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set refinement enables reactive
molecular dynamics via machine learned forces†

Lei Chen, a Ivan Sukuba, ab Michael Probstac and Alexander Kaiser *a

Machine learning approaches have been successfully employed in many fields of computational chemistry

and physics. However, atomistic simulations driven by machine-learned forces are still very challenging.

Here we show that reactive self-sputtering from a beryllium surface can be simulated using neural

network trained forces with an accuracy that rivals or exceeds other approaches. The key in machine

learning from density functional theory calculations is a well-balanced and complete training set of

energies and forces. We have implemented a refinement protocol that corrects the low extrapolation

capabilities of neural networks by iteratively checking and improving the molecular dynamic simulations.

The sputtering yield obtained for incident energies below 100 eV agrees perfectly with results from ab

initio molecular dynamics simulations and compares well with earlier calculations based on pair

potentials and bond-order potentials. This approach enables simulation times, sizes and statistics similar

to what is accessible by conventional force fields and reaching beyond what is possible with direct ab

initio molecular dynamics. We observed that a potential fitted to one surface, Be(0001), has to be

augmented with training data for another surface, Be(01�10), in order to be used for both.
Introduction

In molecular dynamics (MD) simulations energies and forces
are complicated functions of nuclear coordinates and element
types. Calculating forces on-the-y by electronic structure
methods avoids having to handle these functions explicitly but
is, even with density functional methods, still restricted to small
systems and short times, compared to MD with analytic
potential energy functions. Even for non-reactive systems the
development of a reliable force eld is very tedious. Conse-
quently, machine learning approaches are developed to ll this
gap by learning energy and forces from quantum chemical data
and to replace a conventional force eld.1–5 Feedforward Neural
Networks4,6–8 and Gaussian Approximation Potentials9–12 are
most widely used at present. In both of them Cartesian coor-
dinates of the atoms are rst transformed into symmetry
invariant atom-centered representations by various methods.7,13

The present work applies feedforward neural networks and the
Behler–Parrinello type6 atomistic representation. The parame-
ters are the bias parameters that act on individual neurons and
the weights that interconnect articial neurons in different
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layers. The number of parameters only depends on the size of
the neural network. When increasing the number of parame-
ters, the network can basically store the information it is trained
on almost perfectly and it can also interpolate to some extent.

We can train the network on a nite set of energies and
forces and its quality will depend very much on the choice and
size of the training set and on the power of the global optimizer
to reach a low-lyingminimum. Compared to the huge positional
phase space spanned by all combinations of atomic positions,
the number of congurations (�6000 in this work) used to train
the network is meagre.

In this work, we implement a rening procedure based on
previous work4,14 for training set construction and we train
a neural network potential (NNP) for molecular dynamics
simulations of reactive beryllium (Be) self-sputtering and show
that our NNP based simulations are accurate in predicting
sputtering yields. Knowledge of the stability of Be surfaces is
very relevant because beryllium sheets have been chosen as
armor material in the rst wall of the ITER reactor currently
being constructed.15 Having only 4 valence electrons, beryllium
has the additional advantage that it can be treated with density
functional calculations rather efficiently, making comparisons
with ab initioMD feasible. Previous work on this system include
an MD study by Ueda et al. where a pair potential was developed
and self-sputtering processes of Be at low incident energies
(#100 eV) was simulated.16 Björkas et al. developed a bond
order potential for the ternary system Be–C–H, and the Be
potential was applied to MD simulations of Be self-sputtering.17
RSC Adv., 2020, 10, 4293–4299 | 4293
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Training set generation and refinement

