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a current sensor and its
application to fault-tolerant control for an air
supply subsystem of a 50 kW-Grade fuel cell engine

Rui Quan, *ab Fan Wu,b Chengji Wang,b Baohua Tanc and Yufang Changa

The safety, reliability and stability of air supply subsystems are still problems for the commercial applications

of fuel cells; therefore, engine fault diagnosis and fault-tolerant control are essential to protect the fuel cell

stack. In this study, a fault diagnosis and fault-tolerant control method based on artificial neural networks

(ANNs) has been proposed. The offline ANN modification model was trained with a Levenberg–

Marquardt (LM) algorithm based on other sensors' signals relevant to the current sensor of a 50 kW-

grade fuel cell engine test bench. The output current was predicted via the ANN identification model

according to other relevant sensors and compared with the sampled current sensor signal. The faults in

the current sensor were detected immediately once the difference exceeded the given threshold value,

and the invalid signals of the current sensor were substituted with the predictive output value of the ANN

identification model. Finally, the reconstructed current sensor signals were sent back to a fuel cell

controller unit (FCU) to adjust the air flow and rotate speeds of the air compressor. Experimental results

show that the typical faults in the current sensor can be diagnosed and distinguished within 0.5 s when

the threshold value is 15 A. The invalid signal of current sensor can be reconstructed within 0.1 s. Which

ensures that the air compressor operate normally and avoids oxygen starvation. The proposed method

can protect the fuel cell stack and enhance the fault-tolerant performance of air supply subsystem used

in the fuel cell engine, and it is promising to be utilized in the fault diagnosis and fault-tolerant control of

various fuel cell engines and multiple sensor systems.
1. Introduction

Green energy is a good alternative to alleviate the worldwide
environmental and resource issues. Owing to high efficiency, no
noise and zero pollution, the fuel cells have been considered as
one of the future promising energy sources.1–3 Among the various
fuel cells, the proton exchange membrane fuel cell (PEMFC)
technology has been a research and commercialization focus in
the stationary, mobile and transportation applications for its
high-power density and efficiency, low operating temperature,
and a quick response to the load.4–6 In recent years, the famous
commercialized vehicles, such as “Mirai” of Toyota, “Clarity” of
Honda, “ix35” and “NEXO” of Hyundai, have validated the
sufficient performances of PEMFC for transportation applica-
tions with power of up to 100 kW. However, there are still some
challenges such as lifetime, durability, costs, reliability, safety,
and maintenance for fuel cells to overcome in commercial
tilization of Solar Energy and Operation
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applications.7,8 Moreover, reliability and durability are the two
main barriers, which impede its wide applications.

In practical applications, improper operating conditions such
as reactant starvation, ooding and drying may severely deterio-
rate the fuel cell performance, usually resulting in several single
cell voltage drop. If the improper faulty conditions are recurrent
or continue for a long period, other degradation phenomenamay
take place and accelerate the fuel cell stack ageing or even
damage.9 Consequently, the fuel cell faults should be detected as
early as possible. Among the solutions, fault diagnosis and fault-
tolerant control, dedicated to detecting, isolating, reconstructing
and analyzing different faults, are indispensable to keep the fuel
cell stack operate safely and avoid mistakes in the control strat-
egies of the fuel cell engine, which reduces downtime and miti-
gates performance degradation of the fuel cell stack.10–12

The fuel cell system (or called fuel cell engine) consists of
multiple auxiliary subsystems other than fuel cell stacks, such as
the air supply subsystem, hydrogen supply subsystem, cooling
subsystem, electrical circuit and controller. As the air supply
quantity is controlled according to the real output current value of
the fuel cell stack, the majority of sensors may be affected by the
severe electromagnetic interference (EMI) environment because of
the high rotating speed, vibration and noise of air compressor, or
common-mode and different-mode signals caused by other
RSC Adv., 2020, 10, 5163–5172 | 5163
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electrical components. Once the faults of the air supply subsystem
occur without any detection, neither protective nor fault-tolerant
control measures are taken in time, it will result in a shutdown,
oxygen starvation or even permanent damage to the costly fuel cell
stack. Thus, it is essential to study the fault diagnosis and fault-
tolerant control for the fuel cell system, particularly for the
current sensor used in the air supply subsystem.

