensor of the atomic Born effective 013~ —-1.40561 —0.89945 -—3.71391  2.3083
charges of Te,P,0, g;°™ is shown in Table 1. As shown in Table o4 —1.30274  —2.25599  —1.88828 0.58554
. . . . 015 —1.56074  —3.25254 —1.86712 0.30638
1, a relatively large difference in the Born effective charge 016 1.54143 —1.92023 —2.76231 1.92088
tensors was found in the Te and O atoms, while the P atoms 017 —3.00828 —2.10674 —1.13507 —1.87321
018 —3.13389 —2.04796 —1.37986  —1.75403
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Table 2 The obtained refractive indices and birefringence (at 1064
nm) of Te,P,0g, Ba,TeO(POy4),, and TezOz(PO,), after real-space
atom-cutting was performed

Crystal Contribution Ny ny n, An
Te,P,09 Cut-PO 1.484 1.458 1.405 0.079
Cut-TeO 1.232 1.226 1.203 0.029
Origin 2.031 1.974 1.939 0.092
Ba,TeO(PO,), Cut-BaO 1.408 1.332 1.323 0.085
Cut-PO 1.555 1.486 1.475 0.080
Cut-TeO 1.600 1.588 1.563 0.037
Origin 1.877 1.860 1.767 0.110
Te;05(POy), Cut-PO 1.622 1.585 1.570  0.052
Cut-TeO 1.243 1.229 1.211 0.032
Origin 2.027 1.998 1.906 0.121

Table 3 The obtained distortion indices of the different polyhedrons
in Te;P,0g, Ba,TeO(POy),, and TesO3(PO,),

Te,P,04 Ba,TeO(PO,), Te;03(POy),
PO, 0.005 0.020 0.013
TeO, 0.034 0.039 0.051
BaO, 0.034

3.3 The contribution from TeO, polyhedrons in tellurium
phosphate

To better understand the contribution from the TeO, poly-
hedrons to the birefringence, the electronic structures and the
optical response of the other tellurium phosphates Ba,-
TeO(PO,), and Te;03(PO,), were also investigated. The ob-
tained band structures and projected density of states (PDOS) of
Ba,TeO(PO,), and Te;03(PO,), are shown in Fig. S1-S4 in the
ESIL.T As shown in Fig. S1 and S3,f the obtained bandgap of
Ba,TeO(PO,), and Te;05(PO,), are 4.11 and 3.63 eV, respec-
tively. To overcome the underestimation of the bandgap, HSE06
calculations® were performed using the PWmat code.®*** The
obtained HSE06 bandgap of Ba,TeO(PO,), and Te;03(PO,), is
4.47, and 4.18 eV, respectively. As shown in Fig. S2 and S4,} the
states at the top of the valence band and at the bottom of the
conduction band are mainly the Te-sp states, O-sp states, and P-
sp states. Also, the chemical bonds of Te-O and P-O can also be
found at the top of the valence band. Hence, it can be deduced
that the TeO, polyhedron and PO, tetrahedron may play an
important role in determining the optical response of these
tellurite phosphates.

The refractive indices and birefringence of Ba,TeO(PO,), and
Te;03(PO,), were also obtained using the method described
above, and the results are shown in Fig. S5 and S6, respectively,
and Table 2. As shown in Fig. S5 and S6,T the Ba,TeO(PO,), and

View Article Online
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Te;0;(PO,4), possess a relatively large birefringence of 0.110 and
0.121 (at 1064 nm), respectively. The birefringence of these
compounds follow the sequence of An(Te;03(P0O,),) > An(Ba,-
TeO(PO,),) > An(Te,P,0q).

The contribution from different polyhedrons was further
investigated using the real-space atom-cutting method.”
During the calculation, the atom-cutting radius of O, P, Te, and
Ba was set as 1.10, 0.95, 0.96, and 1.74 A, respectively. After the
real-space atom-cutting method was performed, the refractive
indices and birefringence of Te,P,O9, Ba,TeO(PO,), and
Te;03(PO,4), were obtained, which are shown in Table 2, and
Fig. S7-S9 in the ESI,} respectively. As shown in Table 2, in
comparison with the PO, tetrahedron and BaO, polyhedrons,
the TeO, polyhedrons give the main contribution to the total
birefringence. Taking Te,P,04 as example, the its birefringence
is about 0.092 at 1064 nm. However, after the TeOs polyhedron
was removed, the obtained birefringence of the other part
(marked as cut-TeO) is only about 0.029, implying that the TeOs
polyhedron may give a contribution of about (0.092 — 0.029 =
0.063) to the total birefringence of Te,P,0o. Thus, in compar-
ison with the PO, tetrahedron, the TeO; polyhedron gives main
contribution to the total birefringence. A similar conclusion was
also found for the other tellurium phosphates, Ba,TeO(PO,),
and Te;05(PO,), (as shown in Table 2). It is interesting to note
that the conclusion obtained from the real-space atom-cutting
is consistent with the results obtained from the Born-effective
charges analysis (as described above).