The NNP is trained on energies and forces obtained with plane-
wave DFT calculations. Details of the DFT and ab initio MD
calculations are given in the section on Computational
methods. Artrith and Behler have already described a rene-
ment procedure based on dynamic simulations to extend the
accuracy and applicability of a neural network potential for MD
simulations.4,14 In the present work, our rening procedure
also relies on the assumption that two different neural
networks that have been tted to the same data set will deliver
approximately the same result for well-sampled regions of the
phase space but not in extrapolations out of these regions. This
allows to systematically and automatically identify structures
that are missing in the training data. The iterative procedure is
schematically shown in Fig. 1. In a rst step, congurations
were created by randomly extracting snapshots from 500 ab
initio MD sputtering trajectories on a small Be(0001) surface
slab with 96 atoms. Two preliminary NNPs, NNP1 and NNP2
were tted to this training set. NNP1 and NNP2 have the same
topology and differ only in the starting values of their t
parameters which are randomly chosen. They are simple
feedforward 53 � 30 � 30 � 1 NNs with two hidden layers. We
Fig. 1 Schematic of the iterative refinement procedure based on
previous work4,14 for training set generation. Energies and forces
predicted with NNP1 and NNP2 are compared with each other along
molecular dynamics trajectories generated with NNP1. The decision
(NNP1�NNP2?) of including a particular phase-space point into the
training set is made either by the energy criterion |E(NNP1)� E(NNP2)|
> 3E or the force criterion |Fx,y,z(NNP1) � Fx,y,z(NNP2)| > 3F.

4294 | RSC Adv., 2020, 10, 4293–4299
found that including more parameters or making the neural
network deeper does not improve the accuracy any more. More
details on the employed symmetry functions and the neural
network are given in the Computational methods.

The renement procedure starts with using NNP1 for short
MD simulations (40 fs) of the Be self-sputtering process at
various impact energies on the surface slab with 96 atoms. The
energies and forces of these new congurations were then
predicted by NNP2 along the same trajectories, and energies
and forces of both networks were compared with each other as
shown in Fig. 2. Congurations with energy differences larger
than 3E ¼ 20 meV per atom or maximum force differences larger
than 3F ¼ 2 eV Å�1 were selected and subjected to a DFT
calculation of energies and forces which were then added to the
training data.

Two new neural network potentials NNP3 and NNP4 were
tted to the rened training set and their differences for new
trajectories is shown in Fig. 3. It is apparent that already aer
one cycle of the renement process, the differences between the
two NNPs decrease considerably. For most congurations in
Fig. 3, the energy and maximum forces differences between
NNP3 and NNP4 are within 5meV per atom and 1 eV Å�1. Due to
this excellent improvement, we reduced the number of trajec-
tory calculations in the second renement step.

Further renement can be done iteratively as indicated in
Fig. 1. In our case, a second renement step with much smaller
energy and force thresholds (3E ¼ 2 meV per atom, 3F ¼ 0.8 eV
Å�1) was sufficient.

With this iterative renement process, the nal reference
data set consists of 5871 congurations containing 97 atoms
Fig. 2 Comparison of energies and forces of the preliminary NN
potentials NNP1 and NNP2 along the same trajectories. Configurations
with absolute values of energy differences higher than 3E¼ 20meV per
atom or maximum force differences higher than 3F ¼ 2 eV Å�1 have
been recalculated by DFT and added to the training data to obtain the
refined NNP in Fig. 3.

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Comparison of energies and forces of the refined NN potentials
NNP3 and NNP4 along the same trajectories. Configurations with
absolute values of energy differences higher than 3E ¼ 2 meV per atom
or force differences higher than 3F¼ 0.8 eV Å�1 have been recalculated
by DFT and added to the training data to obtain a final NNP.

Fig. 4 Correlation between the NNP5 and DFT energies per atom (a)
and x-components of the forces (b) for all configurations in the
training and test set.
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each. Thus, 5270 energies and 1 533 486 forces are used to t
the nal potential energy function NNP5 and 601 energies and
174 870 forces are part of the test set which is not used for
training but rather to validate the potential and to prevent
overtting. Aer 60 training epochs, the root mean square
errors (RMSE) in the test set converged to 0.7 meV per atom for
energies and 32.0 meV Å�1 per atom for forces, very close to the
corresponding value in the training set (0.6 meV per atom and
31.8 meV Å�1).

Static performance of the refined
neural network potential

The correlation of NNP5 and DFT energies and forces for each
atom are shown in Fig. 4(a) and (b). Only the x-component of
the forces is shown here since y and z have been inspected but
give virtually identical plots. DFT and NNP5 energies are very
close except for very few congurations in the training set.
Similarly, the values of NNP5 and DFT forces at all three
directions are perfectly correlated.