The popular fault diagnosis approaches for the sensors
include those based on hardware redundancy, Kalman lter,
signal processing, neural networks and so on.13–17 The hardware
redundancy-based method demands additional sensors to
measure the same variable, but it will increase the complexity
and costs of the fuel cell system. The Kalman lter is a promising
method in the real time fault diagnosis of sensors for it can
describe their dynamic performance,13 but the diagnosis perfor-
mance mainly depends on the accurate mechanism models. In
fact, the accurate mechanism models for different sensors are
difficult to set up even though the accurate models during
a certain time can be acquired. The accuracy may slowly decline,
or the object parameters uctuate as time ies. The signal pro-
cessing method, particularly the wavelet analysis,14,15 is suitable
for the signal singularity identication of the sensors; however,
the output load of the fuel cell engine varies all the time and all
the parameters of the fuel cell engine keep changing accordingly.
Therefore, it is decient to the fault diagnosis of sensors only by
detecting sudden changes in their output signals.

Articial neural networks (ANN) have an excellent ability of
non-linear mapping and self-learning, and it can avoid the
negative inuence and subjective factors of the established
unfaithful models.16,17 Therefore, ANN is applicable to the fault
diagnosis of the complicated non-linear systems. In this study,
the neural network trained with the Levenberg–Marquardt (LM)
Fig. 1 Schematic of a 50 kW-grade fuel cell engine.

5164 | RSC Adv., 2020, 10, 5163–5172
algorithm is utilized in the fault diagnosis of a current sensor
and active fault-tolerant control for the air supply subsystem of
a 50 kW-grade fuel cell engine designed by our group.
2. Schematic of the fuel cell engine

The detailed schematic of the 50 kW-grade fuel cell engine is
shown in Fig. 1, and it includes a hydrogen supply subsystem, an
air supply subsystem, a cooling subsystem and a fuel cell stack.
The hydrogen subsystem consists of a hydrogen tank, a hand
valve, a pressure relief valve, a pressure regulator, a hydrogen
pump, a water separator, a hydrogen purge and several pressure
sensors (P1 denotes the hydrogen tank pressure, P2 denotes the
hydrogen relief pressure and P3 denotes the inlet hydrogen
pressure); the air supply subsystem includes an air lter, an air
compressor, a humidier, a backpressure regulator, a hydrogen
sensor (detecting hydrogen concentration) and several air
sensors (F1 denotes the air ow sensor, T1 denotes the outlet
temperature of air compressor, T2 and T3 denote the inlet and
outlet air temperature, respectively, and P4 denotes the inlet air
pressure); the cooling subsystem includes a radiator, a water
tank, a thermostat, a particle lter, a deionized water lter,
a heater, a water pump and several coolant sensors (T4 denotes
the inlet coolant temperature, T5 denotes the outlet coolant
temperature, T6 denotes radiator's outlet temperature and P5
denotes the coolant pressure). The output of the fuel cell engine
is connected with a voltage sensor (denoted as V) in parallel and
a current sensor (denoted as A) in series. The output power of the
fuel cell engine is freely adjusted by the DC/DC converter.18

According to the basic electrochemical reaction equation of
the fuel cell, the required hydrogen and air ow are controlled
by a fuel cell controller unit (FCU) according to the output
This journal is © The Royal Society of Chemistry 2020
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current of the fuel cell engine. The required hydrogen ow and
air ow are calculated as follows:19

FH2
¼ In

2F
� 22:4� 60 ¼ 0:00697In (1)

