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Efficient deoxygenation of waste cooking oil over
Co3;0,4—-La,03z-doped activated carbon for the
production of diesel-like fuelf
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H. V. Lee, @9 Karen Wilson @ ¢ and Y. H. Taufig-Yap*°

Untreated waste cooking oil (WCO) with significant levels of water and fatty acids (FFAs) was deoxygenated
over Coz04—La03/ACano catalysts under an inert flow of N, in a micro-batch closed system for the
production of green diesel. The primary reaction mechanism was found to be the decarbonylation/
decarboxylation (deCOx) pathway in the Coz04—La,03/ACano-Catalyzed reaction. The effect of cobalt
doping, catalyst loading, different deoxygenation (DO) systems, temperature and time were investigated.
The results indicated that among the various cobalt doping levels (between 5 and 25 wt%), the maximum
catalytic activity was exhibited with the Co : La ratio of 20 : 20 wt/wt% DO under N, flow, which yielded
58% hydrocarbons with majority diesel-range (n-(Cy5 + Cy7)) selectivity (~63%), using 3 wt% catalyst
loading at a temperature of 350 °C within 180 min. Interestingly, 1 wt% of catalyst in the micro-batch
closed system yielded 96% hydrocarbons with 93% n-(Cy5 + Cy7) selectivity within 60 min at 330 °C,
38.4 wt% FFA and 5% water content. An examination of the WCO under a series of FFA (0-20%) and
water contents (0.5-20 wt%) indicated an enhanced yield of green diesel, and increased involvement of
the deCOx mechanism. A high water content was found to increase the decomposition of triglycerides
into FFAs and promote the DO reaction. The present work demonstrates that WCO with significant levels
of water and FFAs generated by the food industry can provide an economical and naturally replenished
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1. Introduction

A range of geopolitical, economic and environmental issues (e.g.
global warming, diminishing petroleum deposits, increasing
crude oil prices and demand for energy independence) have
promoted recent interest in biofuels. Accordingly, fuels ob-
tained from biomass (biofuels) are considered as a carbon-
neutral and renewable substitute for fossil fuels. In particular,
much attention has been paid to bio-oils, which can readily be
obtained via the pyrolysis (thermal and catalytic cracking) of
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raw material for the production of diesel.

biomass. Nevertheless, the considerably low selectivity of this
approach, which generates a range of unwanted products
(primarily oxygenates), requires additional development. On the
other hand, the well-established biofuel, which is known as
biodiesel or fatty acid methyl esters (FAMEs), is composed of
highly oxygenated compounds and suffer from several inevi-
table drawbacks such as poor storage stability and poor cold-
flow behaviour."” Consequently, elimination of oxygen-
bonded compounds is necessary to achieve desirable diesel
properties. Significantly, the high oxygen content of biodiesel
and bio-oils gives rise to most of their disadvantages, including
a lower heat content than that of conventional fossil fuels. Thus,
the production of (oxygen-free) hydrocarbons from the catalytic
deoxygenation (DO) of fatty acids and their derivatives has
attracted interest. In principle, DO involves oxygen extraction
from fatty acids and their derivatives via decarboxylation (-CO5,)
and decarbonylation (-CO, H,0) (deCOx) reactions under an H,-
free atmosphere.

There are several solid acid catalysts containing metal
sulfides, noble metals, metal phosphides, metal carbides,
metals, and transition metal oxides with supporting materials
reported for the DO reaction. Sulfonated acidic catalysts show
high affinity toward the production of hydrocarbon fractions,
but suffer from sulphur leaching and affect the quality of oil.>*

This journal is © The Royal Society of Chemistry 2020
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Meanwhile, high acidity noble metal catalysts are costly,” which
make them unattractive. Medium acidic catalysts, such as metal
phosphates and carbides, and mesoporous catalysts, such as
SBA-15, MCM-41, and HMS catalysts, are generally selected for
biofuel production since they exhibit low affinity toward the
deactivation of the catalyst together with high DO activity.®
However, the complexity of their synthesis makes them unap-
pealing.” Thus, the drawbacks of the above mentioned catalysts
encourage the exploration of non-sulphated, low-cost, and
facile catalysts for the production of high-quality renewable
fuel.

The use of metal oxides in the DO reaction has been
continuously reported and proven to be selective towards the
formation of hydrocarbon fractions.®* Common transition metal
oxides (TMO) that are used in the DO process include Mn, Ni,
Co, W, Mo, Cu, Fe and Zn. Among them, Co exhibits the highest
rate of decarboxylation®’ and formation of rich-paraffin
species. The enhancement of decarboxylation by Co is real-
ized through its excellent acidic-basic properties."* Further-
more, Co also facilitates the formation of olefins (alkenes) via
decarbonylation pathways, producing water as a by-product.
However, water has a negative effect on Co, which is easily
oxidized and deactivated. Recently, the incorporation of a Ca
promoter in Co-supported SiO,-Al,O; led to substantial catalyst
stability and suggested the stability of Co relies on the incor-
poration of a basic metal, where the basic metal promoter leads
to the inhibition of water production by lowering the affinity for
the decarbonylation reaction.*” For instance, a report on the DO
of waste cooking oil (WCO) via deCOx over acid-base catalysts
(Ca0-Lay03/AChane and Ag,03-La,03/AC,an,) recently disclosed
that the basic sites in La,O; play key role in the removal of C-O-
bonded species via decarboxylation, and thereby lead to greater
enhancement of the DO activity and product selectively toward
n-(Cy5 + Cy7) fractions.*'? Furthermore, the basic sites of La,03
suppress coke colonization. Recently, Benito and co-workers
examined the effect of the addition of La,O; to Ni/Al,O3, and
observed that La,O3; promotion led to increased catalyst
longevity, probably due to the oxygen donation from La,0,CO3
species to produce CO from carbon deposits.”* Even though
a series of binary oxide CaO-La,0; and Ag,03-La,O3-supported
ACpano have been studied in details,*>** their DO performance
was unsatisfactory and rapidly deactivated by coke deposition.
Based on previous findings, the incorporation of Co in La,03/AC
may be promising for the improvement in DO performance and
the enhancement of anti-coking character. Furthermore, the
use of Co,03;-Laz0, as a metal promoter on AC support has not
been reported to date in the literature.