We are now in a position to go to a larger system, a Be(0001)
surface with 490 atoms. This surface will later be used for the
sputtering simulations. The equilibrium lattice constants of
using NNP5 turn out reasonable (Table 1) with NNP5 and DFT
showing relative differences of less than 2% compared to
experimental values. The NNP5 total energy for this congura-
tion is also very close to the DFT value with an absolute devia-
tion of 3.3 meV per atom. Relaxation of the surface to its
equilibrium conguration is necessary for the subsequent
sputtering calculations since otherwise, a large amount of
potential energy is heating the system at the beginning that
This journal is © The Royal Society of Chemistry 2020
could irreversibly change the structure due to expansion and
melting.
Performance of the refined neural
network potential in reactive
sputtering simulations

Although only a small system was used to train NNP5, the
energy contribution from each atom depends only on the local
chemical environment and therefore it can be used to simu-
late a larger system. MD simulations performed on the
Be(0001) surface slab with 490 atoms result in a self-
sputtering yield of 5.6% which agrees perfectly with a yield
of 5% obtained from 500 ab initio MD trajectories calculated
on the same system under identical conditions for 100 eV
incident energy. The sputtering yields of all our simulations
RSC Adv., 2020, 10, 4293–4299 | 4295
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Table 1 Lattice constants and total energy of the Be(0001) surface from NNP5 and DFT calculations. Both simulations used a periodic slab
consisting of 490 atoms

Lattice constants (Å) Total energy (eV)
Energy difference per
atom (meV per atom)

NNP5 DFT Exp.18 ENNP5 EDFT
(ENNP5 �
EDFT) per atom

a ¼ 2.28; c ¼ 3.55 a ¼ 2.28; c ¼ 3.54 a ¼ 2.29; c ¼ 3.58 �1791.7 �1790.1 �3.3
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are summarized in Table 2 and compared with other MD
simulations, Monte Carlo data and experimental estimates in
Fig. 5. Statistically, their accuracy increases with the number
of simulation runs and the error bars are estimated by

D ¼ 2s=
ffiffiffiffi

N
p

where the standard deviation s is obtained by
assuming a Bernoulli distribution of N trajectories. The NNP5
sputtering yields fall well within other available data. Timings
included in Table 2 show that the NNP5-based MD simula-
tions are more than two orders of magnitude faster than their
ab initio MD simulations.

For all incident energies, we never encountered reections of
the Be projectile. In our energy range this is expected and agrees
with the simulation results from Ueda et al.16 where a pair
potential had been used. No atoms were sputtered for incident
energies below 50 eV, which is consistent with the ndings from
Ueda et al. only if the large error bars are taken into account but
not in good agreement with the BOP-based results of Björkas
et al. who reported a similar value than Ueda et al. at 50 eV
incident energy but with a much smaller statistical error.17 The
sputtering threshold energy dened by no sputtering event
occurring in 500 trajectories lies within 50 and 55 eV for our
setup with NNP5 and is higher than previous estimates from
16–25 eV.17,19

We used an estimated sputtering threshold energy Eth ¼
53 eV, the parameters q ¼ 0.82, m ¼ 1.34 and l ¼ 2.03 from
literature19 and the experimental data at high energies to t the
sputtering yields to the Eckstein formula.20 The resulting
function is also included in Fig. 5. Since the available experi-
mental data is in the keV range, it is not possible to make
a direct comparison with our simulated results. At an incident
energy of 100 eV, our result is very close to the values from Roth
et al.,21 Ueda et al.16 and Björkas et al.17 At 75 eV, the NNP5 based
sputtering yield is very close to that from the bond-order
potential.17
Table 2 Sputtering yields and statistical error estimates for the Be(0001)
incident energies and from an ab initioMD simulation at 100 eV incident e
initioMD simulation is compared. Note that we have performed 5000 tra
to obtain a lower error bar

Crystal size (Å)

Sputtering yield of Be(0001)

