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Fault diagnosis in a current sensor and its
application to fault-tolerant control for an air

supply subsystem of a 50 kW-Grade fuel cell engine

*ab Fan Wu,® Chengji Wang,® Baohua Tan® and Yufang Chang?®

The safety, reliability and stability of air supply subsystems are still problems for the commercial applications

of fuel cells; therefore, engine fault diagnosis and fault-tolerant control are essential to protect the fuel cell

stack. In this study, a fault diagnosis and fault-tolerant control method based on artificial neural networks
(ANNs) has been proposed. The offline ANN modification model was trained with a Levenberg-—
Marquardt (LM) algorithm based on other sensors' signals relevant to the current sensor of a 50 kW-

grade fuel cell engine test bench. The output current was predicted via the ANN identification model

according to other relevant sensors and compared with the sampled current sensor signal. The faults in

the current sensor were detected immediately once the difference exceeded the given threshold value,
and the invalid signals of the current sensor were substituted with the predictive output value of the ANN
identification model. Finally, the reconstructed current sensor signals were sent back to a fuel cell
controller unit (FCU) to adjust the air flow and rotate speeds of the air compressor. Experimental results
show that the typical faults in the current sensor can be diagnosed and distinguished within 0.5 s when
the threshold value is 15 A. The invalid signal of current sensor can be reconstructed within 0.1 s. Which
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ensures that the air compressor operate normally and avoids oxygen starvation. The proposed method

can protect the fuel cell stack and enhance the fault-tolerant performance of air supply subsystem used
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rsc.li/rsc-advances

1. Introduction

Green energy is a good alternative to alleviate the worldwide
environmental and resource issues. Owing to high efficiency, no
noise and zero pollution, the fuel cells have been considered as
one of the future promising energy sources." Among the various
fuel cells, the proton exchange membrane fuel cell (PEMFC)
technology has been a research and commercialization focus in
the stationary, mobile and transportation applications for its
high-power density and efficiency, low operating temperature,
and a quick response to the load.*® In recent years, the famous
commercialized vehicles, such as “Mirai” of Toyota, “Clarity” of
Honda, “ix35” and “NEXO” of Hyundai, have validated the
sufficient performances of PEMFC for transportation applica-
tions with power of up to 100 kW. However, there are still some
challenges such as lifetime, durability, costs, reliability, safety,
and maintenance for fuel cells to overcome in commercial
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in the fuel cell engine, and it is promising to be utilized in the fault diagnosis and fault-tolerant control of
various fuel cell engines and multiple sensor systems.

applications.”® Moreover, reliability and durability are the two
main barriers, which impede its wide applications.

In practical applications, improper operating conditions such
as reactant starvation, flooding and drying may severely deterio-
rate the fuel cell performance, usually resulting in several single
cell voltage drop. If the improper faulty conditions are recurrent
or continue for a long period, other degradation phenomena may
take place and accelerate the fuel cell stack ageing or even
damage.’ Consequently, the fuel cell faults should be detected as
early as possible. Among the solutions, fault diagnosis and fault-
tolerant control, dedicated to detecting, isolating, reconstructing
and analyzing different faults, are indispensable to keep the fuel
cell stack operate safely and avoid mistakes in the control strat-
egies of the fuel cell engine, which reduces downtime and miti-
gates performance degradation of the fuel cell stack.'**

The fuel cell system (or called fuel cell engine) consists of
multiple auxiliary subsystems other than fuel cell stacks, such as
the air supply subsystem, hydrogen supply subsystem, cooling
subsystem, electrical circuit and controller. As the air supply
quantity is controlled according to the real output current value of
the fuel cell stack, the majority of sensors may be affected by the
severe electromagnetic interference (EMI) environment because of
the high rotating speed, vibration and noise of air compressor, or
common-mode and different-mode signals caused by other
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electrical components. Once the faults of the air supply subsystem
occur without any detection, neither protective nor fault-tolerant
control measures are taken in time, it will result in a shutdown,
oxygen starvation or even permanent damage to the costly fuel cell
stack. Thus, it is essential to study the fault diagnosis and fault-
tolerant control for the fuel cell system, particularly for the
current sensor used in the air supply subsystem.

