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Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density,
high power density and flexibility at the same time. Herein, flexible asymmetric hybrid supercapacitors are
fabricated with blow spun activated carbon fibers. Owing to the highly effective conductive network,
abundant nitrogen doping, optimized pore-structure and surface chemical properties of the carbon
fibers, the as-prepared flexible hybrid supercapacitor shows outstanding energy and power performance
(98 W h kg™ (0.3 mW h cm™2) @ 400 W kg™, 9 W h kg™ @ 34 kW kg%, as well as excellent cycle
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1. Introduction

Energy storage devices have gradually become a research hot-
spot in recent years."” Due to the rapid development of mobile
internet and portable devices, the major demands for energy
storage devices are mainly: high energy density (long endur-
ance), high power density (fast charging) and flexibility (wear-
able).>* Lithium ion batteries (LIBs) and supercapacitors are
the most representative commercial energy storage devices to
meet the first two requirements with energy density up to
300 W h kg™ " and power density up to 10 kW kg™, respectively.”
As a combination of battery and supercapacitor, hybrid super-
capacitors (HSCs) aim at constructing novel devices with the
positive features of both batteries and supercapacitors.***° In
our previous work, devices with excellent performance
(maximum energy density up to 140 W h kg™ " and 40 W h kg™"
at an extremely high power density of 100 kW kg™, based on
active materials) were fabricated through the hybrid
strategy."*> Namely, constructing flexible HSCs (FHSCs) is
a feasible way to achieve the integration of all the elements of
people’s needs. Carbon fibers with adjustable pore-structures
are promising electrode materials for both positive electrode
materials (anion absorption/de-sorption) and negative mate-
rials (Li" storage) for HSCs. Thus, electrospun carbon fibers are
widely used as the electrode materials for supercapacitors,**
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stability with 93% capacitance retention after 4000 cycles.

Li-ion batteries'*'* and other energy storage devices.'” However,
the electrospinning methodology lacks convenience, efficiency
and security. In contrast, blow spinning is not only free of high
voltage, but also has a several times higher production rate.'*°
However, to our knowledge, there are few reports on the use of
blow spun carbon fibers as the electrode material of electro-
chemical energy storage devices at present. Herein, as a proof of
concept, blow spun polyacrylonitrile (PAN) fibers were used as
precursors to obtain both the positive and negative electrode
materials of HSC by means of ammonia activation and direct
carbonization, respectively. Due to the superior flexibility of
blow spun carbon non-woven fabrics and their optimal pore
structure and surface chemical properties, FHSC coupled with
blow spun carbon fibers (BSCFs) and blow spun activated
carbon fibers (BSACFs) shows great energy and power perfor-
mance (98 Whkg " (0.3 mWhem ) @400 Wkg™ ', 9Whkg ™"
@ 34 kw kg "), as well as excellent cycle stability with 93%
capacitance retention after 4000 cycles, indicating its great
prospect in the flexible energy storage field.

2. Experimental
Synthesis of BSCFs and BSACFs

10 wt% of PAN (MW = 1.5 x 10° g mol*; Aldrich) dissolved in
dimethylformamide (DMF) was loaded in a 2 ml injector with
a 22-gauge needle tip. The injector tip was placed in the pipe
continuously blowing air. The blow-spun fibers were collected
on a piece of 10 x 10 cm nickel. The blow-spun fibers were
preoxidized during the slow temperature rise from 200 °C to
280 °C in 8 hours in air. Then the preoxidized fibers were heated
to 700 °C with 5 °C min~" in a tube furnace and held for 1 hour
under Ar atmosphere for BSCFs and heated to 800 °C with
5 °C min~' under Ar and held for 1 hour under ammonia
atmosphere for BSACFs. Moreover, BSACFs-700 and BSACFs-
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Scheme 1 Synthesis of BSCFs and BSACFs and fabrication of FHSC.

900 were also prepared by the 1 hour ammonia activation at
700 °C and 900 °C, respectively, as contrast samples.

Fabrication of cells

BSCFs and BSACFs fabrics were punched into disks with
diameter of 12 mm for electrochemical tests. The mass loading
of electrodes was about 2 mg. LIBs were assembled by using
a lithium metal electrode and BSCFs/BSACFs based disk.
Symmetric supercapacitors were assembled by two BSACFs
electrodes. All devices were fabricated into 2032 coin cells with
1 M LiPF; electrolyte in EC/DMC (1 : 1 by volume).

