
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
20

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

2:
48

:4
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Variational mode
aSchool of Mathematical Sciences, University

Jabr.aljedani@adelaide.edu.au
bFaculty of Applied Studies, King Abdulaziz

Cite this: RSC Adv., 2020, 10, 16016

Received 12th December 2019
Accepted 5th April 2020

DOI: 10.1039/c9ra10439a

rsc.li/rsc-advances

16016 | RSC Adv., 2020, 10, 16016–16
l for a rippled graphene sheet

Jabr Aljedani, *ab Michael J. Chen a and Barry J. Cox a

The calculus of variations is utilised to study the behaviour of a rippled graphene sheet supported on a metal

substrate. We propose a model that is underpinned by two key parameters, the bending rigidity of graphene g,

and the van der Waals interaction strength x. Three cases are considered, each of which addresses a specific

configuration of a rippled graphene sheet located on a flat substrate. The transitional case assumes that both

the graphene sheet length and substrate length are constrained. The substrate constrained case assumes only

the substrate has a constrained length. Finally, the graphene constrained case assumes only the length of the

graphene sheet is constrained. Numerical results are presented for each case, and the interpretation of these

results demonstrates a continuous relationship between the total energy per unit length and the substrate

length, that incorporates all three configurations. The present model is in excellent agreement with earlier

results of molecular dynamics (MD) simulations in predicting the profiles of graphene ripples.
1 Introduction

Graphene is a two-dimensional sheet of carbon atoms bonded
to each other in a planar hexagonal array. This two-dimensional
structure endows graphene with many useful electronic and
mechanical properties.1–7 These properties mean graphene is
a highly promising material for constructing nano-
electromechanical systems.8,9 Graphene is hypothesised to be
a biocompatible material since its bending stiffness is compa-
rable with that of the lipid bilayers of the biological cells,10 and
it has many other applications in gas separation,11 biomedi-
cine,12 nitrogen reduction reaction,13 and metal-ion batteries.14

For example, popgraphene is a benecial anode material in
lithium-ion batteries with fast charge and discharge rates.15

However, graphene does not always remain planar. For
example, ripples are observed in suspended graphene sheets,16 as
well as graphene on a substrate.17 Experimental studies nd that
the electronic properties of graphene can be affected by the range
and height of these ripples.18,19 Gui et al.20 use rst-principles
calculations to predict the electronic properties of a rippled gra-
phene sheet where a band gap opening is observed in the rippled
graphene. They evaluate a direct band gap at 0.93 eV which
indicates rippled graphene may be a highly tunable semi-
conductor. They also report that the band gap increases propor-
tionally with ripple amplitude, which is the maximum distance
between the graphene sheet and the substrate.

The pattern of ripples in graphene may be affected by
a variety of factors, including temperature, substrate material,
and the size of the graphene sheet. For example, suspended
graphene remains at with no ripples when the temperature is
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close to absolute zero, but ripples appear as the temperature
increases.21 When a graphene sheet is placed on a substrate the
amplitude of the ripples depends on the substrate properties
such as roughness and interfacial van der Waals interactions.17

Moreover, the overall size of the graphene sheet has a signi-
cant impact on the amplitude of ripples, with the ripple
amplitude increasing proportionally with the size of the sheet.22

The bending rigidity of graphene plays an important role in
the conformation of ripples. Using density functional theory
calculations, Wei et al.10 evaluate the bending rigidity of
a single-layer graphene at 1.44 eV. They compare this result to
earlier obtained values for the bending rigidity of graphene
which range from 0.80 to 1.60 eV. To cover this range of values,
we will consider various bending rigidities for the rippled gra-
phene in the present paper.

The energies we consider when modelling ripples in gra-
phene are the same as those considered when modelling a fold
of graphene. Cox et al.23 develop a model which describes
a graphene sheet folded onto itself where two energies are taken
into account. The rst is the elastic energy that arises when
bending a graphene sheet which is represented mathematically
by integrating the square of the line curvature over the length of
the total curve and scaled by the bending rigidity of graphene.
The second energy is the van der Waals (vdW) interaction
between the at section of the graphene layers, prescribed as
the integral of a Heaviside unit step function multiplied by the
vdW energy per unit area. An extension of the fold model was
further developed by Dyer et al.24 where either a carbon nano-
tube of circular or elliptical cross section is encapsulated in the
graphene fold. A comparison between MD simulations and the
mathematical model shows excellent agreement between the
two approaches in determining the fold shape.