The popular fault diagnosis approaches for the sensors
include those based on hardware redundancy, Kalman filter,
signal processing, neural networks and so on.***” The hardware
redundancy-based method demands additional sensors to
measure the same variable, but it will increase the complexity
and costs of the fuel cell system. The Kalman filter is a promising
method in the real time fault diagnosis of sensors for it can
describe their dynamic performance,* but the diagnosis perfor-
mance mainly depends on the accurate mechanism models. In
fact, the accurate mechanism models for different sensors are
difficult to set up even though the accurate models during
a certain time can be acquired. The accuracy may slowly decline,
or the object parameters fluctuate as time flies. The signal pro-
cessing method, particularly the wavelet analysis,'** is suitable
for the signal singularity identification of the sensors; however,
the output load of the fuel cell engine varies all the time and all
the parameters of the fuel cell engine keep changing accordingly.
Therefore, it is deficient to the fault diagnosis of sensors only by
detecting sudden changes in their output signals.

Artificial neural networks (ANN) have an excellent ability of
non-linear mapping and self-learning, and it can avoid the
negative influence and subjective factors of the established
unfaithful models.'®'” Therefore, ANN is applicable to the fault
diagnosis of the complicated non-linear systems. In this study,
the neural network trained with the Levenberg-Marquardt (LM)
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algorithm is utilized in the fault diagnosis of a current sensor
and active fault-tolerant control for the air supply subsystem of
a 50 kwW-grade fuel cell engine designed by our group.

2. Schematic of the fuel cell engine

The detailed schematic of the 50 kW-grade fuel cell engine is
shown in Fig. 1, and it includes a hydrogen supply subsystem, an
air supply subsystem, a cooling subsystem and a fuel cell stack.
The hydrogen subsystem consists of a hydrogen tank, a hand
valve, a pressure relief valve, a pressure regulator, a hydrogen
pump, a water separator, a hydrogen purge and several pressure
sensors (P1 denotes the hydrogen tank pressure, P2 denotes the
hydrogen relief pressure and P3 denotes the inlet hydrogen
pressure); the air supply subsystem includes an air filter, an air
compressor, a humidifier, a backpressure regulator, a hydrogen
sensor (detecting hydrogen concentration) and several air
sensors (F1 denotes the air flow sensor, T1 denotes the outlet
temperature of air compressor, 72 and 73 denote the inlet and
outlet air temperature, respectively, and P4 denotes the inlet air
pressure); the cooling subsystem includes a radiator, a water
tank, a thermostat, a particle filter, a deionized water filter,
a heater, a water pump and several coolant sensors (T4 denotes
the inlet coolant temperature, 75 denotes the outlet coolant
temperature, 76 denotes radiator's outlet temperature and P5
denotes the coolant pressure). The output of the fuel cell engine
is connected with a voltage sensor (denoted as V) in parallel and
a current sensor (denoted as A) in series. The output power of the
fuel cell engine is freely adjusted by the DC/DC converter.®
According to the basic electrochemical reaction equation of
the fuel cell, the required hydrogen and air flow are controlled
by a fuel cell controller unit (FCU) according to the output
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Fig. 1 Schematic of a 50 kW-grade fuel cell engine.
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current of the fuel cell engine. The required hydrogen flow and
air flow are calculated as follows:"*

= In x 22.4 x 60 = 0.00697In

P = 5

1)

Fair = 100/21 x 0.5 x Fg,x A = 0.0166AIn 2
where Fy, and Fy;, are the required hydrogen flow (SLPM) and
air flow (SLPM), respectively. I is the practical output current, n
is the fuel cell number, F is the Faraday constant (96 485), and 2
is the excess air ratio (usually is 2).

According to the above equations, when an error occurs in
the current sensor, the required air flow will be out of control,
particularly when the sampled value of the current sensor is
much smaller than the practical value. If the air supply flow is
controlled based on the inaccurate sampled value, the
dangerous “oxygen starvation” fault occurs quickly with a large
output power, it may also lead to irreversible damage to the fuel
cell stack. Thus, the fault diagnosis and prediction of the
current sensor used in the air supply subsystem is important.
To enhance the robust performance of the fuel cell engine, the
fault signal of the current sensor should be reconstructed with
other relevant sensor signals.

3. Fault diagnosis and fault-tolerant
control strategy
3.1. Diagnosis and signal reconstruction approach

The proposed fault diagnosis and fault-tolerant control strategy
are shown in Fig. 2, and the artificial neural network is trained

Offline

View Article Online

RSC Advances

and tested offline based on the sensor signals from the test
bench, and the ANN parameters are optimized with the test
results. The trained ANN model is used online for the fault
diagnosis and signal reconstruction of the current sensor.