Prelithiation of BSCFs

BSCFs anode was prelithiated by galvanostatic charge/discharge
process. Typically, BSCFs electrode was fabricated with Li metal
in two electrodes system, and then galvanostatically discharge/
charge with potential range of 3-0.01 V (vs. Li/Li") for 5 cycles.
Last, terminal potential were fixed at 0.4 V by isobarically
discharge process and held for 2 h.

Fabrication of FHSCs

4 x 4 cm BSACFs and prelithiated BSCFs infiltrated with elec-
trolyte (1 M LiPF electrolyte in EC/DMC) were separated with
a PP film and packaged with polyethylene terephthalate (PET)

9834 | RSC Adv, 2020, 10, 9833-9839

film (Scheme 1). Al foil and Cu foil with leads were also intro-
duced into the system as current collectors for positive and
negative electrode, respectively.

3. Results and discussion

Synthesis of BSCFs and BSACFs, together for the fabrication of
flexible HSC are shown in Scheme 1. Scanning electron micro-
scope (SEM) images of blow spun PAN fibers are shown in
Fig. S1 (ESIT). The diameters of PAN fibers are evenly distributed
at about 1-3 pm, which is obviously larger than electrospun
fibers** and helps increase the flexibility of the non-woven
fabrics. SEM images of BSCFs and BSACFs are presented in
Fig. 1a and b. The morphology of the fibers remain intact and
the diameters of the fibers significantly decrease due to the
inevitable shrink of PAN during the carbonization and activa-
tion process.”” No obvious etching effects of ammonia are
observed in BSACFs, indicating the activation only affects the
pore structure without destroying the morphology and
mechanical property of carbon fibers. Transmission electron
microscope (TEM) images of BSCFs and BSACFs shown in
Fig. S2a and bt also reveal the diameter of the fibers are reduced
to under 1 pm and no obvious lattice fringe are observed in the
inset high resolution transmission electron microscope
(HRTEM) images, suggesting the amorphous structure of BSCFs
and BSACFs.”?

This journal is © The Royal Society of Chemistry 2020
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Fig.1 SEMimages of BSCFs (a) and BSACFs (b); N, adsorption/desorption isotherms (c) of BSCFs and BSACFs and the corresponding PSD curves

(d).

Such amorphous structure was further confirmed by X-ray
diffraction (XRD) and Raman spectrum characterizations.
XRD pattern of BSCFs and BSACFs are shown in Fig. S3.T Two
broad peaks located at about 22.8° and 43.8° are attributed to
the diffraction of (002) and (100) plane of graphitic layers in the
amorphous carbon.” The high intensity in low angle (lower
than 20°) may be caused by the microporous structure of BSCFs
and BSACFs.** Fig. S4t1 shows the Raman spectrum of BSCFs
and BSACFs. Two distinct peaks centered at 1342 cm ' and
1595 cm™ ' can be ascribed to the D (defect)- and G (graphitic)-
bands of carbon materials. The intensity ratio of D/G of BSCFs
and BSACFs are both approximately 1, indicating their amor-
phous structure, which shows highly consistent with the
HRTEM and XRD results.”

To further evaluate the texture property of BSCFs and
BSACFs, N, adsorption-desorption measurement was con-
ducted at 77 K and the results were shown in Fig. 1c and d.
Fig. 1c displays the N, adsorption/desorption isotherms of the
samples. BSCFs exhibits a type I isotherm, indicating its
micropore structure.” After ammonia treatment, BSACFs shows
a hybrid sorption isotherm. The amount of nitrogen adsorption
increases significantly at a low relative pressure (P/P, < 0.01) and
nitrogen adsorption increases sustained between 0.1 and 0.9 of
the P/P, value, which can be attributed to the rapid increase of
micropores and the appearance of mesopores during the acti-
vation process.” Such conclusion is further confirmed by the
corresponding pore size distribution (PSD) curves displayed in
Fig. 1d and specific surface area (SSA) information summarized
in Table 1. BSCFs demonstrates a unimodal distribution with
only micropores intensively located at about 0.8 nm and