In the following section, we formulate a general mathemat-
ical model of a single graphene ripple on a substrate. In Section
This journal is © The Royal Society of Chemistry 2020
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Table 1 Empirical values (with the relevant references given in
superscript) for d, x, and the prescribed ripple height h for each case of
a rippled graphene sheet on a substrate

Rippled graphene
on d (Å) x (eV Å�2) h (Å)

Cu(111) substrate 3.2525 0.0248126 8.0 d

Ni(111) substrate 2.1027 0.0913326 6.7 d
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3 we non-dimensionalise this model and employ the calculus of
variations assuming a xed length (isoperimetric) constraint of
both the rippled graphene sheet and the substrate. In Section 4
we relax the isoperimetric constraint on the sheet length, but
maintain a xed substrate length. The substrate length is varied
in Section 5 and an isoperimetric constraint is applied to only
the sheet length. The solutions and associated numerical
details are provided with each case. The main results and the
relationships between the three cases considered here are
described in Section 6. Discussion and some concluding
remarks are made in Section 7.

2 Model formulation

We propose a general formulation to determine the conforma-
tion of a rippled sheet of graphene on a substrate for each of the
three cases mentioned above. We consider two different metal
substrates: Cu(111) and Ni(111). The geometry of the rippled
graphene sheet is shown in Fig. 1. Here we assume a trans-
lational symmetry in the z-direction which reduces the problem
to two dimensions. Also, the reective symmetry about the y-
axis allows us to consider only solutions in the right half plane.
We further divide the solution curve into three sections. The
rst section C1 is the curve from the point (0, h) to the point (x0,
y0) where the line curvature is strictly negative. The second
section C2 is from (x0, y0) to (x1, d) where the line curvature is
strictly positive. The third section C3 is the horizontal line from
(x1, d) to (x2, d) where the line curvature is zero. The concate-
nation of these sections is denoted by C ¼ C1 + C2 + C3. In these
position vectors we use h to denote the ripple height, and d to
denote the separation distance between the substrate and the
at section of the graphene sheet.

With reference to the model developed by Cox et al.,23 the
dominant energies for our model are the elastic bending energy
and the vdW interaction energy. The elastic energy Ee is modelled
with

Ee ¼ g

ð
C

k2ds;

where g is the bending rigidity of graphene, s is the arc length,
and k is the line curvature of y ¼ y(x) which is given by
Fig. 1 Geometry of the rippled graphene.

This journal is © The Royal Society of Chemistry 2020
k ¼ y00�
1þ y02

�3=2 :

As mentioned in Section 1, the bending rigidity of graphene
reported by various authors ranges from 0.8 to 1.6 eV as pre-
sented in ref. 10, and for the purpose of comparison we consider
a linear sample from this range for g, namely, 0.8, 1.0, 1.2, 1.4,
and 1.6 eV. We model the vdW interaction energy between the
graphene and the substrate as

Ev ¼ �x
ð
C

uðx� x1Þds;

where x denotes the vdW energy of graphene–substrate inter-
actions per unit area, and u(x � x1) is a Heaviside unit step
function. Our model assumes that the elastic energy dominates
in sections C1 and C2, and the vdW interaction dominates in C3.
We comment that the curvature and therefore the elastic energy
vanishes in C3, but discarding the vdW interaction in sections
C1 and C2 is an approximation we make in the modelling.
Therefore, the total energy per unit length may be expressed by

Etot ¼ Ee þ Ev ¼ g

ð
C1þC2

k2ds� x

ðx2
x1

dx; (1)

subject to the boundary conditions

x(0) ¼ 0, y(0) ¼ h, _y(0) ¼ 0, y(x1) ¼ d, and _y(x1) ¼ 0 (2)

where at the endpoint x ¼ x1 the value of x1 is not prescribed
and we have a natural boundary condition on x. Here dots
denote differentiation with respect to x.

For the purpose of comparison we prescribe a particular
value of h for each case of a rippled graphene sheet supported
on a different substrate, and the reason for adopting these
particular values will be explained in Section 4. The prescribed
ripple height, h, and empirical values for the separation
distance between graphene and the substrate, d, and the vdW
energy of graphene–substrate interactions per unit area, x,
corresponding to each substrate are shown in Table 1. Now we
apply this model to consider the three cases for the length of
graphene sheet placed on a substrate, namely, the transitional
case, the substrate constrained case, and the graphene con-
strained case. Fig. 2 illustrates the geometry of each case.