In the offline process, the pressure, temperature, voltage and
current signals of the above sensors are sampled with the A/D
circuit of FCU, and saved as training and test data into
a supervisory personal computer with a controller area network
(CAN) bus. Then, the diagnosis model is trained using the
supervisory personal computer (PC) and programmed with
Python language. In the specific online stage, the real-time data
are measured and processed using a PC with the trained offline
model. The variability of the current sensor is predicted by the
established ANN model according to other relevant sensors
(such as pressure sensors, voltage sensors and temperature
sensors) and compared with the practically sampled current
signal. Once the compared result (i.e. the absolute error) is
above the given threshold value, the fault of the output current
sensor is validated, its practically sampled signal is substituted
by the predicted value of the ANN model, and the required air
flow is controlled by FCU based on the reconstructed value.

3.2. Training of ANN

According to the above schematic of the designed fuel cell
engine, it can be seen that the output current sensor value is
relevant to the voltage sensors, the hydrogen pressure sensors
and the coolant temperature sensors. Thus, the designed ANN
model identification structure of a fuel cell engine is shown in
Fig. 3. The hydrogen relief pressure (P2(k — 2), P2(k — 1), P2(k)),
inlet hydrogen pressure (P3(k — 2), P3(k — 1), P3(k)), inlet
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Fig.2 Diagram of the proposed fault diagnosis and fault-tolerant control approach. (a) Workflow of the offline and online diagnosis approach. (b)
Realization process of the fault diagnosis and fault-tolerant control strategy.
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Fig. 3 ANN model identification structure of the fuel cell engine.

coolant temperature (T4(k — 2), T4(k — 1), T4(k)), outlet coolant
temperature (75(k — 2), T5(k — 1), T5(k)), output voltage (V(k —
2), V(k — 1), V(k)) and output current (I(k — 2), I(k — 1)) are
treated as its input variables, and the output current of kth time
(I(k)) is the output variable. The identification process of the
ANN model is to ensure the error (denoted e(k)) between the real
output current sensor of the fuel cell engine (denoted I(k)), and
the predictive value of the ANN model (denoted I snn(k))
approaches the training goal based on different groups of input
variables.

The standard BP algorithm is useful to the forward ANN for it
adjusts the weight value and threshold value to ensure the
minimum sum of square error between the output value of ANN
and the object value. However, it has disadvantages such as slow
convergence and local minimum value. In this study, the Lev-
enberg-Marquardt (LM) algorithm?*?* is adopted to improve the
BP algorithm for its rapid convergence and high efficiency. If
x® is the kth vector comprised of weight values and threshold
values, then X**V is calculated using eqn (3).

XED = x® 1+ ny 3)
According to newton algorithm,** NX is given by
NX = —|V2E(x)|'VE(x) (4)

where V?E(x) is the Hessian matrix of the error indicator func-

tion E(x), and VE(x) is the gradient. E(x) is defined by the

following equation:

N
(5)

-]

E(x) = (1/2)26?(X)

where e(x) is the training error, VE(x) and V?E(x) are calculated
from eqn (6) and (7), respectively.
VE(x) = J'(x)e(x) (6)

V2E(x) = JT(x)e(x) + S(x) 7)
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s

N
where S(x) = " e;(x)V?e;(x), J(x) is the Jacobian matrix given by
i=1

[der(x) dei(x) dep(x) T
9x; dx, ax,
dey(x)  dex(x) dey(x)
J(x) = 0x; dx, ax, (8)
de,(x)  de,(x) de,(x)
L dx; dx, dx,

According to the Gauss-Newton algorithm,” NX can be
expressed as follows:

NX = [ ()J] I(x)e(x) (9)

Moreover, according to the LM algorithm, NX can be
rewritten by

NX = —[JT()J(x) + wl]  I(x)e(x) (10)
where u is a positive variable, and I’ is a unit matrix. If u is equal
to 0, LM algorithm is the same as Gauss-Newton algorithm in
eqn (9). Once u is very large, the LM algorithm approximates the
gradient descent algorithm. The computation speed of the
Gauss-Newton algorithm is extremely quick when the minimal
error is close to the target value. Because the LM algorithm
makes full use of the similar second derivative information, its
computation speed is almost hundred times greater than the
basic gradient descent algorithm.