As is known, DO under an inert atmosphere is not beneficial
for the formation of desired paraffins products. Green diesel
consists of low mixtures of paraffin compounds, which are
typically not beneficial for reducing NOx emission and possess
a low cetane number. Furthermore, DO under an inert atmo-
sphere prevents the production of a high mass of green diesel
since the volatile liquids with non-condensable gases easily
escape during the reaction. Thus, since the DO reaction atmo-
sphere plays an important role in enhancing the formation of
paraffins, in the present work, WCO was deoxygenized in
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a semi-batch inert flow reactor and micro-batch reactor over the
binary oxide of C0;0,-La,O3; on ACj.n, catalyst. The micro-
batch reactor is a one-dimensional reactor (10 cm length X
0.8 cm diameter), providing rapid heat and high mass transfer
rates.'* Although the micro-batch reactor has been successfully
utilized for the continuous operation of fast and highly
exothermic reactions and transformations involving toxic and
explosive chemicals such as hydrogenation, alkylation, oxida-
tion, and polymerization,"*™” this reactor system is rarely
adopted in the DO reaction for the production of green diesel.
Instead of varying the DO reactor set-up, the stoichiometric
study of Co content (5-25 wt%), reaction time, catalyst loading,
water and FFA content were explored. This study provides new
insight into the interaction of Co;04-La,03 on ACyan, SUpport
and offer an alternative approach to curb coke deposition and
improve the longevity of the catalyst during the DO reaction
together with the formation of saturated hydrocarbon. The
present work also provides new in-depth insight on the DO of
WCO in inert and closed reaction systems.

2. Materials and methods
2.1 Materials

For the present study, the feedstock (palm oil-based WCO
supplied by a restaurant at Serdang, Selangor, Malaysia) was
used without purification. Table 1 summarises the character-
istics of the crude WCO, including free fatty acid content and
water content. The level of free fatty acids (18.4% by weight) is
reflected by the total acid number (TAN) of 36.8 mg KOH g~ .
The fatty acid content of the WCO included the saturated pal-
mitic (45.68%), stearic (4.25%) and myristic acid (1.3%),
together with the unsaturated oleic (40.19%) and linoleic acid
(7.90%). Anhydrous silver nitrate (CoNO3, 99.99% pure) was
supplied by Sigma Aldrich (UK), lanthanum nitrate hexahydrate
(La (NO3);-6H,0, 99.0% pure) was supplied Merck (Germany),
phosphoric acid (H;PO,, 85.0-87.0% pure) was supplied by J. T.
Baker (USA), and Walnut shells (Juglans sp.) were obtained from
a market in Basra (Iraq). Liquid alkane and alkene standards (n
= Cg—C,o) for gas chromatographic analysis were supplied by
Sigma Aldrich and used without additional purification. The

Table 1 Properties of the waste cooking oil (WCO) used as the
reaction feedstock

Properties Value
Density (g cm™?) 0.87
Viscosity (mm? s~ ") 4.85
Moisture content (% wt) 1-5
Acid value (mg KOH g™ ) 36.81
FFA content (%) 18.40
Fatty acid composition

Myristic acid, C14:0 1.93
Palmitic acid, Cy6:0 45.68
Stearic acid, C;4:0 4.25
Oleic acid, Cyg:1 40.19
Linoleic acid, C;g:2 7.95
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internal standard was 1-bromohexane. GC-grade n-hexane,
purity >98%, supplied by Merck (Germany), was used for dilu-
tion. N, gas with 99% purity was supplied by Linde Malaysia
Sdn Bhd.

2.2 Catalyst preparation

A two-step process and additional treatment with H;PO, were
chosen for the preparation of activated carbons with a prolate
shape, surface functionality and high purity. Initially, 50 g of
dried walnut shell powder with a particle size in the range of 1-
200 mesh was subjected to pyrolysis in an N, atmosphere at
a heating rate of 5°C min~" up to 700 °C for 5 h. The sample was
heated in a tube furnace using a ceramic vertical reactor. The
carbonaceous product was activated by concentrated phos-
phoric acid at 158 °C for 12 h, then washed with hot water to pH
= 7 and further dried in an oven overnight to form activated
carbon (AC). The AC was then infused with 20 wt% La(NO3)-
6H,0 and 5-30 wt% Co(NO;) under continuous stirring for 6 h.
The impregnation of the metal on the support was optimized
via the vacuum impregnating procedure, and this was facili-
tated with a vacuum machine (Edwards RV12) at 6.3 x 10 °
mbar. Subsequently, a Stuart RE300DB rotary evaporator was
employed for drying, under heating and reduced pressure for
3 h at 55 °C and —60 kPa, respectively. Subsequently, the AC-
doped metals underwent calcination at 700 °C, which lasted
for a 4 h period under an N, flow. The metal-doped AC was
denoted as C0,03(x~Laz03(),ACphano, where x = 5, 10, 15, 20, 25,
and 30 wt%.

2.3 Material characterization

For the purpose of identifying the chemical composition and
the state of dispersion of the metal-doped AC catalysts before
and after the chemical reaction, X-ray diffraction (XRD) analysis
was applied (Shimadzu, model XRD-6000). The Brunauer-
Emmett-Teller (BET) technique was employed using an N,
adsorption/desorption analyser (Thermo-Finnigan Sorpmatic
1990 series) to obtain information on the surface area, and pore
size and volume distribution of the catalysts. Typically, the
catalyst sample was degassed at a temperature of 150 °C over-
night to eliminate foreign gases and moisture from the surface
of the catalysts. The analysis was performed at —196 °C, and the
desorption and adsorption of nitrogen (N,) on the surface of the
catalyst was performed in a vacuum chamber. Temperature-
programmed desorption (TPD) was employed to examine the
acidity and basicity of the catalysts. Here, two probe molecules,
NH; and CO,, were employed (TPD-CO, and TPD-NHj;,
respectively). A Thermo Finnigan TPD/R/O 1100 instrument
equipped with a thermal conductivity detector (TCD) was
employed to conduct the examination. Typically, about 0.05 g of
catalyst was pre-treated with an N, gas flow, which lasted for
30 min at a temperature of 250 °C. This process was followed by
exposing the catalyst to CO, gas for adsorption within 1 h and
flushing with N, gas to remove excess CO,. Subsequently, CO,
desorption from the basic sites of the catalyst was identified by
using the TCD under a flow of helium gas (30 mL min ") in the
temperature range of 50-900 °C. The temperature was kept
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constant for 30 min. NH; adsorption/desorption was performed
using similar steps as the TDP-CO, method. An electron
microscope (LEO 1455 VP) was employed to record field-
emission scanning electron microscopy (FESEM) images,
which was equipped with energy dispersive X-ray (EDX) (facili-
tated by a Rayny EDX-720 spectrometer) to determine the
elemental composition of the catalyst samples (P, Co, La, O and
C). X-ray photoelectron spectroscopy (XPS) was used to study the
chemical states on the surface of the Co0,03;-La,03/ACano
sample, and measurements were performed with a Microprobe
PHI Quantera II under ultrahigh vacuum (UHV) conditions
(base vacuum of ~10~® Pa) at room temperature. For the X-ray
source, radiation of Mg Ko (hv = 1253.6 e€V) was employed.
Furthermore, thermal analysis using a thermogravimetry
analyzer (TGA) (TGA 1000i, Instrument Specialists Inc, United
States) was applied to identify the level of deposition of coke
and carbon on the spent catalyst. Both the catalyst and spent
catalyst were heated in the temperature range of 25-900 °C

range (30 °C min~ ') with an airflow of 40 mL min~".