3 The transitional case

We now apply the calculus of variations to determine the
conformation of a rippled graphene sheet and derive a solution
RSC Adv., 2020, 10, 16016–16026 | 16017
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Fig. 2 Schematic showing the geometries of: (a) the transitional case, (b) the substrate constrained case, and (c) the graphene constrained case.
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for which the functional (1) is minimised. We impose an iso-
perimetric constraint on the total arc length of C, given byð

C

ds ¼ L:

Moreover we assume that x2 is xed, but x1 varies (to be
determined from a natural boundary condition). Therefore the
new functional we wish to minimise is of the form

Etot ¼ Ee þ Ev ¼
ð
C1þC2

�
gk2 þ l

�
dsþ ðl� xÞðx2 � x1Þ; (3)

subject to the boundary conditions (2), where l is a Lagrange
multiplier corresponding to the isoperimetric constraint. We
nondimensionalise (3) by dening X¼ x/a and Y¼ y/a where a is
a scaling factor, and therefore ÿ ¼ Y00/a and _y ¼ Y0, where primes
denote derivatives with respect to the nondimensional X coordi-
nate. The substitution of these new variables into eqn (3) yields

Etot ¼
ðX1

0

a

2
64 g

a2

Y 002�
1þ Y 02�5=2 þ l

�
1þ Y 02

�1=2375dX
þ aðl� xÞðX2 � X1Þ: (4)

Furthermore we subtract the xed energy at X2, and divide
both sides of eqn (4) by ax. Thus we derive the non-
dimensionalised energy functional as

Êtot ¼
ðX1

0

2
64 g

xa2

Y 002�
1þ Y 02�5=2 þ l

x

�
1þ Y 02

�1=2375dX þ ð1� l=xÞX1:

(5)

We let a ¼ ffiffiffiffiffiffiffiffi
g=x

p
and m ¼ l/x so that

Êtot ¼
ðX1

0

2
64 Y 002�

1þ Y 02�5=2 þ m
�
1þ Y 02

�1=2375dX þ ð1� mÞX1; (6)

which is the functional we wish to minimise subject to the
boundary condition Y(0) ¼ h/a and a natural boundary condi-
tion applies at X¼ X1. To simplify the following calculations, we
use f to denote the integrand part of (6), that is
16018 | RSC Adv., 2020, 10, 16016–16026
f
�
Y 0;Y 00

�
¼ Y 002�

1þ Y 02�5=2 þ m
�
1þ Y 02

�1=2
: (7)

Extremals of (6) are given by Euler–Lagrange equation

fY � d

dX
ðfY 0 Þ þ d2

dX 2
ðfY 00 Þ ¼ 0; (8)

and since (7) does not depend on Y explicitly, then on inte-
grating (8) with respect to X, we obtain the rst integral

fY 0 � d

dX
ðfY 00 Þ ¼ b; (9)

where b is a constant. Further, the integrand has no explicit
dependence on X, this provides the additional rst integral

Y 0
�
fY 0 � d

dX
ðfY 00 Þ

�
þ Y 00fY 00 � f ¼ H; (10)

where H is a constant. On considering the corresponding
second-order variational problem, we may derive the standard
equation for the rst variation of Êtot as

dÊtot ¼
h
PdY þQdY 0 �HdX

i
X¼X1

þ
ðX1

0

�
fY � d

dX
ðfY 0 Þ þ d2

dX 2
ðfY 00 Þ

�
dYdX

þð1� mÞ½dX �X¼X1
;

where P ¼ fY0 � d(fY00)/dX, Q ¼ fY00, and H ¼ (Y0P + Y00Q � f). Here
the natural boundary condition, which applies when the X-
coordinate at the end point X ¼ X1 is not prescribed, requires H
¼ (1 � m). Therefore by combining eqn (9) and (10), we obtain

bY0 + Y00fY00 � f ¼ (1 � m).

Which aer the substitution of (7) leads to

k̂2 ¼ Y 002�
1þ Y 02�3 ¼ mþ ð1� mÞ � bY 0�

1þ Y 02�1=2 ;

or equivalently

k̂ ¼ �
 
mþ ð1� mÞ � bY 0�

1þ Y 02�1=2
!1=2

;

This journal is © The Royal Society of Chemistry 2020
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which is an equation relating the nondimensional curvature k̂

and the rst derivative of Y. In order to obtain the parametric
solutions, we make the substitution of Y0 ¼ tan q which yields

k̂ ¼ �[m + (1 � m)cos q � b sin q]1/2.