The optical anisotropic birefringence is related with the
anisotropic optical response from the different polyhedrons.
The relatively small anisotropic polarization of the regular PO,
unit may be related with the relatively small distortion with the
regular PO, unit. Herein, the distortion indices of the different
polyhedrons in these tellurium phosphates were also investi-
gated. The distortion indices, defined by Baur as

1 li—1 .
D= . E M,“ was calculated using the VESTA soft-
i—1

lav

ware.®® The obtained distortion indices of the different poly-
hedrons in these tellurium phosphates are shown in Table 3. As
described above, the TeO, polyhedrons give the main contri-
bution to the total birefringence, and hence was focused on the
distortion indices of the TeO, polyhedron. As shown in Table 3,
the distortion indices of the TeO, polyhedrons follow the
sequence of D(Te;03(PO,),) > D(Ba,TeO(PO,4),) > D(Te,P,0q),
which is consistent with the sequence of the birefringence of
An(Te;03(PO,),) > An(Ba,TeO(PO,),) > An(Te,P,0q).

3.4 The atomic contribution to the SHG response of Te,P,0,

The SHG tensors of Te,P,0, were also obtained (shown in Table
4). For that crystallized in the Cc space group, there are six
independent nonzero SHG tensors, di4, d1s, d13, d1s, d24 and ds;.

Table 4 The calculated SHG tensors and experimental powder SHG (PSHG) intensity

Crystal Space group

Calculated SHG tensors (pm V1)

PSHG intensity

Te,P,04 Cc

4090 | RSC Adv, 2020, 10, 4087-4094

dis = —0.17, dys = —0.53, d1p = 0.59, d13 = —0.56, dpy = —0.95, dz; = 1.01

1.3 x KDP

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 The obtained SHG density of Te,P,Oq. Note that the brown, pink, and red atoms are Te, P, and O atoms; and the color and black—white

clouds are the veocc and vhunocc SHG densities, respectively.

As shown in Table 4, for Te,P,0y, the maximum is d3; = 1.01 pm
V™', which is about 2.6 times that of d;5(KDP). The obtained
SHG tensors are comparable with the experimental powder
second-harmonic generation (PSHG) intensity (about 1.3 x
KDP). The experimental values agree well with the calculated
values, indicating that the method selected in this work is
appropriate. To deeply investigate the atomic contribution to
the SHG tensors, the spatial distribution of the atomic SHG
density was also calculated. The SHG density method is
a normalized weighting coefficient via the use of the effective
SHG response of each occupied and unoccupied band.***
Using this method, the states irrelevant to the SHG response
will not be shown, and the distribution of the SHG density
represents the origin of the SHG response. Herein, we only show
the SHG density obtained from the virtual electron process
(labeled as veocc) and the virtual hole process (labeled as vhu-
nocc). The obtained SHG density of Te,P,0q is shown in Fig. 4,
where the color part and white-black part represent the SHG
density of the veocc and vhunocc process, respectively. As
shown in Fig. 4, there is no SHG distribution around the P
atoms, implying that the P atoms give a relatively small
contribution to the total SHG response. It is shown that the SHG
density is distributed mainly on the Te and O atoms, indicating
that the TeOs polyhedrons give the main contribution to the
total SHG response.

4. Conclusions

In this work, the refractive indices, birefringence, and the SHG
coefficient of Te,P,0o were obtained using the first-principles
method. The obtained results are in good agreement with the
experimental values. The calculated birefringence of Te,P,0q is
0.12496-0.09236 in the wavelength range of 404.65-1013.61 nm.
The maximum SHG tensor ds; is 1.01 pm V', which is about

This journal is © The Royal Society of Chemistry 2020

2.6 times that of dss (KDP). The atomic contribution to the
birefringence and SHG response was also investigated using the
projected density of states, Born effective charges, and real-
space SHG density method. The results show that the TeOs
groups play an important role in determining the birefringence
and SHG response of Te,P,0o. The electronic structures and
optical response of Ba,TeO(PO,), and Te;03(PO,), were also
investigated for comparison. The results show these two tellu-
rium phosphates also possess a large birefringence like
Te,P,0. Also, the birefringence originates from the TeO,
polyhedrons, which was confirmed by the real-space atom-
cutting results and distortion indices.
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