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d of structure-based virtual
screening based on ensemble learning†

Jin Li, ab WeiChao Liu,b Yongping Songc and JiYi Xia *b

Virtual screening has become a successful alternative and complementary technique to experimental high-

throughput screening technologies for drug design. Since the scoring function of docking software cannot

predict binding affinity accurately, how to improve the hit rate remains a common issue in structure-based

virtual screening. This paper proposed a target-specific virtual screening method based on ensemble

learning named ENS-VS. In this method, protein–ligand interaction energy terms and structure vectors

of the ligands were used as a combination descriptor. Support vector machine, decision tree and Fisher

linear discriminant classifiers were integrated into ENS-VS for predicting the activity of the compounds.

The results showed that the enrichment factor (EF) 1% of ENS-VS was 6 times higher than that of

Autodock vina. Compared with the newest virtual screening method SIEVE-Score, the mean EF 1% and

AUC of ENS-VS (mean EF 1% ¼ 52.77, AUC ¼ 0.982) were statistically significantly higher than those of

SIEVE-Score (mean EF 1% ¼ 42.64, AUC ¼ 0.912) on DUD-E datasets; and the mean EF 1% and AUC of

ENS-VS (mean EF 1% ¼ 29.73, AUC ¼ 0.793) were also higher than those of SIEVE-Score (mean EF 1% ¼
25.56, AUC ¼ 0.765) on eight DEKOIS datasets. ENS-VS also showed significant improvements compared

with other similar research. The source code is available at https://github.com/eddyblue/ENS-VS.
1. Introduction

Virtual screening (VS) is a computational approach used to
identify active compounds by predicting their activity. In recent
years, it has become a successful alternative and complemen-
tary technique to experimental high-throughput screening
technologies for drug design, because of its ability to decrease
the cost and increase the hit rate of screening greatly.1–4 Tech-
nically, virtual screening can be categorized into two types,
namely, ligand-based virtual screening (LBVS) and structure-
based virtual screening (SBVS). The similarity principle is
used to identify potentially active compounds based on their
similarity to known reference ligands in LBVS. This can be done
by a variety of methods, including similarity and substructure
searching,5 pharmacophore matching6 or 3D shape matching.7

SBVS predicts the active compounds with higher docking
quality by involving explicit molecular docking of each ligand
into the binding site of the target. Many docking tools are used
in SBVS, such as Glide,8 GOLD,9 Autodock,10 and Autodock vina
ience, Southwest University, Chongqing

logy of Ministry of Education, Medical

uan Province, Institute of Cardiovascular

and Engineering, Southwest Medical
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(ESI) available: Supplemental le 1
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(refer to as Vina).11 Because SBVS is based on the physical
interactions between the protein target and the ligands,
whereas LBVS is based on the similarity of known active
compounds, SBVS is more likely to obtain novel compounds
than LBVS. Another advantage of SBVS is the ability to perform
interaction analysis to understand the affinity and selectivity of
the compounds by using the docked structures.

However, the classical scoring functions implemented in the
docking soware usually use simple function form and the
linear regression method, which leads to the binding affinity
between the target and the compound not being predicted
accurately. Therefore, how to increase the hit rate becomes one
of the most challenging tasks in SBVS.

In recent years, researchers have applied machine learning
methods12 to improve the performance of VS and achieved good
results, such as support vector machine (SVM), decision tree,
neural network, deep-learning, etc.13–16 Unlike the classical
scoring functions with assumed mathematical functional form,
machine learning-based scoring functions implicitly learn the
relationships among protein–ligand complexes by non-linear
regression.17 However, it is hard to achieve high accuracy by
one learner, the emergence of ensemble learning such as
bagging,18 boosting18,19 and random forest,20–22 can gain better
accuracy.

