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Cryolite is a suitable host for up-conversion luminescent materials due to its low phonon energy and good
optical transparency. In this work, a novel up-conversion material KsYFg:YD?", Er¥* with a cryolite structure
was prepared successfully by a solid state method. The crystal structure, morphology, composition and up-
conversion luminescence properties of the as-prepared sample were characterized by X-ray diffractometry
(XRD), field emission scanning electron microscopy (SEM) and fluorescence spectrometer in detail.
K3YFg:Er*, Yb3* has a cryolite structure. Under 980 nm excitation, the as-prepared sample can generate

slight green emission at 524 and 546 nm (attributed to 2Hiy, — “lis/5 transition, #Ss,, — 4lis, transition
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Accepted 31st December 2019 of Er’") and strong red emission at 661 and 672 nm (corresponding to “Fg/» — “li5,» transition, “lg,, —
Y155 transition of Er®™). All the green and red up-conversion emission of KzYFg:Er®*, Yb** transfer and

DOI: 10.1039/c9ra10257d electronic transition process of the red and green light the sample emitted, the possible luminescence
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1. Introduction

Under the excitation of ultraviolet light, visible light or infrared
light source, a material with certain luminescent properties is
called photoluminescent material. Photoluminescent materials
are classified into down-conversion luminescent materials and
up-conversion luminescent materials, which are widely used in
illumination sources, plasma displays, luminescent coatings,
etc.' The material that absorbs short-wave radiation and then
emits long-wave radiation is called a down-converting lumi-
nescent material, while the material that first absorbs long-wave
radiation and then emits short-wave radiation is called an up-
converting luminescent material. The up-converting lumines-
cent material can be excited with low energy near infrared (NIR)
radiation, and emits the light of higher energy in a visible range,
due to the multi-photon absorption followed by an anti-Stokes
emission.*® So far, rare earth doped up-conversion materials
have aroused widespread attention due to their important
applications®™ in the fields of the national economy and
national defense construction, such as in infrared quantum
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mechanism is discussed in this paper.

counters, night vision systems, light-emitting diodes, other
laser materials, etc.*>*®

The urgent problem to be solved by up-converting lumines-
cent materials is to find a suitable host. Although the host does
not constitute an excitation level, it provides a suitable crystal
field environment for the sensitizer ions and activator ions to
cause matching energy level splitting to produce energy transfer
and up-conversion luminescence.'*® At present, there are four
main types of up-conversion host materials: oxide systems,
sulfide-containing systems, halide systems (excluding fluorine),
and fluoride systems. Compared to the other systems, the
fluoride system has the advantages of low phonon energy, wide
light transmission range, and easy to form waveguides and so
on. Recently, fluoride has attracted the attention of researchers
as the most popular up-conversion host.*"*

Cryolite, an important fluoride, has general formula of A;BF,
(A =Li, Na, K, NH,, etc.; B=Al, Sc, V, Cr, Fe, Y, Ga, etc.), which is
one of the most promising up-conversion host in the field of
luminescent materials due to its low phonon energy, stable
chemical composition and good optical transparency. Recently,
compounds with cryolite structure have been widely used as
host for luminescent materials, such as: K;GaFs:Mn*',>® Na,-
GaFgMn*"»* K;LuFgEr'',*”® Ks;LuFg:Ce®'.?® NasAlF:Mn*" red
phosphor was prepared via the coprecipitation and hydro-
thermal methods, and the phosphor was a promising candidate
for application in warm WLEDs.”” By controlling the concen-
tration ratio of Eu**/Tb**, K;LuFe:Tb*", Eu®* phosphors could be
adjusted from green to yellowish pink.”® K;YF, is an a cryolite
compound. Marek® reported the crystal structure and

This journal is © The Royal Society of Chemistry 2020
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vibrational properties of K;YFs solid solution and considered it
suitable as luminescent materials. These works mainly focus on
the down-conversion of cryolite structure. So far, there is little
research on K;YFs to be used as an up-conversion host. In
addition, Er**/Yb** doped monoclinic K;YFs have not been
reported.

Owing to the large absorption section and wide absorption
region of Yb*", the up-conversion luminescence intensities of
Er*" are largely enhanced in (Er**, Yb*") co-doped materials.
Some works of Er**/Yb®" co-doped up-conversion luminescent
material have been done, such as: K,GdFs:Yb®'/Er**3®
Y,05:Er**/Yb®* 3 Ba,LaF,:Er’*/Yb®* 3> NasLugFs,:Er’'/Yb®"

Herein, a novel cryolite up-conversion luminescent material
K;YFe:Yb*", Er'* was successfully prepared by a solid state
method. The crystal structure, elemental composition and up-
conversion luminescence properties of the as-prepared
samples were investigated in detail. Besides, the possible
luminescence mechanism and electron transition process
proposed were also discussed in this paper.