50 eV 55 eV 60 eV

15.6 � 15.6 � 30.1 (490 atoms) NNP5 0 0.003 (0.0015) 0.0072
ab initio MD — — —

22.8 � 22.8 � 48.4 (2000 atoms) NNP5 — — —

4296 | RSC Adv., 2020, 10, 4293–4299
In order to check the convergence of our model system with
respect to surface size, we also simulated a system with 2000
atoms (the crystal size is given in Table 2) at an incident energy
of 100 eV. With 500 simulation runs, we obtained 27 sputtering
events (sputtering yield 0.054) and obtained very good agree-
ment with the smaller system (sputtering yield 0.056).
Transferability of the neural network
potential

With the purpose of testing the transferability of NNP5 to
a different surface structure that had not been included in the
training set, we performed self-sputtering simulations with an
incident energy of 75 and 100 eV on a Be(01�10) surface con-
sisting of 480 atoms. We obtained much smaller sputtering
yields than reported by Ueda.16 Applying an iterative renement
step as described above on Be(01�10) and retting the neural
network, more reasonable results are obtained, albeit of course
now with a different potential (NNP6). The sputtering yields for
the Be(01�10) surface using NNP6 are summarized in Table 3 and
plotted in Fig. 6. A t to the Eckstein formula is also shown. We
used the same values of the parameters q, m and l as for the
Be(0001) surface but a lower estimate of the threshold energy
Eth ¼ 30 eV.20 The sputtering yield at 100 eV for NNP6 is much
larger than the one from NNP5 and is comparable to Ueda's
results.16 The sputtering yields for the (0001) and (01�10) surfaces
are close to each other at 100 eV, while at lower energies the
(01�10) surface is more susceptible to sputtering with the simple
reason that the Be(0001) surface is more stable. In fact, the DFT
calculated surface binding energy of 5.13 eV for the (0001)
surfaces is much higher than 2.48 eV for the (01�10) surface.24

Finally, we note that the upgrade from NNP5 to NNP6 conserves
the accuracy for the (0001) surface with a sputtering yield of
0.052 (0.056) for NNP6 (NNP5) on 500 trajectories.
surface obtained from neural network based MD simulation at various
nergy. The average computational time for each NNP basedMD and ab
jectories for low incident energies (55 eV, 60 eV and 65 eV) using NNP5

CPU time/trajectory65 eV 75 eV 100 eV

(0.0024) 0.0086 (0.0026) 0.026 (0.014) 0.056 (0.021) 10 minutes (4 cores)
— — 0.050 (0.019) 30 hours (16 cores)
— — 0.054 (0.020)

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Dependence of the self-sputtering yield for the Be(0001)
surface on the incident energy. The results of MD simulations by Ueda
et al.16 and Björkas et al.,17 the data of Monte Carlo simulations
(assuming a surface binding energy of 3.38 eV) by Roth et al.21 and
experimental results22,23 are included for comparison.

Fig. 6 Dependence of the self-sputtering yield of the Be(011�0) surface
on the incident energy. The results of MD simulations by Ueda et al.16

and experimental results22,23 are included for comparison.
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Summary

The self-sputtering simulations based on the rened neural
network potential give promising results for small and large
periodic cell-sizes of the Be(0001) surface. The sputtering yields
agree with full ab initio Born–Oppenheimer MD results at
100 eV incident energy. Compared to literature data, our
simulation protocol seems to be quite competitive while not
requiring manual potential development. Transferability to
another surface direction was only possible by additional
renement and including data of the new surface into the
training data. Although the neural network can only be used for
scenarios that are included in the training data and this
involves thousands of ab initio single-point calculations, the
nal neural network potential can be used on longer time-scales
and larger systems. Especially, there is no difference concep-
tually in treating more complicated systems such as alloys,
where the construction of conventional force elds becomes
increasingly cumbersome. As a next step, we plan to apply such
simulations to other plasma–wall interactions, in particular
considering the ternary H–Be–W system.
Table 3 Calculated sputtering yields and statistical error estimates for the
at various incident energies

Crystal size (Å)

Sputtering yield of Be(0

20 eV 35 eV

13.7 � 17.7 � 28.8 NNP5
NNP6 0 0.012 (0

— Ueda et al.16 — —

This journal is © The Royal Society of Chemistry 2020
Computational methods
Neural network potential