Moreover, it has been widely accepted that target-specic
scoring functions may achieve better performance compared
with universal scoring functions in actual drug research and
development processes.23,24 Therefore, we intended to build
RSC Adv., 2020, 10, 7609–7618 | 7609
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Table 1 Protein targets for benchmarking collected from DUD-E

Familya Protein PDB Activesb Decoysc

Protease try1 2ayw 449 25 980
Protease thrb 1ype 461 27 004
Protease bace1 3l5d 283 18 100
Nuclear esr1 1sj0 383 20 685
Nuclear ppara 2p54 373 19 339
Kinase src 3el8 524 34 500
Kinase egfr 2rgp 542 25 050
Kinase vgfr2 2p2i 409 24 950
GPCR aa2ar 3eml 482 31 550
GPCR adrb1 2vt4 247 15 850
Others hivrt 3lan 338 18 891
Others pgh2 3ln1 435 23 150

a Protein family classication of selected protein targets. b Number of
actives collected from DUD-E. c Number of decoys collected from
DUD-E.
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a target-specic VS model based on ensemble learning. In this
model, we treated the ligand activity labelling task as a classi-
cation problem.

Feature selection is one of the most important factors
affecting the performance of machine learning methods. In the
past, two types of descriptors (features for the active and non-
active compounds classication) were usually used to describe
the features of active and non-active compounds. One is
protein–ligand interaction energy terms16,25 which have no
enough predictive power, since it is relatively too simple. The
other is molecular ngerprint26–28 which is prone to the over-
tting due to too many descriptors. Therefore, we propose our
rst scientic question: How do we choose such descriptors that
can effectively distinguish active compounds from non-active
ones?

Virtual screening aims to distinguish active compounds
from a large number of non-active compounds. However, it will
result in high recall and low precision12 due to the serious
imbalanced numbers of active and non-active compounds in
current commonly used training data.29,30 Previous studies13,31,32

usually use random under-sampling to solve this problem, but
it is easy to lose the important information of the non-active
compounds. Therefore, we propose our second scientic ques-
tion: How do we effectively utilize the information of imbal-
anced data?

On the other hand, since most of the previous studies13,16,33,34

just use only one machine learning algorithm for classication,
such as SVM35 and neural network;36 and the ensemble learning
methods only use one base learner.18,19 One type of learner may
not work well for most targets. For this reason, we propose our
third scientic question: Can we integrate more machine
learning algorithms and build a stable model which is suitable
for most targets?

According to these aforementioned scientic questions, we
present a target-specic virtual screening method based on
ensemble learning named ENS-VS, which has the following
three innovations.

Firstly, we select a moderate number of descriptors to clas-
sify the active and non-active compounds by considering both
protein–ligand interaction energy terms and the structure
character of the ligand.

Secondly, we develop a method to solve the data imbalanced
problem based on previously well-developed sampling
ensemble method.37,38

Finally, an ensemble learning approach is developed by
integrating the SVM,35 decision tree39 and Fisher linear
discriminant (refer to as Fisher)40 algorithms to improve the
predictive accuracy.

2. Materials and methods
2.1 Materials

The Directory of Useful Decoys, Enhanced (DUD-E)29 database
was used to evaluate the performance of ENS-VS. DUD-E
contains 102 targets. All targets have two types of ligands:
actives (active compounds) and decoys (non-active compounds),
which can be labelled as 1 and �1 for classication model
7610 | RSC Adv., 2020, 10, 7609–7618
training. Since the decoys are similar in physico-chemical
properties to the actives but different in their chemical struc-
tures, the datasets are more reliable for testing virtual screening
method. The number of decoys is much larger than that of
actives. If the number of the actives for model training is too
small, it cannot sufficiently represent the distribution of the
positive data. And if the samples is less than the number of the
features in machine-learning model, the risk of overtting will
be high. In our method, the number of the features is more than
one hundred. For this reason, we selected 37 targets with more
than 200 actives to build 37 target-specic models by ENS-VS. 12
out of 37 targets that cover a wide range of popular drug targets
were selected to show the detail information, which contain 3
proteases, 2 nuclear receptors, 3 kinases, 2 GPCR, and 2 other
target families. The initial number of actives, decoys and the
protein targets used for model training are listed in Table 1.