FAir ¼ 100/21 � 0.5 � FH2
� l ¼ 0.0166lIn (2)

where FH2
and FAir are the required hydrogen ow (SLPM) and

air ow (SLPM), respectively. I is the practical output current, n
is the fuel cell number, F is the Faraday constant (96 485), and l

is the excess air ratio (usually is 2).
According to the above equations, when an error occurs in

the current sensor, the required air ow will be out of control,
particularly when the sampled value of the current sensor is
much smaller than the practical value. If the air supply ow is
controlled based on the inaccurate sampled value, the
dangerous “oxygen starvation” fault occurs quickly with a large
output power, it may also lead to irreversible damage to the fuel
cell stack. Thus, the fault diagnosis and prediction of the
current sensor used in the air supply subsystem is important.
To enhance the robust performance of the fuel cell engine, the
fault signal of the current sensor should be reconstructed with
other relevant sensor signals.
3. Fault diagnosis and fault-tolerant
control strategy
3.1. Diagnosis and signal reconstruction approach

The proposed fault diagnosis and fault-tolerant control strategy
are shown in Fig. 2, and the articial neural network is trained
Fig. 2 Diagramof the proposed fault diagnosis and fault-tolerant control
Realization process of the fault diagnosis and fault-tolerant control strat

This journal is © The Royal Society of Chemistry 2020
and tested offline based on the sensor signals from the test
bench, and the ANN parameters are optimized with the test
results. The trained ANN model is used online for the fault
diagnosis and signal reconstruction of the current sensor.

In the offline process, the pressure, temperature, voltage and
current signals of the above sensors are sampled with the A/D
circuit of FCU, and saved as training and test data into
a supervisory personal computer with a controller area network
(CAN) bus. Then, the diagnosis model is trained using the
supervisory personal computer (PC) and programmed with
Python language. In the specic online stage, the real-time data
are measured and processed using a PC with the trained offline
model. The variability of the current sensor is predicted by the
established ANN model according to other relevant sensors
(such as pressure sensors, voltage sensors and temperature
sensors) and compared with the practically sampled current
signal. Once the compared result (i.e. the absolute error) is
above the given threshold value, the fault of the output current
sensor is validated, its practically sampled signal is substituted
by the predicted value of the ANN model, and the required air
ow is controlled by FCU based on the reconstructed value.
3.2. Training of ANN

According to the above schematic of the designed fuel cell
engine, it can be seen that the output current sensor value is
relevant to the voltage sensors, the hydrogen pressure sensors
and the coolant temperature sensors. Thus, the designed ANN
model identication structure of a fuel cell engine is shown in
Fig. 3. The hydrogen relief pressure (P2(k � 2), P2(k � 1), P2(k)),
inlet hydrogen pressure (P3(k � 2), P3(k � 1), P3(k)), inlet
approach. (a) Workflowof the offline and online diagnosis approach. (b)
egy.

RSC Adv., 2020, 10, 5163–5172 | 5165
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Fig. 3 ANN model identification structure of the fuel cell engine.
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coolant temperature (T4(k � 2), T4(k � 1), T4(k)), outlet coolant
temperature (T5(k � 2), T5(k � 1), T5(k)), output voltage (V(k �
2), V(k � 1), V(k)) and output current (I(k � 2), I(k � 1)) are
treated as its input variables, and the output current of kth time
(I(k)) is the output variable. The identication process of the
ANNmodel is to ensure the error (denoted e(k)) between the real
output current sensor of the fuel cell engine (denoted I(k)), and
the predictive value of the ANN model (denoted I_ANN(k))
approaches the training goal based on different groups of input
variables.

The standard BP algorithm is useful to the forward ANN for it
adjusts the weight value and threshold value to ensure the
minimum sum of square error between the output value of ANN
and the object value. However, it has disadvantages such as slow
convergence and local minimum value. In this study, the Lev-
enberg–Marquardt (LM) algorithm20,21 is adopted to improve the
BP algorithm for its rapid convergence and high efficiency. If
X(k) is the kth vector comprised of weight values and threshold
values, then X(k+1) is calculated using eqn (3).