The above expression may be written as follows

k̂ ¼ �

2
64mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ b2

q 0
B@ ð1� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� mÞ2 þ b2

q cos q

� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ b2

q sin q

1
CA
3
75

1=2

;

whereupon we dene a new parameter j, such that

cos j ¼ ð1� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ b2

q ; and sin j ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ b2

q :

This leads to the succinct formula

k̂ ¼ �[m + (1 � m)sec j cos(j + q)]1/2. (11)

Now, using the fact that k̂ ¼ cos(q)dq/dX ¼ sin(q)dq/dY, we
derive two rst order differential equations, namely

dX

dq
¼ � cos q

½mþ ð1� mÞsec j cosðjþ qÞ�1=2
; (12a)

dY

dq
¼ � sin q

½mþ ð1� mÞsec j cosðjþ qÞ�1=2
: (12b)

To facilitate further integration we change the parametric
variable of our equations from q to f such that q ¼ 2f � j, thus
eqn (12a) and (12b) take the following forms

dX

df
¼ �

"
2ðcos j cos 2fþ sin j sin 2fÞ

ðmþ ð1� mÞsec j� 2ð1� mÞsec j sin2
fÞ1=2

#
; (13a)

dY

df
¼ �

"
2ðcos j sin 2f� sin j cos 2fÞ

ðmþ ð1� mÞsec j� 2ð1� mÞsec j sin2
fÞ1=2

#
; (13b)

and we now obtain the general solutions by integrating eqn
(13a) and (13b). This yields

X(f)¼ c1 � A[cos j (E(f,k)� BF(f,k))� sin j (1� k2 sin2 f)1/2],

Y(f)¼ c2HA[sin j (E(f,k)� BF(f,k)) + cos j (1� k2 sin2 f)1/2],

with the parameters

A ¼ 2ðmþ ð1� mÞ sec jÞ1=2
ð1� mÞ sec j ; B ¼ m

mþ ð1� mÞ sec j ;

k ¼
�

2ð1� mÞ sec j
mþ ð1� mÞ sec j

�1=2

;

This journal is © The Royal Society of Chemistry 2020
where F(f,k) and E(f,k) represent the incomplete elliptic
integrals of the rst and second kind, respectively, with
elliptic modulus k, and c1, c2 are arbitrary constants of
integration.

We now dene two functions which play a signicant role in
determining our parametric solutions, namely

g1(f) ¼ A[(E(f,k) � E(f0,k)) � B(F(f,k) � F(f0,k))], (14a)

g2(f) ¼ A(1 � k2 sin2 f)1/2. (14b)

The line curvature changes sign at f0 ¼ sin�1(1/k) corre-
sponds to (X0, Y0) which is the boundary point between the two
curves C1 and C2, which has coordinates

X0 ¼ [sin j g2(j/2) � cos j g1(j/2)], (15a)

Y0 ¼ h

a
� ½sin j g1ðj=2Þ þ cos j g2ðj=2Þ�: (15b)

Moreover, the solutions are shown to have a rotational
symmetry about this critical point (X0, Y0) where f varies over
the range [j/2, f0]. Thus our solutions may be written in terms
of X0 and Y0 as

XC1/C2
(f) ¼ X0 � [cos j g1(f) � sin j g2(f)], (16a)

YC1/C2
(f) ¼ Y0 � [sin j g1(f) + cos j g2(f)]. (16b)

Now, using the boundary condition YC2
(j/2) ¼ d/a, we may

obtain

d� h

2a
¼ �½sin j g1ðj=2Þ þ cos j g2ðj=2Þ�:

Hence we may rewrite eqn (15b) as

Y0 ¼ hþ d

2a
;

which introduces the Y component of the critical point as the
midpoint of the ripple amplitude and the at section of the
graphene sheet. We also comment that x ¼ aX and y ¼ aY, and

so multiplying these solutions by the scaling factor a ¼ ffiffiffiffiffiffiffiffi
g=x

p
recovers the re-dimensionalised solutions.
Numerical results

We are le with two parameters to determine, namely j and m.
We may nd their values by solving the following system of
equations numerically

yC2
ðj=2Þ ¼ d; and

ð
C

ds ¼ L;

where d takes a specic empirically determined value for each
substrate as given in Table 1, and L is the assumed xed arc
length of C. Aer nding the unknowns j and m, the solution is
fully determined and representative plots are shown in Fig. 3. At
this point, we may also give the total half arc length of the ripple
Lrip by integrating ds over the curve C1 + C2,
RSC Adv., 2020, 10, 16016–16026 | 16019
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Fig. 3 Rippled graphene sheet located on: (a) Cu(111) substrate and (b) Ni(111) substrate, for various bending rigidity g, in the transitional case.