For the above ANN model identification structure, some
experiments, in both normal operation and faulty cases, are
carried out based on the fuel cell test bench, as shown in Fig. 4.
In total, 1000 groups of different experimental data sets are
obtained as the training sample, and another 200 different
groups are selected as the test data. For the fuel cell engine test
bench, the fuel cell stack includes two separate stacks con-
nected in a series. Both of the stacks are manufactured by

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 50 kW-grade fuel cell engine test bench.

Ballard Power Systems Inc. (Model Name: FCvelocity-9SSL) and
consist of 135 single fuel cells connected in a series.

During the test bench experiments, the output power of the
fuel cell engine was controlled by an adjustable electronic load,
the output current of the fuel cell engine was changed from 0 to
300 A, and all the data were recorded according to a time series.
Due to the page limitation of this study, only some typical
experimental data reflecting the rated power are provided in
Table 1 on the training sample.

Due to the different orders of magnitude for the input and
output variables, and to enhance the study efficiency of the ANN
identification model, all the input and output variables are
normalized using the following expression:

Xi — Xmin
Xi= —m

(1)

Xmax — Xmin

Table 1 Some training sample of the fuel cell engine test bench

Variables Value 1 Value 2 Value 3
P2(k — 2) 670 kPa 661 kPa 652 kPa
P2(k — 1) 661 kPa 652 kPa 650 kPa
PZ(k) 650 kPa 649 kPa 630 kPa
P3(k — 2) 95 kPa 96 kPa 98 kPa
P3(k—1) 96 kPa 98 kPa 101 kPa
P3(k) 98 kPa 98 kPa 138 kPa
TA(k — 2) 58.2 °C 58.6 °C 58.8 °C
Ta(k — 1) 58.6 °C 58.8 °C 59.4 °C
T4(k) 58.8 °C 59.4 °C 56.1 °C
T5(k — 2) 67.1°C 67.7 °C 67.9 °C
T5(k — 1) 67.7 °C 67.9 °C 68.3 °C
T5(k) 67.9 °C 68.3 °C 66.4 °C
V[k — Z] 165.6 V 158.2V 159.2V
Vik — 1) 161.5 V 159.2V 158.2V
V(k) 159.2V 158.2V 158 A
I(k — 2) 263 A 276.3 A 279.8 A
I(k — 1] 276.3 A 279.8 A 280.8 A
1(k) 279.8 A 280.8 A 294.1 A

This journal is © The Royal Society of Chemistry 2020
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where X; is the normalization value of input and output vari-
ables, x; is the real value, and x,,2, and X,;, are the maximum
and minimum values of variable x, respectively.

Fig. 5 gives the training result of the above ANN identifica-
tion model with the LM algorithm. Based on the Kolmogorov
theory,* the final neuron number of the hidden layers is 13. The
adopted neural networks function is “newff()”, the training
function is “trainlm”, the hidden function is “tansig”, the
output layer function is “logsig”, and the training goal is 0.001.
It can be seen that the net converges to the goal after 34 epochs
take about 1.4 s.

3.3. Testing of ANN

To evaluate the estimated performance of the ANN model, the
root mean square error (RMSE) is adopted in this study and it is
defined by**

N

RMSE(y, y) =\ 300~ (12)

i=1
where y is the target value of neural networks model (i.e., I(k)),
Ym is the output value of the neural networks model I_snn(k),
and N is the sample data number. The smaller the RMSE is, the
closer yy, is to y.

To describe the approximation degree between the target
value of neural networks model and the output value of the
neural networks model, variance account for (VAF) is given by*

{1 _ M} % 100%

VAF(yv ym) = var(y)

(13)
where var() is the variance operation, and the large VAF means
the output value of the neural networks model approximates the
real output value of the current sensor.

The comparison results between the 200 groups of the test
data and the predicted output current value of the above
established ANN identification model are presented in Fig. 6,
and the corresponding absolute error and relative error are

RSC Adv, 2020, 10, 5163-5172 | 5167
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Fig.5 Training of the ANN identification model of the fuel cell engine.

given in Fig. 7 and 8, respectively. Fig. 7 illustrates that the
absolute error range between the real output current of the fuel
cell engine (from 200 groups of the testing data) and predicted
the output current value of the inverse normalization of the
ANN identification model changes from —3.6 A to 4.2 A. The
maximum relative error shown in Fig. 7 is 2.74%, and the
average relative error shown in Fig. 8 is 0.91%.