X(k+1) ¼ X(k) + XX (3)

According to newton algorithm,22 XX is given by

XX ¼ �|V2E(x)|�1VE(x) (4)

where V2E(x) is the Hessian matrix of the error indicator func-
tion E(x), and VE(x) is the gradient. E(x) is dened by the
following equation:

EðxÞ ¼ ð1=2Þ
XN
i¼1

e2i ðxÞ (5)

where e(x) is the training error, VE(x) and V2E(x) are calculated
from eqn (6) and (7), respectively.

VE(x) ¼ JT(x)e(x) (6)

V2E(x) ¼ JT(x)e(x) + S(x) (7)
5166 | RSC Adv., 2020, 10, 5163–5172
where SðxÞ ¼ PN
i¼1

eiðxÞV2eiðxÞ; J(x) is the Jacobianmatrix given by

JðxÞ ¼

2
6666666664

ve1ðxÞ
vx1

ve1ðxÞ
vx2

/
ve1ðxÞ
vxn

ve2ðxÞ
vx1

ve2ðxÞ
vx2

/
ve2ðxÞ
vxn

/ / / /

venðxÞ
vx1

venðxÞ
vx2

/
venðxÞ
vxn

3
7777777775

(8)

According to the Gauss–Newton algorithm,22 XX can be
expressed as follows:

XX ¼ �[JT(x)J(x)]�1J(x)e(x) (9)

Moreover, according to the LM algorithm, XX can be
rewritten by

XX ¼ �[JT(x)J(x) + mI0]�1J(x)e(x) (10)

where m is a positive variable, and I0 is a unit matrix. If m is equal
to 0, LM algorithm is the same as Gauss–Newton algorithm in
eqn (9). Once m is very large, the LM algorithm approximates the
gradient descent algorithm. The computation speed of the
Gauss–Newton algorithm is extremely quick when the minimal
error is close to the target value. Because the LM algorithm
makes full use of the similar second derivative information, its
computation speed is almost hundred times greater than the
basic gradient descent algorithm.

For the above ANN model identication structure, some
experiments, in both normal operation and faulty cases, are
carried out based on the fuel cell test bench, as shown in Fig. 4.
In total, 1000 groups of different experimental data sets are
obtained as the training sample, and another 200 different
groups are selected as the test data. For the fuel cell engine test
bench, the fuel cell stack includes two separate stacks con-
nected in a series. Both of the stacks are manufactured by
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 50 kW-grade fuel cell engine test bench.
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Ballard Power Systems Inc. (Model Name: FCvelocity-9SSL) and
consist of 135 single fuel cells connected in a series.

During the test bench experiments, the output power of the
fuel cell engine was controlled by an adjustable electronic load,
the output current of the fuel cell engine was changed from 0 to
300 A, and all the data were recorded according to a time series.
Due to the page limitation of this study, only some typical
experimental data reecting the rated power are provided in
Table 1 on the training sample.

Due to the different orders of magnitude for the input and
output variables, and to enhance the study efficiency of the ANN
identication model, all the input and output variables are
normalized using the following expression:

xi ¼ xi � xmin

xmax � xmin

(11)
Table 1 Some training sample of the fuel cell engine test bench

Variables Value 1 Value 2 Value 3

P2(k � 2) 670 kPa 661 kPa 652 kPa
P2(k � 1) 661 kPa 652 kPa 650 kPa
P2(k) 650 kPa 649 kPa 630 kPa
P3(k � 2) 95 kPa 96 kPa 98 kPa
P3(k � 1) 96 kPa 98 kPa 101 kPa
P3(k) 98 kPa 98 kPa 138 kPa
T4(k � 2) 58.2 �C 58.6 �C 58.8 �C
T4(k � 1) 58.6 �C 58.8 �C 59.4 �C
T4(k) 58.8 �C 59.4 �C 56.1 �C
T5(k � 2) 67.1 �C 67.7 �C 67.9 �C
T5(k � 1) 67.7 �C 67.9 �C 68.3 �C
T5(k) 67.9 �C 68.3 �C 66.4 �C
V(k � 2) 165.6 V 158.2 V 159.2 V
V(k � 1) 161.5 V 159.2 V 158.2 V
V(k) 159.2 V 158.2 V 158 A
I(k � 2) 263 A 276.3 A 279.8 A
I(k � 1) 276.3 A 279.8 A 280.8 A
I(k) 279.8 A 280.8 A 294.1 A