2.4 Catalytic deoxygenation of WCO

The DO of WCO was carried out in a 250 mL mechanically
stirred semi-batch reactor. WCO (~10 g) was placed in the
reactor together with 0.5 wt% of catalyst, and prior to the
initiation of the experiment, inert N, gas was flushed into the
reactor accompanied by continuous stirring of the mixture. The
purpose of this process was to ensure that the O, and moisture
from the air was eliminated before heat was applied. After-
wards, the mixture was continuously treated with a constant
flow of N, (flow rate of 20 mL min ") at atmospheric pressure to
maintain the inert conditions for the DO reaction. The DO
reaction was performed at 300 °C for 1 h. A cooler was used to
facilitate the condensation of the deoxygenated products, where
the condensates were collected in a vessel of the batch reactor.
After completing each experiment, the mixture was cooled to
room temperature. For comparison, a 10 cm length and 0.8 cm
diameter stainless steel tube was used as a micro batch reactor
closed system, where initially, the catalyst and WCO were mixed
and placed in the micro-reactor and then the system was
flushed using nitrogen gas for 10 min with a flow of 3 mL min ™"
and then the valve was closed and the reactor heated at a heat-
ing rate of 50 °C min~" to the desired temperature, and after the
reaction was finished, the system was cooled using ice-cold
water. The mixture of catalyst, char and product were sepa-
rated using a centrifuge (3500 rpm for 10 min). The final
deoxygenated liquid products were further analysed by using
gas chromatography with a flame ionization detector (GC-FID),
gas chromatography-mass spectrometry (GC-MS) and Fourier-
transform infrared spectroscopy.

2.5 Water and FFA content effect

The water and FFA contents have a direct effect on the DO
reaction. Fatty acids are known to be the primary composition
during the DO reaction of triglycerides. Therefore, oleic acid
was chosen as a model reactant. The water content in WCO will
affect hydrolysis process of TG, where the TG molecules split

This journal is © The Royal Society of Chemistry 2020
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into free fatty acids and propane. To vary the FFA content, the
WCO used in this study consisted of average triglycerides of
92 wt%, free fatty acids of 6.6 wt%, and unknown impurities of
1.4 wt%. The feedstock was free of water. Additional water or
free fatty acid (oleic acid) was mixed with the WCO to adjust the
initial parameters for the reaction tests. The fatty acid compo-
sition of the WCO was evaluated according to the standard
AOCS method (1997), F9a-44 (Table 1). The WCO consisted of
C14-Cy fatty acids with the majority being unsaturated Cyg:1
(oleic acid) and saturated C;¢:0 (palmitic acid).

2.6 Product analysis

The reaction was analysed using an Agilent 7890A gas chro-
matograph (GC) fitted with a flame-ionization detector and an
HP-5 capillary column (30 m x 0.25 mm x 0.33 mm). The
sample (1 mL) was injected with a split ratio of 10: 1. The
carrier gas was nitrogen with a flow rate of 11 mL min~". The
injector temperature was 280 °C and the detector temperature
was 300 °C. The oven was programmed to maintain a tempera-
ture of 40 °C for 4 min before ramping up to 280 °C at a rate of
10 °C min ', maintaining this final temperature for 5 min. The
products of the reaction were identified by comparing the
retention times on the gas chromatograph with known stan-
dards and by examining the fragmentation patterns on an
Agilent 5970 mass spectrometric (MS) detector. Calibration
curves were used to provide quantitative analysis for each
compound of interest. The determination of hydrocarbon yield
(X) on the catalyst performance was evaluated by GC-FID using
eqn (1) as follows:'®

Hydrocarbon yield (%) = Lot ym x 100 )]

>

where n, = peak area of alkenes (Cg-C,y), 1; = area of alkanes,
and n, = area of the product. The hydrocarbon selectivity (S) of
the deoxygenated products was determined using eqn (2).

Cx

S x 100 @)
where Cy = peak area of the desired hydrocarbon fraction and ny
= area of hydrocarbons. The uncertainties were determined by
repeated experiments and were reported as standard deviations,
with each data point representing the mean average result ob-
tained from a minimum of three separate experiments.

Hydrocarbon selectivity (%) =

3. Results and discussion

3.1 Characterization of C030,(x)~La;03(/ACpano catalysts

The FESEM images of the nanosized walnut shell-derived AC
catalyst were presented in our recent report.®* The result indi-
cated the presence of nanocrystalline fibrous particles with
a thickness in the range of 15-20 nm on the AC catalyst support.
Interestingly, the FESEM images of the Co30,(x)~La,03(;)/ACnano
catalysts, where x = 5, 10, 15, 20, 25 wt% and y = 20 wt%,
showed well-dispersed, needle-like particles with a long and
thin slab of nano-structures (Fig. 1A-E). The particle length and
diameter were within the range of 190-290 nm and 11-23 nm,
respectively. A further increment in Co species led to the
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formation of compact micro-sized agglomerates. Based on the
EDX analysis, the white spherical particles are attributed to Co
species (identified by EDX analysis), which decreased in size
and disappeared with an increase in the content of Co species
contents. The change in morphology at different Co loading was
due to the dopant effect, and thus resulted in aggregation.* The
needle-like structures were deformed as the Co aggregates grew
excessively on the catalyst surface. Fig. 1F and Table 2 show the
EDX analysis of the Co304()-La;05()/ACpano catalysts, which
indicate the presence of C, O, P, La, and Co elements. Thus, the
treatment of AC with H;PO, resulted the presence of P,>**** while
the successful surface impregnation of La and Co was reflected
by the presence of the corresponding elements in the EDX
analysis. According to Table 2, the atomic ratio of Co : La in the
catalysts was consistent with the expected (x : y) values of 5 : 20,
10 : 20,15 : 20, 20 : 20 and 25 : 20. Overall, each of the Co304)~
La,03()/ACpano catalysts had a maximum carbon content of
>39%, which is expected to provide outstanding mechanical
properties for both stability and thermal catalytic activity during
DO reactions.