To further analyze the performance of the established ANN
identification model with the above LM algorithm, the tradi-
tional BP neural network model is also set up to compare with it
based on the same training parameters. The overall comparison
results are provided in Table 2. It demonstrates that the RMSE
of the test data based on the traditional BP algorithm is 0.0048,
while the one based on the LM algorithm for the same data is
only 0.0031, which is decreased by 35.4%. Moreover, the VAF of
the testing data with the LM algorithm is increased by 12.5%
compared with that with the BP algorithm. Thus, it can be
concluded that the established ANN identification model based
on the LM algorithm has advanced predictive ability (the
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Fig. 6 Predicted value of the ANN identification model.
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Fig. 8 The relative error between the real output currents and pre-
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maximum predicted error is below 3%). The model is better
than the traditional BP neural network model as the former
model has much lower RMSE and larger VAF based on the same
test sample.

4. Experimental results and
discussions

The above trained ANN diagnosis model was programmed with
a PC and implemented online. According to the above

Table 2 Performance of the ANN model with different algorithms

Training data Testing data

Algorithm type RMSE VAF RMSE VAF
BP 0.0059 85.26 0.0048 82.94
LM 0.0042 94.13 0.0031 93.27

This journal is © The Royal Society of Chemistry 2020
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Table 3 Technical parameters of 50kW-grade fuel cell engine

Parameter Value
Active area of per cell 286 cm?
Stoichiometry H, 1.6
Stoichiometry air 2.0
Maximum relief pressure 850 kPa
Maximum inlet H, pressure 350 kPa
Maximum inlet air pressure 200 kPa
Maximum coolant outlet temperature 70 °C
Maximum allowable coolant 10 °C
temperature differential

Maximum allowable cross 100 kPa
pressure-anode to coolant

Maximum pressure 50 kPa
differential between anode and cathode

Maximum current 300 A
Maximum allowable voltage 230V
Rated net power 23 x 2 kW
Maximum power 26.6 X 2 kW
Storage temperature —40 °C to 60 °C
Start up temperature >2°C
Anode relative humidity 95%
Cathode relative humidity 95%

schematic shown in Fig. 1, a 50 kW-grade real fuel cell engine
for the city bus application is developed. Specific technical
parameters (the same as test bench in Fig. 5) are provided in
Table 3.

Fig. 9 illustrates the above experimental variables of a 50 kw-
grade fuel cell engine under the major operations, which lasted
for 1200 s and errors only occurred in the current sensor. At the
313%™ s, an error occurred in the fuel cell stack current sensor
and caused a 58 A uprush (298.4 A) in the real current value
(240.4). At the 313.5™ s, the predicted current value of the ANN
model was 243.4 A, and the difference between them exceeded
the threshold (15 A). Based on the above strategy, it can be
concluded that a sensor-level fault happened and the status of
the fuel cell stack current sensor was abnormal. This error was
detected at this moment and fed back to FCU by the PC with the
CAN bus at the 313.9™ second. The real current signal was
reconstructed by FCU according to the received predicted value
of the ANN model (i.e., 243.4 A). Then, the rotating speed of the
air compressor was maintained at 9630 rpm by FCU, the cor-
responding air flow was 2179SLPM (i.e., 130.7 m* h™ ).

Furthermore, at the 964" s, another error occurred in the
fuel cell stack current sensor and caused a 75 A drop (223.1) in
the real current value (298.1 A). At the 964.5" s, the predicted
current value of the ANN model was 298.3 A. As the difference
also exceeded the given threshold value, this error was detected
at this moment, and the fault signal of the current sensor was
reconstructed by the predicted current value of the ANN model
(i.e., 298.3 A) at the 964.9™ s. As such, the rotating speed of the
air compressor was maintained at 11 020 rpm by FCU, the
corresponding air flow was 2674SLPM (i.e., 160.4 m* h™"). This
can avoid the “oxygen starvation” damage in case the fault
signal of the current sensor is treated as the real current value.