This journal is © The Royal Society of Chemistry 2020
where xi is the normalization value of input and output vari-
ables, xi is the real value, and xmax and xmin are the maximum
and minimum values of variable x, respectively.

Fig. 5 gives the training result of the above ANN identica-
tion model with the LM algorithm. Based on the Kolmogorov
theory,23 the nal neuron number of the hidden layers is 13. The
adopted neural networks function is “newff()”, the training
function is “trainlm”, the hidden function is “tansig”, the
output layer function is “logsig”, and the training goal is 0.001.
It can be seen that the net converges to the goal aer 34 epochs
take about 1.4 s.
3.3. Testing of ANN

To evaluate the estimated performance of the ANN model, the
root mean square error (RMSE) is adopted in this study and it is
dened by24

RMSEðy; ymÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyðiÞ � ymðiÞÞ2
vuut (12)

where y is the target value of neural networks model (i.e., I(k)),
ym is the output value of the neural networks model I_ANN(k),
and N is the sample data number. The smaller the RMSE is, the
closer ym is to y.

To describe the approximation degree between the target
value of neural networks model and the output value of the
neural networks model, variance account for (VAF) is given by25

VAFðy; ymÞ ¼
�
1� varðy� ymÞ

varðyÞ
�
� 100% (13)

where var() is the variance operation, and the large VAF means
the output value of the neural networks model approximates the
real output value of the current sensor.

The comparison results between the 200 groups of the test
data and the predicted output current value of the above
established ANN identication model are presented in Fig. 6,
and the corresponding absolute error and relative error are
RSC Adv., 2020, 10, 5163–5172 | 5167
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Fig. 5 Training of the ANN identification model of the fuel cell engine.

Fig. 7 Absolute error between the real output currents and predicted
output currents.

Fig. 8 The relative error between the real output currents and pre-
dicted output currents.
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given in Fig. 7 and 8, respectively. Fig. 7 illustrates that the
absolute error range between the real output current of the fuel
cell engine (from 200 groups of the testing data) and predicted
the output current value of the inverse normalization of the
ANN identication model changes from �3.6 A to 4.2 A. The
maximum relative error shown in Fig. 7 is 2.74%, and the
average relative error shown in Fig. 8 is 0.91%.

To further analyze the performance of the established ANN
identication model with the above LM algorithm, the tradi-
tional BP neural network model is also set up to compare with it
based on the same training parameters. The overall comparison
results are provided in Table 2. It demonstrates that the RMSE
of the test data based on the traditional BP algorithm is 0.0048,
while the one based on the LM algorithm for the same data is
only 0.0031, which is decreased by 35.4%. Moreover, the VAF of
the testing data with the LM algorithm is increased by 12.5%
compared with that with the BP algorithm. Thus, it can be
concluded that the established ANN identication model based
on the LM algorithm has advanced predictive ability (the
Fig. 6 Predicted value of the ANN identification model.