Fig. 2A presents the XRD analysis of AC and Co304x-
La,03(y)/ACnano catalysts. AC displayed a peak centred at 26 =
25.0°, which indicates the presence of amorphous carbona-
ceous materials.”* In the case of the C0304x)~La>03(;)/ACnano
catalysts, the amorphous AC was altered to a highly crystalline
state after the incorporation of the Co-La metals. Here, the XRD
analysis revealed peaks at 20 = 9.1°, 17.1°, 31.5°, 36.7°, 43.1°,
54.5°, 59.3° and 62.7°, which correspond to the Co;0, phase
(JCPDS File no. 00-001-1152).>* The XRD peaks at 26 = 14.1°,
18.1°, 25.3°, 26.6°, 29.6°, 39.2°, 46.6°, 54.6°, and 77.6° are
attributed to the La,O; phase (JCPDS File no. 00-037-1497).>**°
The highly crystalline nature of the C0304()-La,03)/AChano
catalyst is due to the intercalation of La and Co ions in the AC
matrix.?**” Upon increasing the Co dosage (from 5 to 25 wt%),
the occurrence of bimetallic lanthanum cobalt oxide phases
(CoLaOs3) at 26 = 23.3°, 40.2° and 69.9° (JCPDS File no. 00-006-
0491)*2° (Fig. 2B and C) evidenced the effective integration of
the bimetallic (Co-La) structure into the AC.,, catalyst.
Moreover, the bimetallic CoLaO; peaks corresponding to the
(110)" plane gradually shifted to a lower angle with an increase
in the Co content. This phenomenon indicates that more Co
atoms were located deep in the La,O; lattice with an increase in
the Co content, indicating that the higher the Co content, the
higher the amount of Co-LaO; solid solution is formed.” The
homogeneous substitution of Co with La easily occurred
because the radius of La®" (1.16 A) is larger than that of Co*"
(0.65 A). Also the incorporation of Co-rich species in the
C0304(x~Laz03()/ACnano catalyst promoted the dispersion of
CoLaO; and reduced the crystallinity of CoLaO;.>* The present
finding is consistent with the EDX results, where the oxygen
content was reduced by 54% after the incorporation of 25 wt%
of Co species (Table 2). Although the atomic radius of oxygen
(1.67 A) is larger than that of Co (0.65 A), excess replacement by
Co increased the size of the unit cell for CoLaO;."* The incre-
ment in the average crystallite size for the Co304(x~LayO3)/
ACpano catalyst with an increase in Co dosage is depicted in
Table 3.
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Fig. 1 FESEM images of (A) Co3Oas3)—La20320%/AChano. (B) Co304010%~La20320%/AChano. (C) Co30405%—La20320%/AChano. (D) Co30420%—
La20320%)/AChano. and (E) CozO4(25%)—Laz0320%)/AChano Catalysts and (F) EDX spectra for CozO4(20%)—La20320%)/AChano Catalyst.

Table 3 lists the BET surface area for the Co304(-La,03(20)/
ACpano catalysts with different Co : La ratios. The results indi-
cate a decrease in the BET surface area from 668 to 486 m> g "
with an increase in Co dosage from 5 to 25 wt%. The reduction
in surface area with an increment in the Co content is due to the
destruction of the needle-like structure together with the

5000 | RSC Adv, 2020, 10, 4996-5009

formation of excessive small aggregates (see FESEM image),
which covered the active sites of the catalyst surface.’**
Moreover, the pore volume of the C03;04x)~La;03(20)/ACnano
catalyst decreased from 0.64 to 0.41 nm with an increase in Co
content. These observations are attributed to the incorporation

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra09516k

Open Access Article. Published on 30 January 2020. Downloaded on 2/6/2026 8:00:08 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Table 2 Catalyst element composition determined by energy-
dispersive X-ray spectroscopy (EDS)

Element composition® (%)

Catalyst” C (0] P La Co

C0304(5-La,052006)/AChano~~ 52.44 1174 1271 1873  4.38
C0304(10-L2203(200)/ACnano ~ 49.37 1046 9.27 19.60 11.30
C0304(157L2,03(200)/ACniano ~ 47.63  9.40  9.24 1839 15.34
C0304020 L2:03(2006)/ACnano ~ 43.16 843  10.21 19.23  18.97
C0304025L2,05(200)/ACnano  38.98 531  9.47 1950 26.74
“ Theoretical Co/La atomic ratio of catalyst. ” Experimental Co/La

atomic ratio in the synthesized catalyst determined by EDX.

of excess active metals (Co and La) in the pores of the AC
support, which slightly blocked the porous structure.*
Previous work reported that acidic sites are necessary for
enhancing the C-O and C-C bond cleavage via decarboxylation/
decarbonylation and cracking pathways.** Besides acidic sites,
basic sites play an important role in promoting decarboxylation
and suppressing the formation of coke by reducing the deacti-
vation rate of acidic catalysts.****> Hence, the perfect and ideal
DO catalyst can be achieved via the co-existence of basic and
acidic sites. Thus, the acidity and basicity profiles for the
C0304(x"Lay03()/ACrano  catalyst quantified by
temperature-programmed desorption NH; (TPD-NH;) and CO,
desorption (TPD-CO,) analyses, and the results are displayed in
Fig. 3A and B and Table 3. The TPD-NH; profiles in Fig. 3A
display two distinct NH; desorption peaks at temperatures of
<150 °C and >500 °C, which are associated with the weak and
strong acidic sites, respectively.*® An examination of Table 3
reveals that the increment of Co doping from 5 to 20 wt%

were
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induced the generation of strong acidic sites, which suggests
that the presence of Co-rich species enhances the strength of
the acidic sites. However, a dramatic decrease in the concen-
tration of strong acid sites was observed with a further incre-
ment in Co content to 25 wt%. This can be attributed to the
structural changes caused by the high Co content, which led to
damage of the mixed oxide structure (Fig. 1E). The highest
acidity distribution (30 208.66 pmol g~ ') was observed at a Co
content of 20 wt% with the maximum increase of approximately
28% over the Co304(59%)-La203(2006)/ACnano catalyst. The weak
acidity indeed showed negligible changes (148.74-254.21 pmol
g~ ") for all the C0304(x~La05()/ACpano catalysts. The basicity
(TPD-CO,) profiles of the various Co3043x)-La,03(;)/AChano
catalysts are presented in Fig. 3B and Table 3. Each catalyst
displayed the main desorption peak at a temperature of
>500 °C, which is attributed to the interaction of CO, with the
strong basic sites of the catalyst. Similar to the trend on the
acidity profile, the strong basic site distribution was found to
increase with an increase in Co dopant up to 20 wt%. It is
generally acknowledged that the basicity content will improve
with an increase in Co loading.*”~*° This is due to the synergistic
effect between Co and La on the activated carbon surface.***
However, excess Co dopant covers the active sites of La, and
thus provides lower basicity. Consistent with this, a reduction in
the distribution of basic sites (5292.06 pmol g~ *) was found on
the Co030405-La303020)/ACphano catalyst. In summary, the
C0304(209%)"L2203(2006)/ACnano catalyst exhibited the highest CO,
desorption peaks at Ty,ax = 939 °C with the maximum basic site
distribution (5292.06 pmol g~'). Considering the acidity and
basicity, an excess of Co dopant (25 wt%) results in high satu-
ration of the Co-active sites, consequently hindering the active
sites of La. Since, the capacity to instigate C-O cleavage is
directly related to a high distribution of acid and basic active
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Table 3 Physicochemical properties of the CozO4(-LaxO3(,)/ACane Catalysts