2. Experimental details
2.1 Synthesis

K;YFe:Er*', Yb®" was prepared by a solid state method. The raw
materials of K,COj; (A.R.), NH,HF, (A.R.), Y,0; (99.99%), Er,0;
(99.99%) and Yb,03 (99.99%) were purchased from Aladdin.
The starting materials were weighted with electronic balance
according to stoichiometric ratio. To prevent the fluorine from
volatilizing during heating, NH,HF, is treated with an excess of
30%. The weighed raw materials were ground in an agate
mortar until well mixed. Then, they were transferred to a muffle
furnace and calcined at 750 °C for 3 h. After cooling to room
temperature, the samples were taken out and grinded into
powder again for a series of test followed.

2.2 Measurement

The structure of the prepared samples was characterized by X-
ray diffraction (XRD) measurements using an X-ray powder
diffractometer (D8 Advance, Bruker, Germany; Cu Ko radiation,
A = 0.15418 nm) at 40 kV and 100 mA, and the step width is
0.02° (260) with 20 ranging from 10 to 70°. The morphology and
energy dispersive X-ray (EDX) spectra of the as-prepared
samples were obtained by a field emission scanning electron
microscope (SEM, JSM-6701F, Hitachi, Japan) with 15 kv
acceleration voltage. Under room temperature, the fluorescence
emission spectra of samples were measured on a fluorescence
spectrophotometer (Hitachi F4600) with an external tunable
980 nm infrared laser as excitation source.

3. Results and discussions

As we know, cryolite has two crystal forms, that is, mono-clinic
and cubic. Fig. 1 shows the crystal structure for mono-clinic
K3YF, (space group P2/n). As shown in Fig. 1, Y** can occupy
strongly distorted octahedral sites with centrosymmetric C;
local symmetry with six-fold coordinated by fluorine ions.**

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Crystal structure of mono-clinic KsYFs.

Since the electricity valences and ionic radii of Yb**/Er** and Y**
are close to each other, it is considered that Yb*'/Er*" replaces
the site for Y** during the doping process.

The luminous efficiency of the up-converting luminescent
material is not only related to the host structure, but also to the
phase purity of the prepared material. Therefore, the structure
of the prepared sample was analyzed by an X-ray powder
diffractometer. Fig. 2 shows the XRD patterns of K;YFg:xEr’" (x
= 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10), and the data for K;YF,
(JCPDF no. 27-467) is shown a reference. As illustrated in Fig. 2,
the diffraction peak positions of the as-prepared samples match
well with these of standard K;YFs (JCPDF no. 27-467) without
any impurity peak, indicating that all the as-prepared samples
were cryolite compound. The increasing doping ratios of Er**
did not cause K;YF, structural changes.***”

The emission spectra of as-prepared K;YFg:xEr®™ (x = 0.005,
0.01, 0.03, 0.05, 0.07 and 0.10) samples are shown in Fig. 3. The
centers of the six emission peaks are 526 (*Hyy, — “Fys0), 535
(Hy1pp = *Fusp), 548 (*Ss = *Fisp), 556 (*Szia = *Fuspn), 661
(*Fo;s — *F155) and 672 nm (*Iy, — *Fy5),) in the green and red
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Fig. 2 XRD patterns of KsYFg:xEr®* (x = 0.005, 0.01, 0.03, 0.05, 0.07,
and 0.10), and the data for KsYFg (JCPDF no. 27-467) is shown
a reference.
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Fig. 3 The emission spectra of KsYFg:xEr®* (0.005, 0.01, 0.03, 0.05,
0.07 and 0.10) excited by 980 nm infrared laser, with the doping ratio
dependences of emission intensity at 672 nm shown in the inset.

regions, respectively. Remarkably, for K;YFg:0.03Er*", the
emission peak at 672 nm is the highest and the inset shows the
dependence of luminescence intensity on the Er** doping ratio
at 672 nm. With the increasing for Er*" doping ratio from 0.005
to 0.10, the intensity of the emission peak of the samples firstly
increased and then decreased and finally stabilized. When the
Er** doping ratio was 0.03, the intensity of the emission peak at
672 nm was the highest. Fig. 4 shows the visual illumination of
K;YFg:xEr** (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10) under
980 nm laser excite. As shown in Fig. 4, the emitted light
changes from green to red, and the luminous intensity
increases firstly and then decreases. When the Er** doping ratio

View Article Online
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is 0.03, the sample is the brightest and present red. This lays the
foundation for the preparation of the up-conversion lumines-
cent material with excellent performance.