The DEKOIS 2.0 database41 was used as an independent test set.
The active compounds of DEKOIS were collected from ChEMBL
database. The decoy compounds were generated from the ZINC
database, regarding high physicochemical similarity between actives
and decoys and avoidance of potentially active compounds. In this
evaluation, the ligands in DEKOIS datasets were used for testing the
model trained by DUD-E datasets. Eight DEKOIS2.0 targets with
more than 200 actives in DUD-E were selected for the test: aa2ar
(a2a), aces (ache), adrb2 (adrb2), akt1 (akt1), fa10 (fxa), egfr (egfr),
hivrt (hiv1rt) and ppara (ppara). The former names and the latter
names in the brackets were used in DUD-E and DEKOIS datasets,
respectively. Structurally similar compounds (similarity $ 0.8)
between training data and test data were excluded from training set.
2.2 Workow

The workow of ENS-VS development is shown in Fig. 1. The
generic workow includes the following steps: (i) dock all the
actives and decoys into the binding pocket of the target and
select the best pose of the ligands ranked by Autodock vina (step
1 of Fig. 1); (ii) calculate the ve protein–ligand interaction
energy terms and the structure vector representation of the
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 The workflow of ENS-VS development.
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ligands; and then create the feature matrix (step 2 of Fig. 1); (iii)
train the ensemble classier on the training set; and tune the
hyperparameter based on the validation dataset (step 3 of
Fig. 1); (iv) test the model by the test set and calculate perfor-
mance metrics (step 4 of Fig. 1).

2.3 Molecular docking

The generic process for docking simulation includes the
following steps: (i) prepare proteins and ligands by adding
hydrogens but merging non-polar hydrogens and removing
water molecules. (ii) Convert the PDB les of the protein and the
mol2 les of ligands into PDBQT formats by the python script
prepare_protein4.py and prepare_ligand4.py in MGLTools.42 (iii)
Dock the actives and decoys to their target by Autodock vina.43

The grid box is set to 20 � 20 � 20 with the center of the crystal
ligand, and num_modes is set to 1. The num_modes is used to set
the maximum number of binding modes generated by Vina.
The binding modes are sorted by the scoring function of Vina.
Here, we only obtain the top scoring binding mode. The rest of
parameters are assigned default values. (v) The top scoring
conformation will be obtained as the optimal binding mode of
the ligand (step 1 of Fig. 1).

2.4 Descriptors selection

We used a combination descriptors including interaction
energy terms and ligand features. Fergus et al. 44 combined 1D
This journal is © The Royal Society of Chemistry 2020
or 2D ngerprint as ligand features to improve the machine
learning scoring functions which are used protein–ligand
interactions as features. Their method achieved good results.
But these ligand features were conformation independent.
Therefore, we intended to integrate ligand features which can
describe the 3D structures of the ligands.

The selection of descriptors is from two aspects: protein–
ligand interaction and the structure characteristic of the ligand.

First of all, ve widely used energy terms are used to describe
protein–ligand interactions: van der Waals interactions, direc-
tional H-bond interactions, electrostatic interactions, des-
olvation potential energy and conformational entropy loss,
calculated by the amber energy terms (eqn (1)–(5) in Table 2,
and the key terms are dened in Table 3) in Autodock45 (le
panel of step 2 of Fig. 1).

Secondly, the structure vectors of the ligands are generated
by Mol2vec.46 Mol2vec is an unsupervised machine learning
approach to learn vector representations. Compounds can
nally be encoded as vectors by summing the vectors of the
individual molecular substructures. The resulting Mol2vec
model is pretrained once, yields dense vector representations,
and overcomes drawbacks of common compound feature
representations such as sparseness and bit collisions. There-
fore, we used the ligand structure vectors generated by Mol2vec
as ligand features. Aer that, the structure vectors undergo
dimension reduction by principal components analysis (PCA)47

(right panel of step 2 of Fig. 1).
Lastly, the protein–ligand interaction energy terms is

combined with the reduced dimension structure vectors of the
ligands to form a combination descriptor.
2.5 Ensemble classier construction

The ENS-VS construction process (step 3 of Fig. 1) includes the
following steps (Fig. 2).