XRD* BET” TPD-NH,® TPD-CO,°

Crystallite  Surface area’ Pore volume” NH, desorption Amount of NH; CO, desorption Amount of CO,
Catalyst size® (nm) (m>g ) (em® g™ temperature® (°C)  adsorbed® (umol g~') temperature (°C) adsorbed® (umol g~ %)
C0304(59%)~ 38.40 668.53 0.64 127/730/806 148.74/2584.76/ 635 3289.72
La,03(200)/ 19 266.00
ACnano
C0304(10%)~ 44.49 634.76 0.61 130/634/800 214.39/1019.17/ 546 3510.07
La,03(200)/ 16 247.95
AChano
C0304(15%)~ 46.23 514.36 0.57 138/819/842 249.84/1191.16/ 906 3865.96
La,03(2006)/ 18 843.94
ACnano
C03042006) 48.41 501.79 0.52 135/609/831 254.21/4042.96/ 939 5292.06
La,03(2000)/ 26 165.70
AChano
C0304(2500)~ 53.18 486.13 0.41 140/713/832 251.25/713.16/4400.43 901 3272.65
L3203[200/o)/
ACnano

“ The crystallite size was determined from the highest intensity line broadening of the XRD peak at 20 = 43.1°.  BET surface area.  NH;/CO,

desorption peak for all the catalysts.

sites, it is speculated that elevated Co dosages of >20% will
result in lower DO activity. Based on the result obtained, it is
expected that the most effective ratio for converting WCO to
hydrocarbon-like structures via DO is the CoO(20,)~La>O3(209)/
ACan, catalyst.

Since the Co030400%)"La,03(2000)/AChano catalyst showed
superior acid-base active sites, a detailed study on its surface
was performed via XPS analysis. Fig. S1A-Et reveal the decon-
volution peaks at a binding energy (BE) of 284.7-289.8 eV (C),
531.8-533.1 eV (0O) and ~133.7-135.7 eV (P) together with the
characteristic peaks for La 3ds and Co 2p;. The O 1s spectra for
the C03040209%)-L2203(2006)/AChano Catalyst present two peaks
with the BE values of 529.8 eV, 531.8 eV and 533.1 eV (Fig. S1Bt).
The XPS peak at 529.8 eV is attributed to the lattice O*~ species,
0,%/0, whereas the peak at 531.6 eV originated from the

hydroxyl species, OH™. The highest BE level peak at 533.10 eV is
assigned to molecular water adsorbed on the surface of the
catalyst.**** This implies that the lanthanum and cobalt are in
the form of oxides on the catalyst surface. It noteworthy to
mention that the O 1s region showed the lowest BE peak
compared to other elemental species, which are known to be
less electron-rich oxygen species.* This is in agreement with
surface atomic ratio data shown in Table 4, where only 6% O
was detected on the Co304(209%)~La205(2006)/ACnano catalyst. This
result is also in accordance with the FESEM-EDX result, where
only ~5% O was detected (Table 2). Thus, this finding confirms
that the Co304320)-La203(20)/ACnano Catalyst is comprised mainly
of bimetallic Co-La alloy supported on ACyan,. The carbon in
the C0304(20)-La,03(20)/ACnan, catalyst was detected in the C 1s
spectra (Fig. S1Ct). Four distinct peaks were obtained at BE of
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Table 4 XPS peak deconvolution result in %, peak position, FWHM and surface concentration for the CozO40%)—La203(20%)AChano Catalyst

State of element O1s C1s Co 2p La 3ds P2p
Atomic percent (at%) 6.1 45.2 18.8 19.9 9.9

O 1s. cf1 O 1s. cf2 O 1s. cf3 C-0 Cc-C C=0 C(0)o Co 2pyps P 2ps)»
Peak position (eV) 529.81 531.83 533.10 285.81 284.70 286.90 289.81 797.80 835.60 133.72
FWHM 1.42 1.80 196 1.42 1.26 1.57 1.55 2.96 — 2.12
Concentration (%) 16.35 56.55 27.09 27.98 55.69 10.87 5.47 — — —

284.7, 285.8, 286.9 and 289.8 eV. These peaks are attributed to
C-C, C-0, C=0 and C(O)O, respectively, demonstrating that
three types of functional groups were incorporated during the
synthesis of the catalyst. The value for C 1s belonging C-C was
the highest (56%), implying that the AC,.,, Support is mainly
composed of carbon-based material, which was connected by
C-C bonds. The total C content was relatively high (45%), and
thus enhanced the thermally stability of the catalyst at high
reaction temperatures.*® Referring to Fig. S1D,} the BE for the
deconvolution curves of Co 2p were observed in the range of
781.9 eV (Co 2p3),) to 797.8 eV (Co 2pyy,). This is evidence of the
existence of cobalt metal on the catalyst surface. The significant
deconvolution curves of Co 2p suggest that the cobalt metal was
well distributed on the external AC surface, and it is speculated
that the improvement in DO catalytic activity is due to the
greater cobalt dispersion on the AC.* Fig. S1Ef indicates
deconvolution of the high-resolution P 2p spectra into a single
peak, with binding energies of 133.7 eV for P 2p;/; and 135.3 eV
for P 2p,,,. These observations are linked to the presence of
PO,*", which was derived from the phosphate precursor of
H;PO, used in the chemical activation of the walnut shell.?
Fig. S1Ff indicates the presence of two regions displayed by La
3d; in lanthanum oxide (838.3 eV and 835.2 €V), which are
associated with La®* species on the catalyst surface.* Notably,
the XPS results revealed a significant bonding interaction
between Co>* and La®" in terms of a shift in the binding ener-
gies of Co 2p3), (from 779.2 (Co;0,, standard) to 781.7), and
a shift in the binding energy of La 3d; (from 834.5 eV (La,Os3,
standard) to 835.6 + 0.1 eV).**** The shift in bond energy is also
due to the formation of the bimetallic (La-Co) phase. The
metallic bonding of La and Co was substantiated by the XRD
results (refer to XRD).

3.2 DO of WCO over C030,(x)~La;03(,)/ACpan, catalysts and
effect of reaction atmosphere

The catalytic DO of WCO over the C0304()-La,033,)/AChano
catalysts was conducted at a constant temperature (300 °C), for
1 h, with 0.5 wt% catalyst loading under two different condi-
tions: (i) N, flow and (ii) closed system. The detailed GC-FID
results are shown in Fig. 4. For comparison, a blank experi-
ment was carried out over the AC,.n, support. The results
showed that the deoxygenized liquid products produced from
both reaction systems were composed of saturated and unsat-
urated hydrocarbon fractions in the range of Cg—C,, (Fig. 4A).
Notably, ACano had lower activity for the DO of WCO than the
C0304(x~La203(20%)/ACrano catalysts. The DO profile showed

This journal is © The Royal Society of Chemistry 2020

that a low hydrocarbon yield (12-14%) was achieved from
ACpano catalysing DO in both reaction systems. However, when
the C0304(2096)"12203(20%)/ACnano catalyst was applied, high
activity was observed with a hydrocarbon yield in range of 25-
38%. The yields of liquid hydrocarbon were significantly
increased in the order of Co304000)"L220320%)/AChano >
C0304(15%)"La203(2096)/ACnano > C0304(25%)~La203(20%)/ACnano >
C0304(109%)"L2203(2006)/ACnano > C0304(59%)-L22,03(2006)/AChano >
ACpano- The hydrocarbons yield increased from 33-65% to 27-
35% as the Co dopant increased from 5 to 20 wt% and reduced
for 25 wt% Co concentration.