Table 2 The x-component of the critical point x0 and the ripple half
arc length Lrip for various bending rigidities g, in the transitional case

g (eV)

Cu(111) substrate Ni(111) substrate

x0 (Å) Lrip (Å) x0 (Å) Lrip (Å)

0.80 8.42 30.86 4.36 16.17
1.00 9.80 32.29 5.10 16.92
1.20 10.84 33.52 5.65 17.57
1.40 11.71 34.61 6.11 18.14
1.60 12.45 35.59 6.50 18.65
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Lrip ¼
ffiffiffi
g

x

r 	ðq1
q0

½mþ ð1� mÞsec j cosðjþ qÞ��1=2dq

�
ðq2
q1

½mþ ð1� mÞsec j cosðjþ qÞ��1=2dq


:

Again using the substitution of q ¼ 2f � j we deduce that

Lrip ¼ 2

r

ffiffiffi
g

x

r "ðf0
j=2

�
1� k2 sin2

f
��1=2

df

�
ðj=2
f0

�
1� k2 sin2

f
��1=2

df

#
;

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ ð1� mÞsec jp

. Hence, the total half arc length of
the ripple is given by

Lrip ¼ 4

r

ffiffiffiffiffiffiffiffi
g=x

p
½Fðf0; kÞ � Fðj=2; kÞ�: (17)

We may also calculate the elastic energy by integrating the
square of the line curvature over the total length of C1 + C2, as
follows

Ee ¼ 2r
ffiffiffiffiffi
gx

p "ðf0
j=2

�
1� k2 sin2

f
�1=2

df

�
ðj=2
f0

�
1� k2 sin2

f
�1=2

df

#
;

and therefore, the elastic energy is given by

Ee ¼ 4r
ffiffiffiffiffi
gx

p
½Eðf0; kÞ � Eðj=2; kÞ�:

Hence, the total energy per unit length for this model is given
by

Etot ¼ 4r
ffiffiffiffiffi
gx

p
½Eðf0; kÞ � Eðj=2; kÞ� � xðx2 � x1Þ: (18)
16020 | RSC Adv., 2020, 10, 16016–16026
Numerical values for the x-component of the critical point x0
and the total half arc length of the ripple Lrip are presented in
Table 2, for a range of values of the bending rigidity g. The vdW
interaction x takes a specic empirically derived value for each
substrate as given in Table 1.
4 The substrate constrained case

We now consider the special case, shown in Fig. 2(b), by
removing the assumed isoperimetric constraint on the total arc
length of C to allow graphene to overhang the substrate.
Therefore we discard the variation of x2 and substitute l ¼ 0,
and a ¼ ffiffiffiffiffiffiffiffi

g=x
p

into eqn (5) to obtain the functional that we wish
to minimise, that is

Êtot ¼
ðX1

0

Y 002�
1þ Y 02�5=2 dX þ X1: (19)

We note that this expression is identical to (6) with m ¼ 0,
and so by the same reasoning as in Section 3 we obtain

k̂ ¼ �[sec j cos(j + q)]1/2.

Consequently, we redene some of our parameters so that
now A ¼ 2(sec j)�1/2, B ¼ 0, and k ¼ ffiffiffi

2
p

. Again the line
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Rippled graphene sheet located on: (a) Cu(111) substrate and (b) Ni(111) substrate, for various bending rigidity g, in the substrate con-
strained case.

Table 3 The x-component of the critical point x0 and the ripple half
arc length Lrip for various bending rigidities g, in the substrate con-
strained case

g (eV)

Cu(111) substrate Ni(111) substrate

x0 (Å) Lrip (Å) x0 (Å) Lrip (Å)

0.80 6.79 29.81 3.49 15.63
1.00 8.44 31.13 4.37 16.32
1.20 9.65 32.34 5.02 16.95
1.40 10.63 33.43 5.53 17.52
1.60 11.45 34.44 5.97 18.04

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
20

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

2:
48

:4
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
curvature k̂ changes sign at f0 ¼ sin�1(1/k) ¼ p/4 which corre-
sponds to the point (X0, Y0) and has similar coordinates to that
in (15a) and (15b). Taking the redened parameters into
account, these coordinates are

X0 ¼ [sin j g2(j/2) � cos j g1(j/2)],

Y0 ¼ h

a
� ½sin j g1ðj=2Þ þ cos j g2ðj=2Þ�:

Similarly, with the rotational symmetry of the solutions
about the point (X0, Y0), and the variation of f over [j/2, p/4],
the curves C1 and C2 still can be written as

XC1/C2
(f) ¼ X0 � [cos j g1(f) � sin j g2(f)],

YC1/C2
(f)¼Y0 � [sin j g1(f) + cos j g2(f)].