Firstly, the data set of each target is divided into training set,
validation set and test set according to the proportion of
8 : 1 : 1. Training set is used for training model, validation set is
used for adjusting hyperparameters, and test set is used for
testing the performance of the model.

Secondly, a number of decoy subsets with the same size as
actives are sampled from the original decoys. Each subset of
decoys and all of actives compose a subset for training sub-
classier, which contains part information of decoys and all
information of actives. We use these subsets to train sub-
classiers separately, and combine the trained sub-classiers
by bagging. Undersampling is an efficient strategy to deal
with class imbalance. However, the drawback of under-
sampling48 is that it throws away many potentially useful data.
But our algorithm makes better use of the majority class than
undersampling, because multiple subsets contain more infor-
mation than a single one. In order to select independent iden-
tical distribution samples, stratied sampling method is used
to perform decoy subset sampling. Decoys are clustered by k-
means algorithm, and the number of samples that selected
from each cluster is determined by the variance of each cluster
(eqn (8)). When the variance of the cluster is high, the data in
RSC Adv., 2020, 10, 7609–7618 | 7611
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Table 2 Protein–ligand interaction energy terms

Energy terms Formula

van der Waals interactions
DGvdW ¼P

ij

 
Apq

rij12
� Bpq

rij6

!
(1)

Directional H-bond interactions
DGhb ¼P

ij

EðqijÞ
 
Cpq

rij12
� Dpq

rij10

!
�
X
i

ðDGp;waterÞ
(2)

Electrostatic interactions DGelec ¼
P
ij

qiqj

3ðrijÞrij
(3)

Desolvation potential energy DGsolv ¼ �P
ij

SpVqe�rij
2=2s2 (4)

Conformational entropy loss DGtor ¼ �Ntor (5)
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the cluster are sparse, thus more samples need to be sampled
from the cluster to keep the structural feature information of
the original dataset. On the contrary, when the variance is low,
the data in the cluster are relatively close, thus less samples
need to be sampled from the cluster. Let mi (eqn (6)) and si

2 (eqn
(7)) represent the mean value and the variance of cluster Ci,
respectively. The number of samples should be extracted from
one cluster is calculated by eqn (8).

mi ¼
1

ni

X
xi˛Ci

xi (6)

si
2 ¼ 1

ni

X
xi˛Ci

ðxi � miÞ2 (7)

ai ¼ |P|� wi � siPk
i¼1

wi � si

(8)

where, xi denotes the sample in cluster Ci; k denotes the number
of clusters; ni denotes the number of samples in cluster Ci; |P|
denotes the total number of actives; |N| denotes the total
number of decoys; wi denotes the proportion of ni to |N|,

namely, wi ¼ ni
|N|

:

Thirdly, three types of classiers including SVM,49 decision
tree39 and Fisher50 are trained on each training subset. Fscor-
e&Diff method is designed to select a good and different single
Table 3 The legend table defines the key terms of the eqn (1)–(5) in Ta

Terms Explanation

p, q Atom types of atoms i
Apq, Bpq Lennard-Jones 12–6 co
rij Distance between atom
Cpq, Dpq Lennard-Jones 12–10
E(qij) The weight dependen
DGp,water Free energy change of
qi, qj Charges of atoms i an
Sp Salvation parameter a
Vq Atomic volume of atom
Ntor Number of rotatable b

7612 | RSC Adv., 2020, 10, 7609–7618
classier among all the sub-classiers. Fscore is calculated by
eqn (9) and Diff is calculated by eqn (12). Fscore&Diff method
selects a sub-classier whose Fscore is greater than and Diff is
less than the average value of all the sub-classiers.