This journal is © The Royal Society of Chemistry 2020

a moderate SSA of 409 m* g™, which could provide sufficient
lithium ion adsorption sites and avoid excessive electrolyte
consumption during the formation of SEI while hired as LIB
anode material.>* BSACFs possesses a much higher SSA of 1412
m” ¢~ and a multimodal distribution with micropores located
at 1.0, 1.4, 1.8 nm and mesopores located at 2.6 and 4.2 nm.
Such optimized hierarchical pore structure could be promising
in supercapacitors applications by means of its large amounts
of energy storage sites brought from micropores and high-speed
ion transport path provided by mesopores.** Moreover, BSACFs-
700 and BSACFs-900 were also prepared as contrasts to explore
the temperature of the ammonia activation process. As shown
in Table S1,7 BSACFs-700 shows a much lower SSA of 701 m* g~
than BSACFs, which will lead to a much lower capacitance in the
(electronic double layer capacitor) EDLC behavior [AA18].
BASCF-900 exhibits a moderate SSA of 976 m* g~ '. However, due
to the intense etching of ammonia under 900 °C, the yield of
BSACFs-900 is much lower than BSACFs, and the strength and
flexibility of the fabrics were destroyed by over-etching of
ammonia. Therefore, BSACFs (namely, BSACFs-800) was chosen

Table 1 Physicochemical properties of the samples

Elemental analysis

Samples  Sppr® (M? 271 Viw (em®g™')  C% 0% N%
BSCFs 409 0.248 83.99 2.91 13.1
BSACFs 1412 0.938 96.13 1.47 2.4

“ Specific surface area calculated by BET method. ® Total pore volume.

RSC Adv, 2020, 10, 9833-9839 | 9835
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Fig. 2 XPS survey spectra of BSCFs (a) and BFACFs (b); high-resolution N 1s spectrum of BSCFs (c) and BSACFs (d).

for the subsequent measurements and fabrication of hybrid
supercapacitors.

Fig. 2 presents the X-ray photoelectron spectroscopy (XPS)
survey spectra of BSCFs and BFACFs, and the semi-quantitative
analysis results are summarized in Table 1. BSCFs exhibits
a high nitrogen content of 13.1 wt% due to the residual nitrogen
in the PAN molecular chain.”®> BSACFs maintains a lower
nitrogen content of 2.4 wt%, which is ascribed to the higher
temperature heat treatment during ammonia activation. High-
resolution N 1s spectrum of the carbon fibers are fitted in four
component peaks and the results are shown in Fig. 2c and d.
Particularly, predominant pyridinic N providing extra redox
pseudocapacitance and graphitic N which could further
enhance the conductivity of the carbon materials are both
beneficial in lithium ions storage process and electrochemical
capacitive behaviors.” Attenuated Total internal Reflectance
Fourier Transforms Infrared Spectra (ATR-FTIR) was used to
investigate the surface functional groups (Fig. S5t). Two weak
peaks located at 2931 cm ™ * and 2864 in BSCFs are ascribed to
the stretching vibrations of C-H.** The peak at about 1537 cm ™"
in BSCFs and BSACFs is correspond to C-C stretching vibration.
And the broad peak at 1081 cm ™" are ascribed to the stretching
vibrations of C-O and/or C-N.>* The ATR-FTIR spectra shows
the existence of heteroatom in BSCFs and BSACFs, which is
coincident with the XPS results. Furthermore, the SEM
elemental mappings of BSCFs and BSACFs are shown in Fig. S6
and S7.7 The profiles of nitrogen mapping show highly coinci-
dent with the SEM images, indicating the uniform distribution
of N in BSCFs and BSACFs."

9836 | RSC Adv, 2020, 10, 9833-9839

LIB was fabricated by BSCFs and lithium metal and its
electrochemical properties are presented in Fig. 3a and b. Gal-
vanostatic charge/discharge (GCD) curves of the 1st, 3rd and
10th cycles are shown in Fig. 3a. A high initial reversible
capacity of 560 mA h g~* (60% coulombic efficiency) is observed
and 495 mA h g~' is maintained after 10 cycles at current
density of 50 mA g~ '. Balance between capacity and initial
coulombic efficiency is optimized by the moderate SSA of
BSCFs.>* Moreover, owing to the highly effective conductive
network formed by carbon fibers and the abundant nitrogen
doping, BSCFs exhibits excellent rate performance at different
current density (shown in Fig. 3b). As the current density
gradually increases to 5 A g~ ', BSCFs still maintain a quite high
capacity of over 200 mA h g '. Low potential range and
outstanding rate performance indicate its great prospect in
anode materials of lithium ion hybrid supercapacitor.™