A series of Er*'/Yb®* co-doped K;YFs up-conversion lumi-
nescent materials have been prepared. The microscopic, struc-
tures of the K;YF¢:0.03Er**/yYb** (y = 0.01, 0.03, 0.07, 0.09, 0.12,
0.15, and 0.18) were determined. Fig. 5 shows the XRD patterns
of K3YF:0.03Er**/yYb®" (y = 0.01, 0.03, 0.07, 0.09, 0.12, 0.15 and
0.18), and the data for K;YFs (JCPDF no. 27-467) is shown
a reference. It can be found that the diffraction peaks of the as-
prepared samples match well with K;YFs (JCPDS 27-467),
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Fig. 5 XRD patterns of KsYFs:0.03Er**/yYb®* (y = 0.01, 0.03, 0.07,
0.09, 0.12, 0.15 and 0.18), and the data for KzYFg (JCPDF no. 27-467) is
shown a reference.

Fig. 4 The luminescence of KzYFgxEr®* (x = 0.005 (a), 0.01 (b), 0.03 (c), 0.05 (d), 0.07 (e) and 0.10 (f)) under 980 nm laser irradiation.
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indicating that Er**/Yb*" co-doping does not change the crystal
structure significantly.

Fig. 6 shows the SEM image and elemental mapping image
of K3YF4:0.03Er*", 0.12Yb** sample (a) and the EDX spectrum of
K3YFg:0.03Er*", 0.12Yb** (b). As shown in Fig. 6(a), the prepared
sample appeared to be irregular particles with a grain size of
about 10 pm. And the sample appear to partly agglomerate,
which can be explained by the inhibition of grain growth due to
the accumulation of vacancies on the grain boundaries when
the Er**/Yb®* with higher valency occupies the K* site. The
element mapping results shown in Fig. 6(a) indicate thatK, F, Y,
Er, and Yb elements can be observed in K;YF4:0.03Er*",
0.12Yb**, and all the elements in the sample are uniformly
distributed. The K (31.5%), F (36.5%), Y (29.5%), Er (0.4%), and
YD (2.0%) peaks were observed in the EDX spectrum of Fig. 6(b),
further indicating that the measured lanthanide atomic ratios
of K;YF4:0.03Er*", 0.12Yb>" are close to the calculated values.

(b)
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The up-conversion emission spectra of K;YFg:0.03Er*", yYb**
(y = 0.01, 0.03, 0.07, 0.09, 0.12, 0.15 and 0.18) are shown in
Fig. 7. Four emission peaks at 524, 546, 661 and 672 nm in the
green and red regions can be founded, which can be ascribed to
the transitions from *Hyy,, *$*?, *Fo),, and Iy, states to 5/,
state of Er*", respectively.*®*® The inset shows the effect of Yb**
doping ratio on the Iluminescence intensity of the
K3YF4:0.03Er*", yYb** (y = 0.01, 0.03, 0.07, 0.09, 0.12, 0.15 and
0.18). With the increasing for Yb*" from 0.01 to 0.18, the
emission intensity of the samples firstly increased and then
decreased. When the Yb** doping ratio was 0.12, the intensity of
the emission peak at 672 nm was the highest. Fig. 8 is the visual
illumination of K3YFe:0.03Er**, yYb** (y = 0, 0.01, 0.03, 0.07,
0.09, 0.12, 0.15 and 0.18) under 980 nm laser excite. As is shown
in Fig. 8, the emitted light changes from light red to deep red,
and the luminous intensity increases first and then decreases.

Fig. 6 (a) The SEM image and elemental mapping image of KzYFs:0.03Er**, 0.12Yb>" sample; (b) the EDX spectrum of KzYFg:0.03Er>", 0.12Yb>".

This journal is © The Royal Society of Chemistry 2020
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Fig. 7 Up-conversion emission spectrum of KzYFg:0.03Er3*/yYb* (v
= 0.01, 0.03, 0.07, 0.09, 0.12, 0.15 and 0.18) samples excited by
980 nm laser, with the doping ratio dependences of emission intensity
at 672 nm shown in the inset.