In this work, we train a neural network potential of the Behler–
Parrinello type.6 The neural network code n2p2 (ref. 25 and 26)
recently developed by A. Singraber et al. is based on Behler's
work.6,7 It includes both force and energy tting and imple-
ments a Kalman lter optimizer26 which can deal with the
large number of data points when forces are included in the
tting. It has also been linked to the versatile molecular
dynamics code LAMMPS that we used to integrate the sput-
tering trajectories.27,28 In the Behler–Parrinello approach,6 the
total energy Epot of one conguration is the sum of atomic
energies Ei provided by element-specic neural networks that
depend on the local atomic neighbourhood only. Atomic
coordinates are transformed to symmetry-invariant atom-
centered symmetry functions before entering the neural
network in the input nodes. Efficient tting to forces requires
analytic gradients implemented in the n2p2 library. We chose
a simple feedforward neural network topology with two hidden
layers with 30 neurons each. The so-called so-plus activation
function29,30 which is a smooth approximation of rectied
Be(01�10) surface obtained from neural network based MD simulations

1�10)

50 eV 75 eV 100 eV

— 0.014 (0.010) 0.022 (0.013)
.010) 0.026 (0.014) 0.062 (0.021) 0.072 (0.023)

0.086 (0.059) — 0.102 (0.053)

RSC Adv., 2020, 10, 4293–4299 | 4297
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linear units (RELU)29 was used as recommended.31 A cutoff
radius of 7 Å is sufficient to include all relevant neighbour
atoms.32 The input consists of 9 radial, 24 angular narrow and
20 angular wide Behler-type symmetry functions7,25 as detailed
in the ESI.†
Density functional theory

The static DFT and the ab initio MD simulations to generate
training data were carried out using the Vienna Ab initio
Simulation Package (VASP).33,34 The core and valence electrons
were described by the Projector Augmented Wave (PAW)35

method and the Perdew–Burke–Ernzerhof (PBE)36 exchange–
correlation functional. A plane wave basis set with a cut-off
energy of 350 eV with periodic boundary conditions was used.
The PAW potential for beryllium was used as provided in the
VASP library. A Gamma-centered k-point mesh of 3 � 3 � 3 was
employed. The initial training set was generated by performing
Born–Oppenheimer ab initio MD on a small hexagonal closely
packed Be surface (0001) with 96 atoms (9.1 � 9.1 � 20.6 Å). It
was rst relaxed with a convergence criterion of 10�5 eV on the
total energy (about 10�4 meV per atom) and of 1 meV Å�1 on the
forces. Subsequently, the relaxed surface was equilibrated at
300 K for 2 ps within the canonical ensemble using the Nosé–
Hoover algorithm.37,38 Then perpendicular impacts of single Be
atoms with energies of 20, 35, 50, 75 and 100 eV starting from
a distance of 5 Å above the surface were simulated. 100 ab initio
MD runs were performed for each impact energy. The time step
was chosen to be 0.5 fs and one run lasted 150 fs for low impact
energies (20, 35, 50 eV). Impacts with energies of 75 and 100 eV
were simulated for 50 fs.
MD simulations of sputtering on neural network potentials

In our MD simulations of non-accumulative self-sputtering, an
incident neutral Be atom impacts on a pristine Be surface. The
target consists of 490 atoms with a size of 15.6 � 15.6 � 30.1 Å.
Its crystal structure was relaxed and equilibrated for 2 ps at 300
K within the NVT ensemble using the Nosé–Hoover thermo-
stat37,38 before running the trajectories. The incident particle
was initially placed 5 Å above the surface while its x and y-
coordinates were randomly chosen. Kinetic energies of 50, 55,
60, 65, 75, and 100 eV were assigned to it by a respective initial
velocity in z-direction, thus only impacts perpendicular to the
surface were simulated in this work. Trajectories were initially
integrated for 120 fs with an integration step of 0.2 fs. Further
120 fs integration time were added to those trajectories where
the decision of an observed sputtering event could not be made
aer the rst 120 fs. 500 separate MD runs were performed for
each incident energy. For the MD simulations in the training
data renement process, the computational details are identical
to the sputtering simulations for larger surface systems except
for a shorter integration time of 40 fs.
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