Symmetric supercapacitor (SC) was fabricated by BSACFs
and its electrochemical properties are presented in Fig. 3c and
d. GCD curves under different current density from 0.1 Ag ™" to
2 A g ! show well shaped isosceles triangle shapes and negli-
gible IR drops, indicating good EDLC behavior and high
conductivity of BSACFs.”* BSACFs based SC exhibits a high
specific capacitance of 130 F g~ " at current density of 0.1 Ag™",
which is associated with large SSA provided by the abundant
micropores.” And a high capacitance of 74 F g~ is obtained at
a high current density of 10 A g~ ', confirming its good rate
performance.

FHSC was fabricated by coupling BSACFs and prelithiated
BSCFs with 1 M LiPF electrolyte (photos shown in Fig. S87).

This journal is © The Royal Society of Chemistry 2020
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According to the GCD curve of BSCFs in a high potential range
of 1.5-4.6 V (shown in Fig. S91), BSACFs shows liner shape GCD
curve (corresponding ions absorption/de-sorption) at potential

—0.1Ag"
02Ag"
——05Ag"

Voltage /(V)

500 1000
Time /(s)

O

)
-
o
o
!

104

Energy Density /(Wh kg™

0.1

1000 10000
Power Density /(W kg™)

between 2 V and 4.6 V. BSCFs stores Li" at the potential range of
about 0 to 0.4 V (pre-lithiation potential). Therefore, the voltage
window of the as-fabricated FHSC was fitted at 1.5 V to 4.5 V in
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the following electrochemical measurements. Mass ratio of two
electrodes was carefully discussed (Fig. S10t1) and fitted at
Mgpscrs : Mpsacrs = 1: 3. Fig. 4a exhibits the GCD curves of
BSACFs//BSCFs FHSC at different current density from 0.1 Ag™"
to 1 A g '. GCD curves exhibit nearly liner shapes and no
obvious polarization is observed, revealing the capacitive
behaviors of as-prepared FHSC. Cyclic voltammetry (CV) was
performed and the results are shown in Fig. 4b. Quasi-
rectangular shaped curves are observed, demonstrating the
capacitive predominant mechanism, which is highly agreed
with the GCD results. As the scan rate gradually increases form
1 mV s ' to 20 mV s, the curves maintain the rectangular
shape, indicating the good rate performance of FHSC. Ragone
plots with energy density and power density are summarized in
Fig. 4c. FHSC presents a high energy density of 98 W h kg~ " (0.3
mW cm 2, areal density 3 mg cm ™2, based on mass of active
materials) at power density of 400 W kg '. Such high energy of
FHSC is attributed to the abundant ions adsorption sites
brought by numerous micropores of BSACFs and the high
lithium ion storage capacity of BSCFs. Due to the good
conductive network, optimized pore structure and effective N
doping, as-fabricated FHSC exhibits superior power density of
maintaining 9 W h kg™ " at 34 kW kg~ '. Moreover, as shown in
Fig. 4d, as-fabricated FHSC also exhibits an excellent cycle
stability with 93% capacitance retention after 4000 cycles. And
the observed energy density, power density and cycle stability of
the BSCFs//BSACFs FHSC is superior to most of the other flex-
ible hybrid capacitors®*>* (as compared in Table S27).

4. Conclusions

In summary, a FHSC was fabricated with blow spun N-doped
carbon fiber non-woven fabrics. BSACFs prepared by the acti-
vation of blow spun fibers exhibit superior EDLC behavior due
to their optimized hierarchical pore structure and conductive
network. BSCFs prepared by the direct carbonization of blow
spun fibers show great performance for LIB anode materials
due to the moderate SSA and the abundant nitrogen doping.
Moreover, both BASCFs and BSCFs maintained good flexibility
after the carbonization and activation process. Finally, the as-
prepared FHSC shows outstanding energy density, power
density and cycle stability (98 W h kg™ (0.3 mW h cm %) @
400 W kg™, 9 W h kg™ @ 34 kW kg™', 93% capacitance
retention after 4000 cycles). Such superior performance shows
great prospects in the flexible energy storage field and this work
shows a good example of constructing flexible energy storage
devices with the hybrid asymmetric battery-capacitor design.
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