5168 | RSC Adv., 2020, 10, 5163–5172
maximum predicted error is below 3%). The model is better
than the traditional BP neural network model as the former
model has much lower RMSE and larger VAF based on the same
test sample.
4. Experimental results and
discussions

The above trained ANN diagnosis model was programmed with
a PC and implemented online. According to the above
Table 2 Performance of the ANN model with different algorithms

Algorithm type

Training data Testing data

RMSE VAF RMSE VAF

BP 0.0059 85.26 0.0048 82.94
LM 0.0042 94.13 0.0031 93.27

This journal is © The Royal Society of Chemistry 2020
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Table 3 Technical parameters of 50kW-grade fuel cell engine

Parameter Value

Active area of per cell 286 cm2

Stoichiometry H2 1.6
Stoichiometry air 2.0
Maximum relief pressure 850 kPa
Maximum inlet H2 pressure 350 kPa
Maximum inlet air pressure 200 kPa
Maximum coolant outlet temperature 70 �C
Maximum allowable coolant
temperature differential

10 �C

Maximum allowable cross
pressure-anode to coolant

100 kPa

Maximum pressure
differential between anode and cathode

50 kPa

Maximum current 300 A
Maximum allowable voltage 230 V
Rated net power 23 � 2 kW
Maximum power 26.6 � 2 kW
Storage temperature �40 �C to 60 �C
Start up temperature >2 �C
Anode relative humidity 95%
Cathode relative humidity 95%
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schematic shown in Fig. 1, a 50 kW-grade real fuel cell engine
for the city bus application is developed. Specic technical
parameters (the same as test bench in Fig. 5) are provided in
Table 3.

Fig. 9 illustrates the above experimental variables of a 50 kW-
grade fuel cell engine under the major operations, which lasted
for 1200 s and errors only occurred in the current sensor. At the
313th s, an error occurred in the fuel cell stack current sensor
and caused a 58 A uprush (298.4 A) in the real current value
(240.4). At the 313.5th s, the predicted current value of the ANN
model was 243.4 A, and the difference between them exceeded
the threshold (15 A). Based on the above strategy, it can be
concluded that a sensor-level fault happened and the status of
the fuel cell stack current sensor was abnormal. This error was
detected at this moment and fed back to FCU by the PC with the
CAN bus at the 313.9th second. The real current signal was
reconstructed by FCU according to the received predicted value
of the ANN model (i.e., 243.4 A). Then, the rotating speed of the
air compressor was maintained at 9630 rpm by FCU, the cor-
responding air ow was 2179SLPM (i.e., 130.7 m3 h�1).

Furthermore, at the 964th s, another error occurred in the
fuel cell stack current sensor and caused a 75 A drop (223.1) in
the real current value (298.1 A). At the 964.5th s, the predicted
current value of the ANN model was 298.3 A. As the difference
also exceeded the given threshold value, this error was detected
at this moment, and the fault signal of the current sensor was
reconstructed by the predicted current value of the ANN model
(i.e., 298.3 A) at the 964.9th s. As such, the rotating speed of the
air compressor was maintained at 11 020 rpm by FCU, the
corresponding air ow was 2674SLPM (i.e., 160.4 m3 h�1). This
can avoid the “oxygen starvation” damage in case the fault
signal of the current sensor is treated as the real current value.
This journal is © The Royal Society of Chemistry 2020
Fig. 10 illustrates the above experimental variables of a 50
kW-grade fuel cell engine under another operation, which las-
ted for 600 s and errors occurred both in the current sensor and
voltage sensor simultaneously at the 343rd s. On this occasion,
a 49 A dip (125.4 A) in the real current value (177.5 A) and a 39 V
drop (129.1 V) in the real voltage value (168.1 V) occurred. At the
343.4th s, the predicted current value of the ANN model was
167.9 A, the difference between them also exceeded the
threshold (15 A) value. A sensor-level fault and abnormal status
of the fuel cell stack current sensor had been validated. This
error was detected and sent back to FCU by a PC with the CAN
bus at the 343.9th s, and the real current signal was recon-
structed by FCU according to the received predicted value of the
ANN model (167.9 A). Then, the rotating speed of the air
compressor maintained at 7600 rpm was controlled by FCU, the
corresponding air ow was 1451SLPM (i.e. 87.1 m3 h�1).