This journal is © The Royal Society of Chemistry 2020
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Fig. 10 illustrates the above experimental variables of a 50
kW-grade fuel cell engine under another operation, which las-
ted for 600 s and errors occurred both in the current sensor and
voltage sensor simultaneously at the 343™ s. On this occasion,
a49 A dip (125.4 A) in the real current value (177.5 A)and a 39V
drop (129.1 V) in the real voltage value (168.1 V) occurred. At the
343.4™ s, the predicted current value of the ANN model was
167.9 A, the difference between them also exceeded the
threshold (15 A) value. A sensor-level fault and abnormal status
of the fuel cell stack current sensor had been validated. This
error was detected and sent back to FCU by a PC with the CAN
bus at the 343.9™ s, and the real current signal was recon-
structed by FCU according to the received predicted value of the
ANN model (167.9 A). Then, the rotating speed of the air
compressor maintained at 7600 rpm was controlled by FCU, the
corresponding air flow was 1451SLPM (i.e. 87.1 m> h™).

The required air flow is shown in Fig. 9(e) and 10(e),
respectively. The corresponding controlled rotating speeds of
the air compressor are shown in Fig. 9(f) and 10(f), respectively.
Both the figures demonstrate that the air flow is directly
proportion to the real output current, and the higher the
rotating speed of the air compressor, the larger the air flow.
When the error only occurs in a single current senor, the
predictive value of the ANN identification model is in close
proximity with the accurate value of the current sensor, and the
predictive value can be treated as the reconstruction signal of
the fault current sensor. When the errors occurred in the
current sensor and another sensor simultaneously, the predic-
tive value of the ANN identification model is a little different
from the real accurate value of the current sensor, but the
difference is acceptable, and the predictive value of the ANN
identification model can also be treated as the reconstruction
signal of the fault current sensor to some extent. The rotating
speed of the air compressor is directly controlled according to
the normal value of the current sensor, once errors occur in the
current sensor, it will be adjusted by the reconstructed current
signals of the ANN identification model. Overall, the above
method ensures the fault-tolerance performance and reason-
able control strategy of the air supply system of the fuel cell
engine.

5. Conclusions

To ensure the safety and reliability of the fuel cell engine in the
commercial fuel cell buses, a kind of fault diagnosis and fault-
tolerant control approach for the air supply subsystem based on
ANN has been proposed and designed. First, some sensor
signals relevant to the current sensor were extracted from the
test bench to train the offline ANN identification model with the
LM algorithm. Second, the online fault diagnosis was designed
based on a PC embedded with the offline ANN identification
model and FCU.

To verify the proposed method, two experiments involving
errors occurring in a single current sensor as well as errors
occurring in both, the current sensor and voltage sensor, were
performed. During the experiments, when the difference
between the current sensor signal and the predictive output
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Fig. 9 50 kW fuel cell engine operation parameters with a single current sensor fault. (a) H, relief pressure and inlet H, pressure; (b) inlet and
outlet coolant temperatures; (c) output voltage; (d) output current; (green line indicates the fault start time of the current sensor (313 s and 964 s),
the red line indicates the reconstructed current value based on the predicted value of ANN identification model); (e) air flow; (f) rotating speed of

the air compressor.

value of the ANN model exceeds the given threshold value, the
fault of the current sensor is detected within 1 s by the PC.
Simultaneously, the invalid signals are substituted with the
predictive output of the ANN identification model and sent back
to FCU. The air flow and rotating speeds of the air compressor
are controlled by FCU with the CAN bus based on the recon-
structed current signals. Even though such errors during the
above experiments will cause no serious damage to the fuel cell

5170 | RSC Adv, 2020, 10, 5163-5172

stack directly, but they may result in mistakes in the control
strategies of the air supply subsystem (such as shut down of
oxygen starvation). The above method has been applied in
practical system for months, the experimental results show that
it can quickly detect the current sensor signal value and
immediately reconstruct the invalid current sensor signal by the
predictive output of the ANN identification model. This method
enhances the fault-tolerant control performance of the air

This journal is © The Royal Society of Chemistry 2020
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Fig. 10 50 kW fuel cell engine operation parameters with both current sensor and voltage sensor faults. (a) H, relief pressure and inlet H,
pressure; (b) inlet and outlet coolant temperatures; (c) output voltage; (d) output current; (green line indicates the fault start time of the current
sensor (343 s), the red line indicates the reconstructed current value based on the predicted value of ANN identification model); (e) air flow; (f)

rotating speed of the air compressor.

supply subsystem and protects the fuel cell stack. It also
provides an instructional alternative to the reliability, stability
and safety research of other complicated non-linear systems
with large numbers of sensors.

In the future study, efficient and reliable fault diagnosis and
fault-tolerant control methods will be further researched and
tested when multiple sensors (two or more) failures occur
simultaneously.

This journal is © The Royal Society of Chemistry 2020
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