Theoretically, the WCO was composed majority of ~46% Cy,
and ~52% Cy; fatty acids, which were further deoxygenized via
decarboxylation/decarbonylation (deCOx) pathways to produce
hydrocarbon fractions mainly of n-C;5 and n-C;5. Fig. 4B and C
shows the carbon distribution of the deoxygenated liquid
product obtained from both DO systems. Considering that n-
(Cy5 + Cy7) was significantly found among the hydrocarbon
products in all cases, it is conceivable that the n-(Cy5 + Cy7)
obtained resulted from the decarbonylation (deCOx) synthesis
pathway. As the Co content increased, the deCOx rate increased
and resulted in formation of n-(C;5 + C;) fractions.” In addi-
tion, the total selectivity of n-(Cys + C,) was reduced (~29-41%)
when 25 wt% of Co catalysed the reaction. Although some
studies acknowledged that high deCOx activity is dominated by
catalysts with rich weak + medium acidic sites (TPD-NH;
desorption temperature <500 °C),>>*"* it was difficult to corre-
late this finding since the weak acid obtained from all the
catalysts was close in value (Table 3). The high hydrocarbon
yield (25-38%) and n-(C;5 + C;;) fractions (36-65%) over the
C0504(209%)"L2205(2006)/ACnano catalyst suggest that the DO
activity via deCOx pathways was strongly affected by the surface
density of strong acid and basic sites. This indicates that
a higher degree of DO occurs over highly acidic and basic
catalysts. The pronounced effect of acid-base characteristics in
promoting the DO reaction is consistent with our previous
investigations. The DO of WCO on Ag,0-La,03/ACpan, and
Ca0-La,03/AC catalysts suggested that deCOx is favoured by
the existence of a large amount of acid-based sites.>**

As expected there was a great difference in the hydrocarbon
fraction distribution between the DO reaction using the micro-
batch closed system and reaction under N, flow. The DO of
WCO under an N, flow gave a low hydrocarbon yield (25%) and
also poor deCOx activity with only 36% n-(C;5 + C;5) selectivity.
Meanwhile, the n-(Cy5 + C;5) selectivity was found to increase
significantly in the micro-batch closed system, with 38%
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and (C) selectivity toward Cg—Cyq under inert conditions with the reaction conditions of 0.5 wt% of catalyst loading, 1 h at 300 °C.

hydrocarbon yield and 68% n-(Cys + Cy5) selectivity. This indi-
cates that the deCOx reaction was promoted by the catalytic
reaction under the high pressure built-up in the micro-batch
closed system. In addition, this suggests competitive activa-
tion of the active sites by the high pressure DO system, which
led to an enhancement in the deCOx reaction. The low selec-
tivity toward n-(Cy5 + Cy7) was prominent for DO catalysed by
C0304(x~La03()/ACnano under an N, flow, which is due to the
formation of rich oxygen-containing compounds (oxygenates
and CO,/CO gases) during the ineffective DO reaction. These

oxygenates can act as poisons by strongly adsorbing on the
catalyst surface and deactivate the active sites of the catalyst.
The efficacy of WCO DO under the closed and N, flow
systems over the Co304(2006)~La203(20%)/ACnano catalysts was
further confirmed by GCMS, as shown in Fig. 5A. It was
observed that the DO of WCO in the micro-batch closed system
produced a hydrocarbon fraction two times larger than that in
the N, flow system. Interestingly, the peaks for carboxylic acids
could not be observed in the deoxygenated liquid product from
the micro-batch closed system, where in contrast the N, flow
system produced >8% carboxylic acid. Moreover, the amount of
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other oxygenate species such as ketones, aldehydes and alco-
hols was remarkably reduced (7.13%) in the micro-batch closed
system. Thus, it can be concluded that the Co304000)~
La,03(2000)/ACphano catalyzed DO in the micro-batch closed
system offers successive cracking reactions via C-O cleavage,
producing rich hydrocarbon fuel mixtures. The FTIR analysis
was performed to study the chemical functional groups of the
WCO (feedstock) and deoxygenized liquid products (Fig. 5B).
The FTIR spectrum of WCO showed absorption bands at
2915 em ™' (-CH), 1692 cm ™' (-C=0) stretching, 1447 em™"
(~CH,) scissoring, 1285 cm' (-C-0-C) and 726 cm ™" (-(CH),~
bending for alkane).? The FTIR results for WCO and the liquid
deoxygenated product show that all the spectra were normal-
ized by the intensity of the absorption band centered at 2753-
3000 cm ™' (CH stretching, aliphatic). It is noteworthy that the
liquid deoxygenated products showed a significant intensity
reduction for the absorption band at 1692 cm ™", which belongs
to C=0 (fatty acid), and the absence of C-O-C (from carbonyl
group in WCO) absorption features at 1285 cm™ . This result
indicates the removal of oxygen species via deCOx pathways.**>*
The DO close system exhibited a significantly lower intensity for
the C=0 and C-O-C peaks compared to DO in the N, flow
system under the same experimental conditions.
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3.3 Optimization studies