When the Yb** doping ratio is 0.12, the sample is the brightest
and present deep red.

The pump power dependent UC emission spectra of
K3YF:0.05Er*", 0.12Yb>" are shown in Fig. 9. With the increase
of pump power from 257 to 300 mW, the up-conversion emis-
sion intensity shows an upward trend. The relationship between
up-conversion intensity and excitation pump power can be
applied as follow:

Toc P"

In which I and P are the intensity of the up-conversion emission
and the power of the excitation pump, respectively. n represents
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Fig. 9 Pump power dependence UC emission spectra of

K3YFg:0.03Er*, 0.12Yb>*; and the inset shows Inarithmic plots of
green and red UC emission intensity versus pump power for
K3YFg:0.03Er3*, 0.12YD3".

the number of phonons that need to populate the upper excited
state energy level.** In order to obtain the value of n, the double
logarithmic figure of the emission intensity of green and red up-
conversion emission with pump power for K;YF4:0.05Er®",
0.15Yb** were depicted in inset of Fig. 9 The green and red dots
represent up-conversion emission peaks at 546 and 672 nm,
respectively. The experimental data are fitted in a straight line.
The n values of green and red up-conversion lines are calculated
to be 2.53 and 2.04, respectively. The number of n is near to 2,
indicating that the green and red up-conversion emission of
K3YF:0.03Er*", 0.12Yb?" all belong to two-photon process.*’
The possible up-conversion luminescence mechanism and
electron transition process for the sample of K3YF4:0.01Er*",
0.12Yb?" to emit red and green light are shown in Fig. 10. Under

h

Fig.8 The luminescence of KzYFs:0.03Er**, yYb®* (y = 0 (a), 0.01 (b), 0.03 (c), 0.07 (d), 0.09 (e), 0.12 (), 0.15 (g) and 0.18 (h)) under 980 nm laser

irradiation.
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Fig. 10 KsYFg:0.03Er**, 0.12Yb** up-conversion luminescence mechanism.

980 nm laser excitation, the electron of the sensitizer Yb**
absorbs a 980 nm photon from the energy level >F,, to the *F5,
level. When the excited state is unstable, the electrons of Yb*"
will return to the *F,, level through the non-radiative transi-
tion, and the energy released during the transition will be
transferred to the activator Er’*. The electrons in the ground
state of Er’* absorb the energy transmitted by Yb** and trans-
ited to the I/, level. Since the Er** and Yb*" levels match very
well, the electrons of the activator Er** can also directly absorb
a photon of 980 nm from the ground state level *I;5,, to the I/,
excited state level. The specific process is as follows:

2Fy (YD) + hw (980 nm) — 2F5 (YB>)
*Fsip (YD) + *1ispp (Br*™) = *Fypn (YB') + *1110 (Er)
*Lis (Er’™) + hw (980 nm) — *I;y» (Er’™)

Some electrons at the “I;4,, level of Er*" directly accept the
energy released from the electronic transition in the excited
state of Yb®" back to the ground state, and jump up to the *F,
level. Since the energy gap between “F5;, and *Hy; 5, *Hyy/, and
%S, is small, electrons at the *F5, level will quickly relax to the
*Hy15/*S5/2 level without radiation. When the electron absorp-
tion energy at the “I 3/, level shifts to the “Fo, level, the elec-
trons of the “Fo, level will undergo a non-radiative transition to
19/, and the electron will go back to the ground state of the *Io/,
and “Fy,, levels.

4. Conclusions

A series of up-conversion luminescent materials K;YFg:Er’™,
Yb** with cryolite structure were prepared by a solid state
method for the first time. XRD results indicated that all
prepared K;YFg:Er’*, Yb*" samples were pure phase, belonging
to monoclinic system, space group P2,/n. Under the 980 nm
light exhibition, the K;YF4:Er**, Yb®* shows typical transition of
Er**, which composed of two parts in the visible region that
green and red. When the doping ratio of Er’'is 0.03 and the

This journal is © The Royal Society of Chemistry 2020

doping ratio of Yb**is 0.12, the luminous intensity reaches the
maximum. According to the relation between the up-conversion
intensity and the excitation pump power at 980 nm laser exci-
tation, the two-photon process dominated in the red and green
up-conversion processes of Er** ions. All the results indicated
K;YF6:0.03Er*", 0.12Yb®*" is an excellent up-conversion lumi-
nescent material.
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