Using the same derivation as in Section 3, the Y component
of the critical point in this case may be rewritten as

Y0 ¼ hþ d

2a
:

As before, multiplying the solutions above by the scaling
factor a ¼ ffiffiffiffiffiffiffiffi

g=x
p

recovers the dimensional solutions for the
curves C1 and C2.
Numerical results

In this case we have only one parameter to determine, namely j,
and using the boundary condition YC2

(j/2) ¼ d, the value of j
may be determined numerically. Aer determining j, the
solution is fully determined and representative plots are shown
in Fig. 4. We comment here that the gradient of the graph for g
¼ 0.8 in the neighbourhood of the critical point becomes
This journal is © The Royal Society of Chemistry 2020
innite when the ripple amplitude h z 8.0 d for the Cu(111)
substrate, and h z 6.7 d for the Ni(111) substrate where d takes
a specic empirical value for each substrate as presented in
Table 1. We note that by increasing the ripple height the gra-
phene sheet starts to bend over itself which is the transition
point from the rippled state to the wrinkled state. Also, higher
bending rigidities require higher ripple amplitudes for the
maximum gradient to approach innity. However, we x these
values of h for each corresponding substrate in all plots to
enable comparison between various values of the bending
rigidity g.

The total half arc length of the ripple Lrip and the total energy
Etot for this case can be calculated from eqn (17) and (18),
respectively, with the new parameters m¼ 0 and f0 ¼ p/4. Thus,
the total half arc length of the ripple is given by

Lrip ¼ 4

r

ffiffiffiffiffiffiffiffi
g=x

p
½Fðp=4; kÞ � Fðj=2; kÞ�;

and the total energy per unit length is given by

Etot ¼ 4r
ffiffiffiffiffi
gx

p
½Eðp=4; kÞ � Eðj=2; kÞ� � xðx2 � x1Þ:

Numerical values for the x-component of the critical point x0
and the total half arc length of the ripple are shown in Table 3,
RSC Adv., 2020, 10, 16016–16026 | 16021
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for a range of values for the bending rigidity g. Again the vdW
interaction strength x takes a specic empirically derived value
for each substrate as given in Table 1.
5 The graphene constrained case

In this case, as shown in Fig. 2(c), in addition to the assumed
isoperimetric constraint on the total arc length of C, we take
into account the variations of x2, and assume it varies propor-
tionally with x1, that is

x2 � x1 ¼ L�
ð
C1þC2

ds:

Following the nondimensionalisation described in Section 3,
the total energy per unit length for this case is

Êtot ¼
ð
C1þC2

0
B@g

a

Y 002�
1þ Y 02�5=2 þ la

�
1þ Y 02

�1=21CAdX

þaðl� xÞðX2 � X1Þ

¼
ð
C1þC2

0
B@g

a

Y 002�
1þ Y 02�5=2 þ la

�
1þ Y 02

�1=21CAdX

þaðl� xÞ
�
L=a�

ð
C1þC2

ds

�

¼
ð
C1þC2

0
B@g

a

Y 002�
1þ Y 02�5=2 þ xa

�
1þ Y 02

�1=21CAdX

þaðl� xÞðL=aÞ; (20)

where ds ¼ a(1 + Y02)1/2dX. We now divide both sides by xa and
set a ¼ ffiffiffiffiffiffiffiffi

g=x
p

. Further, the aim is to determine the shape of Y¼
Fig. 5 Rippled graphene sheet located on: (a) Cu(111) substrate and (b)
strained case.

16022 | RSC Adv., 2020, 10, 16016–16026
Y(X) which minimises Êtot, and here l has no impact on the
solution, so we choose l ¼ x to simplify the calculation. The
nal form of the functional to be minimised is

Êtot ¼
ð
C1þC2

0
B@ Y 002�

1þ Y 02�5=2 þ
�
1þ Y 02

�1=21CAdX ; (21)

subject to the boundary conditions provided in Section 2.
Comparing (21) and (6), we nd that m¼ 1. In a similar way as in
the previous two cases, the use of calculus of variations then
provides that

k̂ ¼ �[1 � b sin q]1/2. (22)

Similarly, by comparing (22) with the equivalent expression
for the transitional case (11), we note that in (22) j ¼ p/2 and

b acts in place of the term ð1� mÞsec j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ b2

q
as m

approaches 1. Therefore, we redene the parameters A, B, and k
in (14a) and (14b) as

A ¼ 2ð1þ bÞ1=2
b

; B ¼ 1

1þ b
; and k ¼

�
2b

1þ b

�1=2

:

The critical point (X0, Y0) represents the point of the rota-
tional symmetry which again corresponds to f0 ¼ sin�1(1/k),
and the coordinates of this point are given by

X0 ¼ g2ðp=4Þ; and Y0 ¼ h

a
� g1ðp=4Þ:

Similarly, the solutions on the curves C1 and C2 where f ˛
[f0, p/4] are

XC1/C2
(f) ¼ X0 H g2(f), and YC1/C2

(f) ¼ Y0 � g1(f).