The effects of the C0304(209%)-La,05(2006)/AChano catalyst loading
(0.5 wt% to 5 wt%) towards hydrocarbon yield and product
selectivity at 300 °C temperature and 60 min reaction time
under inert conditions and in the micro-batch closed system
with a stirring speed of 400 rpm are shown in Fig. 6A-C. The
results show that the DO activity increased with an increment in
catalyst loading within the range of 0.5 wt% to 1 wt%, which
yielded 43% and 35% of hydrocarbons with 69% and 47% n-C;;
+ n-C, selectivity for the reaction using the micro-batch closed
system and under N, flow, respectively. This finding is possibly
due to the fact that the increase in the catalyst loading
enhanced the exposure of active sites for the accessibility of the
feedstock in the DO reaction.>® However, a further increase in
the catalyst loading to >1 wt% resulted a reduction in hydro-
carbon yield to <40% and n-C;5 + n-C;5 selectivity to <43% in
both DO systems. This is due to the occurrence of parallel or
secondary reactions, such as polymerization pathways. The
excess active sites due to a high catalyst loading increased the
rapid-rate reaction on the catalyst surface, which simulta-
neously resulted in shortening of the catalyst life span by coke
formation caused by polymerization reaction.*® In the present
study, 1 wt% catalyst loading was observed to be optimal for the
catalytic DO reaction.
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Fig. 6D-F show the effect of reaction time in the range of
30 min to 240 min with 1 wt% C030,(2006)La203(20%)/ACnano
catalyst loading at a temperature of 300 °C in the micro-batch
closed system and inert N, flow condition. The results showed
that the DO activity depends on the reaction time. As the reac-
tion time increased from 30 min to 60 min, the hydrocarbon
yield increased from 33% to 66% and 21% to 39% for DO in the
micro-batch closed system and inert condition, respectively.
Meanwhile, the closed and inert N, flow system also showed an
increment of n-C, 5 + n-C selectivity from 79% to 94%, and 47%
to 58%, respectively. Further prolonging the time to 240 min led
to a slight reduction in the hydrocarbon yield from 66% to 57%
and 39% to 34%, and the n-C;5 + n-C; selectivity was reduced to
>77% and 47%, respectively. The insignificant changes in the
hydrocarbon yield and n-C;5 + n-C,5 selectivity indicate that DO
via deCOx reaction was highly unaffected in this time range. The
lowest catalytic activity was observed at the longest reaction
time (240 min), which is because unfavourable side reactions
(i.e., polymerization) occur during a longer reaction time. These
side reactions accelerated the deactivation of the catalyst since
the polymerization process generates coke on the catalyst. Coke
formation reduces the effectiveness of the catalyst and leads to
the accumulation of different compounds on the catalyst
surface, covering the active sites, and thus suppressing the
reaction at the catalytic centres of the catalyst.””

The effect of reaction temperature in the DO of WCO was
investigated in the temperature range of 270 °C to 400 °C, with
a C0304(209%)"La203(20%)/ACnano catalyst loading of 1 wt%, and
reaction time of 60 min in the micro-batch closed and inert N,
flow system with a stirring speed of 400 rpm (Fig. 6G-I). The DO
activity increased with an increase in temperature from 270 °C
to 330 °C. Both DO systems showed a similar trend of activity,
whereby the highest catalytic activity was found at a tempera-
ture of 330 °C. This proves that Co304(2006)~La,03(209%)/AChano 18
thermally stable since it is capable to withstand at a high
temperature. A further increase in temperature to >330 °C led to
the retardation of catalytic activity with a lower hydrocarbon
yield and n-C;5 + n-Cy; selectivity. The high reaction tempera-
ture enhanced the occurrence of cracking via C-C scission in
the triglycerides and n-C;5 + n-Cy, fractions into lighter frac-
tions.”® Therefore, the formation of lighter fractions (ie.,
gaseous products) and gasoline fraction (i.e., Cg—C;,) simulta-
neously reduced the hydrocarbon yield and n-C;5 + n-C,,
selectivity. In this study, the optimum reaction temperature in
the N, flow system was achieved at 330 °C, 1 wt% catalyst within
60 min, with 52% hydrocarbon yield and 71% n-C;5 + n-Cy;
selectivity. On the other hand, the optimum catalytic DO
(hydrocarbon yield = 85%, n-Cy5 + n-Cy; = 93%) was achieved
within 60 min and 1 wt% catalyst loading at 330 °C in the micro-
batch closed system.

3.4 Effect of water and FFA content in DO of WCO

Other important factors affecting the DO activity are water and
FFA content in the feedstock. It was reported in a previous study
that the addition of water to the DO feedstock produced three
beneficial effects: (1) low acidic and other low-value oxygenated
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components, (2) prevent the beneficial components that are
partially miscible in water to not easily be excluded from DO;
and (3) in particularly strong catalysts, water regulates the
catalyst site interactions with the feedstock components.* The
investigation of the content of water and FFA on the DO of WCO
over the C0304(209%)-La203(2006)/ACnano catalyst was performed
using the optimum parameters of 1 wt%, 60 min at 330 °C in the
micro-batch closed system. All the obtained results are dis-
played in Fig. S2A-D.T Some publications suggest the negative
impact of water towards DO activity, where water results in the
modification of the external catalyst surface, simultaneously
leading to the loss of some active metals species, and reduces
the catalytic DO activity. Interestingly, the impact of water on
the DO of WCO over the C0o304(20%)-La,03(209%)/ACnano catalyst
showed a positive effect (Fig. S2A and Bt). In the present study,
increasing the water content from 1 wt% to 5 wt% resulted in an
increase in the hydrocarbon yield from 82% to 88%, while the n-
C;5 + n-Cy5 selectivity increased from 90% to 93%. This indi-
cates that the addition of water to WCO facilitated the C-O
cleavage of fatty acids via the deCOx reaction. The hydrocarbon
yield and selectivity reached ~88% and 93% n-C;s + n-C,; when
the water content was >5 wt%, respectively. This indicates that
the cobalt and lanthanum supported on AC,,.n, were chemically
and thermally stable at high temperature even with a large
amount of water in the feedstock.

Further study on the effect of FFAs towards the DO reaction
was performed. Since the WCO consisted mainly of C;z of fatty
acids, oleic acid (C;g3) was chosen as a model reactant. The
FFA% of the WCO was controlled by further adding commercial
oleic acid as a representative natural FFA. The FFA% for the
feedstock mixture (WCO + oleic acid) used was in the range of
18% to 38% (Fig. S2C and D). It was found that all the feed-
stocks were effectively deoxygenized via the selective deCOx
reaction with a higher percentage of hydrocarbon fraction of
>93%, and the product was predominantly selective toward n-
C;5 + n-Cy; fractions. The total hydrocarbons was found to
increase from 88% to 96% with an increase in FFA content from
18% to 38%. In contrast, the value of n-C;5 + n-C,; selectivity
was reduced to 84% from 94%. The results suggest that an FFA-
rich feed encourages C-C cleavage rather than C-O cleavage.
Evidently, n-Co, n-C4, and n-C;3 were found to be prominent in
the DO of the FFA-rich feedstocks (FFA > 23%). It has been re-
ported that a higher content of FFA in the feedstock will lead to
a decrease in DO activity and favour the cracking reaction.
Overall, the DO of the FFAs-WCO mixtures was still favorable
toward C-O cleavage and produced rich diesel-like fuels. This
suggests the Co0304(2006)-La203(20%)/ACnano catalyst is highly
adaptable to water-FFA conditions in the DO process, and thus
it can be applied for other realistic feedstocks.