The required air ow is shown in Fig. 9(e) and 10(e),
respectively. The corresponding controlled rotating speeds of
the air compressor are shown in Fig. 9(f) and 10(f), respectively.
Both the gures demonstrate that the air ow is directly
proportion to the real output current, and the higher the
rotating speed of the air compressor, the larger the air ow.
When the error only occurs in a single current senor, the
predictive value of the ANN identication model is in close
proximity with the accurate value of the current sensor, and the
predictive value can be treated as the reconstruction signal of
the fault current sensor. When the errors occurred in the
current sensor and another sensor simultaneously, the predic-
tive value of the ANN identication model is a little different
from the real accurate value of the current sensor, but the
difference is acceptable, and the predictive value of the ANN
identication model can also be treated as the reconstruction
signal of the fault current sensor to some extent. The rotating
speed of the air compressor is directly controlled according to
the normal value of the current sensor, once errors occur in the
current sensor, it will be adjusted by the reconstructed current
signals of the ANN identication model. Overall, the above
method ensures the fault-tolerance performance and reason-
able control strategy of the air supply system of the fuel cell
engine.

5. Conclusions

To ensure the safety and reliability of the fuel cell engine in the
commercial fuel cell buses, a kind of fault diagnosis and fault-
tolerant control approach for the air supply subsystem based on
ANN has been proposed and designed. First, some sensor
signals relevant to the current sensor were extracted from the
test bench to train the offline ANN identication model with the
LM algorithm. Second, the online fault diagnosis was designed
based on a PC embedded with the offline ANN identication
model and FCU.

To verify the proposed method, two experiments involving
errors occurring in a single current sensor as well as errors
occurring in both, the current sensor and voltage sensor, were
performed. During the experiments, when the difference
between the current sensor signal and the predictive output
RSC Adv., 2020, 10, 5163–5172 | 5169
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Fig. 9 50 kW fuel cell engine operation parameters with a single current sensor fault. (a) H2 relief pressure and inlet H2 pressure; (b) inlet and
outlet coolant temperatures; (c) output voltage; (d) output current; (green line indicates the fault start time of the current sensor (313 s and 964 s),
the red line indicates the reconstructed current value based on the predicted value of ANN identification model); (e) air flow; (f) rotating speed of
the air compressor.
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value of the ANN model exceeds the given threshold value, the
fault of the current sensor is detected within 1 s by the PC.
Simultaneously, the invalid signals are substituted with the
predictive output of the ANN identicationmodel and sent back
to FCU. The air ow and rotating speeds of the air compressor
are controlled by FCU with the CAN bus based on the recon-
structed current signals. Even though such errors during the
above experiments will cause no serious damage to the fuel cell
5170 | RSC Adv., 2020, 10, 5163–5172
stack directly, but they may result in mistakes in the control
strategies of the air supply subsystem (such as shut down of
oxygen starvation). The above method has been applied in
practical system for months, the experimental results show that
it can quickly detect the current sensor signal value and
immediately reconstruct the invalid current sensor signal by the
predictive output of the ANN identication model. This method
enhances the fault-tolerant control performance of the air
This journal is © The Royal Society of Chemistry 2020
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Fig. 10 50 kW fuel cell engine operation parameters with both current sensor and voltage sensor faults. (a) H2 relief pressure and inlet H2

pressure; (b) inlet and outlet coolant temperatures; (c) output voltage; (d) output current; (green line indicates the fault start time of the current
sensor (343 s), the red line indicates the reconstructed current value based on the predicted value of ANN identification model); (e) air flow; (f)
rotating speed of the air compressor.
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supply subsystem and protects the fuel cell stack. It also
provides an instructional alternative to the reliability, stability
and safety research of other complicated non-linear systems
with large numbers of sensors.

In the future study, efficient and reliable fault diagnosis and
fault-tolerant control methods will be further researched and
tested when multiple sensors (two or more) failures occur
simultaneously.
This journal is © The Royal Society of Chemistry 2020
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