Now, we use the boundary condition YC2
(p/4)¼ d/a to rewrite

the Y component of the critical point as
Ni(111) substrate, for various bending rigidity g, in the graphene con-

This journal is © The Royal Society of Chemistry 2020
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Table 4 The x-component of the critical point x0 and the ripple half
arc length Lrip for various bending rigidities g, in the graphene con-
strained case

g (eV)

Cu(111) substrate Ni(111) substrate

x0 (Å) Lrip (Å) x0 (Å) Lrip (Å)

0.80 10.47 32.76 5.47 17.18
1.00 11.43 34.00 5.97 17.83
1.20 12.24 35.11 6.39 18.41
1.40 12.95 36.11 6.77 18.93
1.60 13.59 37.02 7.10 19.41
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Y0 ¼ hþ d

2a
:

The dimensional solutions for the curves C1 and C2 may be
obtained by scaling these solution by a ¼ ffiffiffiffiffiffiffiffi

g=x
p

.

Numerical results

Here again we are le with only one parameter to determine,
namely b, and using the boundary condition YC2

(p/4) ¼ d, the
value of b may be determined numerically. Aer nding b, the
solution is fully determined and representative plots are shown
in Fig. 5. The total half arc length of the ripple Lrip for this case
can be evaluated from (17) with j ¼ p/2 and r ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ b
p

to give

Lrip ¼ 4

r

ffiffiffiffiffiffiffiffi
g=x

p
½Fðf0; kÞ � Fðp=4; kÞ�:

Similarly, the total energy per unit length Etot for this case is
obtained from (18), which yields

Etot ¼ 4r
ffiffiffiffiffi
gx

p
½Eðf0; kÞ � Eðp=4; kÞ� � xðx2 � x1Þ:

Numerical values for the x-component of the critical point x0
and the total half arc length of the ripple Lrip are presented in
Fig. 6 The relationship between varying the substrate length of: (a) Cu(1

This journal is © The Royal Society of Chemistry 2020
Table 4 for a range of values of the bending rigidity g. As before,
the vdW interaction x takes a specic empirically derived value
for each substrate as given in Table 1.
6 Results

For the purpose of comparison, we assume a xed half length L
¼ 700 Å for the rippled graphene sheet on a at substrate. The
goal is to obtain a relationship between the variation of the
substrate length and the total energy per unit length for the
rippled graphene. The substrate half length Lsub is divided into
three regimes that correspond to the point x2, where the gra-
phene edge ends, which can be calculated by x2 ¼ x1 + L � Lrip.
Here we comment that x2s < x2g where x2s and x2g correspond to
the substrate constrained case and the graphene constrained
case, respectively.

The substrate constrained case was formulated to describe
the regime where Lsub < x2s, provided that as Lsub gets closer to
x2s the total energy per unit length Etot decreases due to the vdW
interactions that occur when Lsub increases. The graphene
constrained case can be adapted to address the regime when
Lsub > x2g, and here the total energy per unit length Etot remains
constant since there are no more interactions that are involved
for this section. Finally, the transitional case is used to evaluate
the total energy per unit length Etot when Lsub z x2. Multiple
values for x2t were chosen from the interval [x2s, x2g] to ll the
gap between the substrate constrained case and the graphene
constrained case where x2t denotes the location of the graphene
edge in the transitional case. Fig. 6 illustrates the relationship
between varying the substrate length and total energy per unit
length included the three cases discussed above.

A graphene sheet of half length L ¼ 700 Å will remain at
when it is placed on a at substrate of the same half length. The
substrate constrained case can be adapted to investigate the
impact of reducing the substrate length on the graphene sheet.
Fig. 7 shows that ripples form in this scenario, and that there is
an increase in the ripple amplitude as the substrate length
decreases. Graphene of lower bending rigidity reaches the
11) substrate, (b) Ni(111) substrate and the total energy per unit length.

RSC Adv., 2020, 10, 16016–16026 | 16023
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Fig. 7 The relationship between reducing the substrate length of: (a) Cu(111) substrate, (b) Ni(111) substrate and the ripple amplitude.

Fig. 8 The relationship between reducing the substrate length of: (a) Cu(111) substrate, (b) Ni(111) substrate and the total energy per unit length.