3.5 Reusability of C0304(2006)-La203(209)/ACnano catalyst

The reusability profile of the C030400%)-L2203(2006)/ACnano
catalyst was investigated via DO reaction in the micro-batch
closed system condition under the conditions of 1 wt% cata-
lyst at 330 °C within 60 min (Fig. S3AT). Upon the completion of
each cycle, the catalyst was reactivated by simple washing with

This journal is © The Royal Society of Chemistry 2020
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Table 5 Comparison study on catalytic DO with various feeds
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FFA H/C Selectivity Coke
No. Catalyst Support Reaction Feed (%) Reaction condition (vield%) (%) Reusability (wt%) Reference
1  Ni-Ag/ACcrr Coconut fibre DO JCO 15.4 Catalyst loading: 5 wt% 80 83 (n-Cys + 5 2.5 11
residue Temperature: 350 °C Cy7)
Time: 1 h under N, flow
2 CaO-La,03/AC Walnut shell DO WCO 18.4 Catalyst loading: 3 wt% 72 82 (n-Cy5+ 6 2 5
Temperature: 330 °C, Ci7)
Time: 3 h under N, flow
3 Ag,03-Lay03/AChan, Walnut shell DO WCO 18.4 Catalyst loading: 1 wt% 89 93 (n-Cys + 6 1.3 6
Temperature: 350 °C Cy7)
Time: 2 h under N, flow
4 C0304020%)~ Walnut shell DO WCO 38.4 Catalyst loading: 1 wt% 96 93 (n-Cy5 + 8 3.7 Present
La,05(20%)/AChano Temperature: 330 °C Ci7) study

Time: 1 h and 5% of water

content

hexane and reused for the next cycle. The results showed that
the C030402006)-La203(209%)/ACnano catalyst performed steadily
for eight consecutive runs, maintaining the hydrocarbon yield
at >72% with >80% selectivity of C;5 and C,, products (Fig. S3A
and S4t). This indicates that the C03;04(2006)~L2203(20%)/ACnano
catalyst possesses mechanical properties and chemical stability.
Furthermore, the elemental study indicated a negligible
amount of La®* and Co*" species leached from the C0304(2096)~
La,03(2006)/AChano catalyst during each reaction. The compar-
ison study show that the leached La*" and Co*" in the liquid
product of the fresh and 8™-run catalyst gradually increased
from 1 ppm to 3 ppm and 1 ppm to 4 ppm, respectively. Hence,
the loss in DO activity is due to the dissolution of the active
metals during continuous runs. Furthermore, the leaching level
is within the maximum range of the EN 12662 Standard Speci-
fication for Diesel Fuel Oils contamination content
(24 mg L™"),% which confirms that the C0304(200%)~La203(2000)/
ACpan, catalyst shows potential leaching resistance and exhibits
good stability.

The metal dispersion states and chemical composition study
for the C0304(2006)~L2203(2006)/ACnano catalyst (fresh and spent
catalysts) were determined by XRD and TGA analysis (Fig. S3B
and Ct), respectively. The XRD analysis showed that the spent
catalysts exhibited similar bimetallic active CoLaO; phases with
higher crystallinity at 26 = 23.3°, 40.2° and 69.9° (JCPDS File no.
00-006-0491). The crystallite size of the C0304(2006)~La203(20%)/
ACpano particles evaluated at 26: 43.1 showed a minor change in
the crystallite size of the spent catalyst (Fig. S3B}). The TGA
analysis was performed to examine the extent of coke formation
during the DO of WCO using the C030,(200)~La203(20%)/ACnano
catalyst. The results showed a decomposition peak in the
temperature range of 290 °C to 550 °C. This is attributed to the
combustion of the activated carbon nanorods. The initial
decomposition temperature for the fresh and spent catalysts
was similar; however, the final decomposition temperature for
the spent catalyst was significantly higher >550 °C. Further-
more, the weight loss for the spent catalyst was 3.7 wt% higher
than that of the fresh catalyst, which was due to the oxidation of
coke in air (Fig. S3CY). The coke is categorized as hard coke,

This journal is © The Royal Society of Chemistry 2020

which decomposed completely at a temperature >550 °C.** The
deposited coke will accumulate on the catalyst surface, which
covers the active sites on the catalyst and reduces the catalytic
DO activity. The negligible loss in DO activity throughout eight
reaction runs is an indication that coke formation had an
ingsignificant effect on the active sites of the C0304(200)~
La,03(209)/ACnano catalyst, which confirms that the La,O; and
Co30, supported AC catalyst exhibits high stability. Notably, the
use of carbon as a support in the DO reaction has been widely
explored due to its excellent thermal stability. For instance, the
use of a bimetallic doped carbon catalyst in the DO of non-
edible oil including jatropha oil and WCO was recently
explored by our group.>*™ Ni-Ag/AC, CaO-La,03/AC, and
Ag,03-La,03/AChano Were found to be effective in removing the
oxygenated compound via deCOx pathways and yielded hydro-
carbon in the range of 72-89% with product selectively toward
n-Cys + C,5 fractions (82-93%) and could be reused four to six
times (Table 5). Notably, C0304(2006)~La,03(20%)/ACnano €xhibi-
ted excellent catalyst activity with hydrocarbon yield and
selectivity of 96% and 93%, respectively. Moreover, the
C0304(209%)"L2203(2006)/ACnano  Catalyst showed high catalytic
stability with eight times successive reusability with a hydro-
carbon yield of >80% and n-C;5 + Cy; selectivity of >83%.
Although the coke formed on the surface of Co03;04000)-
La,03(20%)/ACnano Was more pronounced than that in previous
studies, it still exhibited high stability, reusability and catalytic
activity. This suggests by the presence of high acidic active sites
with a high surface area and pore volume,* which are favorable
for the DO reaction.

4. Conclusion

In the present work, an effective DO reaction was developed by
converting triglyceride-based feeds to diesel-like fuel over the
C0304(x)~LayO3()/ACnano catalyst. The improvement in the DO
of WCO over the acid-base C0o304(x~La;03(,)/ACpano catalyst was
due to the neutralization of the strong acidic sites. DO using
a micro-reactor closed system showed better reactivity
compared to semi-batch inert flow conditions due to the
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advantages of high pressure, which is beneficial in maintaining
high catalytic activity. The cracking pathway was found to be
enhanced with an increase in Co content due to the richness of
the high-strength basic and acid sites of the Co304()~LayO3()/
ACpap, catalyst. Among the Co contents (5-25 wt%), the
optimum content of Co for deCOx activity is 20 wt%. The effects
of reaction time, catalyst loading, temperature, water and FFA
content were further investigated with the optimum DO
condition (hydrocarbon fraction = 96%, n-C;5 + n-Cy; = 93%)
achieved using 1 wt% catalyst loading within 60 min at 330 °C,
38.4 wt% FFA and 5% water content in the micro-batch closed
system. The efficiency of the C030400%)-La203(2006)/ACnano
catalyst was proven to be capable of deoxygenizing low quality
feedstocks with a high FFA (38%) and high water content
(5 wt%) under the optimum conditions. The Co030,(200)~
La,03(209)/ACnano catalyst showed high stability and reusability
up to eight times with the yield and selectivity maintained at
>72% and >80% for n-C;5 + C;5.
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