Fig. 9 MD simulation models and results of graphene wrinkles reprinted (or adapted) from ref. 28, licensed under a Creative Commons
Attribution 4.0 International License. (a and b) The MD simulation model, performed by Wang et al.,28 is presented here in order to adopt the
appropriate case among those developed in this model for comparison purposes. (c) The profiles of graphene ripples or wrinkles obtained by
present model (cyan lines) superimposed upon the results of MD simulation.28

16024 | RSC Adv., 2020, 10, 16016–16026 This journal is © The Royal Society of Chemistry 2020

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
20

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

2:
48

:4
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra10439a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
20

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

2:
48

:4
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
ripple height for which the gradient of the ripple becomes
innite at a relatively longer substrate than graphene with
a higher bending rigidity. The substrate length at which the
ripple gradient becomes innite corresponds to the le end-
point of each curve in Fig. 7.

The impact of reducing the substrate length on the total
energy per unit length is presented in Fig. 8. The total energy per
unit length of the at graphene sheet is approximated at
�17.2 eV Å�1 when it is placed on copper, and at �63.5 eV Å�1

in the case of a nickel substrate. It increases when the substrate
length decreases, as expected due to reduced vdW interactions
between the graphene sheet and the substrate, as well as elastic
energy stored in the ripple. The points marked with circles
represent (Lsub0

, Etot(Lsub0
)) where Lsub0

denotes the substrate
length when the gradient of the total energy per unit length
curve approaches �x.

Starting from a at graphene sheet laying on a shrinking
substrate, the system might form a ripple or remain at and
beginning to overhang the substrate. The ripple formation
pathway would follow the transitional case and the at pathway
would follow the substrate constrained case. In an ideal setting,
ripples would not form because the energy require to follow the
rst pathway exceeds the energy lost in following the second.
However, we comment that many experimental situations
include confounding effects such as impurities and defects in
the graphene structure which are not accounted for in this
work.

Recently, morphologies of graphene wrinkles on copper
substrate were experimentally investigated by Wang et al.28 They
observed unexpected proles of wrinkles with widths in the
range of tens of nanometres, and heights in the range of a few
nanometres. Their theoretical methods and MD simulations
agree that the maximum width of wrinkles is less than 2.7 nm
which is largely smaller than those experimentally observed. As
they reported, the presence of interlayer molecules between the
graphene and the copper substrate is the main mechanism that
enlarges both width and height of graphene wrinkle. Since we
don't take into account interlayer molecules, our model is
comparable with their MD simulations without interlayer
molecules. Their MD simulation model, as reprinted in Fig. 9(a)
and (b), is a stack of two rectangular materials, upper cyan
graphene and lower red copper which is best modelled by the
transitional case in our model. Therefore, the conformations of
rippled (or wrinkled) graphene on a copper substrate, obtained
by the transitional case, with bending rigidity g ¼ 1.20 eV and
different heights are adopted to compare with the results of MD
simulations of graphene wrinkles obtained by Wang et al.,28 as
shown in Fig. 9(c). Despite the fact that the present model uses
the value of 2.481 eV nm�2 for the vdW energy of graphene–
Cu(111) interactions per unit area, but their model used the
value of 4.494 eV nm�2, both results are in excellent agreement
in predicting the proles of graphene ripples (or wrinkles).

7 Summary

In this paper, we develop a model for a rippled graphene sheet
that is located on a at metal substrate. The assumed
This journal is © The Royal Society of Chemistry 2020
translational symmetry along the ripple reduces our problem to
two dimensions, and the reective symmetry about the y-axis
allows us to consider only solutions in the upper right quadrant.
We employ variational calculus to minimise the elastic energy
arising from the curvature squared and maximising the vdW
interaction energy between the at section of the graphene and
the metal substrate.

We account for the length of the substrate by considering
three different cases. The rst addresses the case when the
edges of the rippled graphene sheet and the substrate coincide.
The second case is when the edge of the graphene sheet over-
hangs the substrate edge, and the last case applies to a rippled
graphene sheet for which the edge of the sheet does not extend
to the substrate edge. We assume a xed half length of the
graphene sheet, and consider all three cases to obtain
a continuous relationship between the total energy per unit
length of the graphene and the length of the substrate as shown
in Fig. 6. The substrate constrained case is used to illustrate the
effect of reducing the substrate length on the ripple height and
the total energy of the graphene as shown in Fig. 7 and 8. Using
the transitional case, our model is shown to agree with the
results of earlier MD simulations of graphene ripples (or wrin-
kles) on a Cu(111) substrate.

Future research may address the phenomenon of ripple
formation when the substrate shrinks by taking into account
additional physical effects. For instance the model maybe
extended to account for the change in the vdW interaction
strength as the substrate length and density change. This will
introduce x as a function of x and lead to an explicit dependence
on x in the integrand part of (6), which would undoubtedly
complicate the corresponding Euler–Lagrange equation.
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