Fscore ¼ (2 � precision � recall)/(precision + recall) (9)

Precision ¼ TP/(TP + FP) (10)

Recall ¼ TP/P (11)

where, TP is the number of predicted true positives; FP is the
number of predicted false positives; P is the number of
positives.

Diff i ¼ 1P
j˛QXjsi

rij
(12)

where, rij is the Pearson correlation coefficient between the
results predicted by classier i and classier j, andQ denotes all
the classiers.

Finally, all generated classiers are then combined by the
weighted average method for the nal decision. The weight of
each classier is calculated as follows:

wi ¼ 1

2
ln
1� 3i

3i
(13)

where, 3i is the error rate of the ith sub-classier.
ble 2

and j, respectively
efficients for non-bonded interactions between atom types p and q
s i and j

coefficients for hydrogen bonding between atom types p and q
t upon the angle between i and j, with coulombic electrostatic shielding
hydrogen bonding between atom type p and water
d j
tom type p, dened as the volume change of solvating atom type p

type q
onds

This journal is © The Royal Society of Chemistry 2020
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Table 4 Core algorithm of ENS-VS

Fig. 2 The workflow of the ensemble learning in ENS-VS.
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The parameters of sub-classiers are set as follows: SVM
classier uses linear kernel, and decision tree and Fisher use
default parameters. The hyperparameter to be adjusted is the
number of the subsets. We use Matlab 2014a soware25 to
implement this method. The core algorithm of ENS-VS is listed
in Table 4.
2.6 Evaluation metrics

Receiver Operating Characteristic curve (ROC), Area Under
Curve (AUC), Matthews correlation coefficient (MCC), the
enrichment factor (EF) 1% values and the EF 10% values were
used to evaluate the performance of this method. The ROC
curve is used to visualize the performance of a classier. AUC
represents the probability that a randomly chosen positive
sample is ranked higher than a randomly chosen negative
sample. MCC is used in machine learning as a measure of the
quality of binary (two-class) classications. It takes into account
true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN); and it is generally regarded as a balanced
measure which can be used even if the classes are of very
different sizes. This value is calculated by eqn (17). EF values are
commonly used in machine learning studies as accuracy
metrics. The EF x% value is dened as the ratio between the
predicted hit rate and the random hit rate, when the top x%
ranked compounds are selected as actives. This value is calcu-
lated by eqn (18).
This journal is © The Royal Society of Chemistry 2020
MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (17)

EF x% ¼ number of true actives at x%

number of compounds at x%
O

total actives

total compounds

(18)

3. Results and discussion

In order to nd out the points that contribute to the perfor-
mance of ENS-VS, we designed three comparison tests based on
the 12 datasets in Table 1. The MCC and AUC were used as the
metrics for evaluation. The Mann–Whitney U test was used for
testing the signicance.

First, we used protein–ligand interaction descriptor instead
of the combination descriptor. This comparison model is
denoted as ComModel1. The MCC and AUC results for 12
targets are presented in Fig. 3. The MCC and AUC of ComMo-
del1 were all less than those of ENS-VS for 12 targets. The mean
MCC and mean AUC of ComModel1 (MCC ¼ 0.121, AUC ¼
0.836) were both statistically signicantly less than those of
RSC Adv., 2020, 10, 7609–7618 | 7613
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Fig. 3 The MCC and AUC of ComModel1 and ENS-VS for 12 targets.
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ENS-VS (MCC ¼ 0.82, AUC ¼ 0.989), with p < 0.05 (Fig. S1†). It
can be seen that the combination descriptor selected by ENS-VS
is effective for improving the performance of the VS model.

Second, ENS-VS was modied by only undersampling once
from decoys. This comparison model is denoted as ComMo-
del2. The results are presented in Fig. 4. The MCC and AUC of
ComModel2 were less than those of ENS-VS for each target. The
meanMCC and AUC of ENS-VS (MCC¼ 0.82, AUC¼ 0.989) were
statistically signicantly better than those of ComModel2 (MCC
¼ 0.44, AUC ¼ 0.973), with p < 0.05 (Fig. S2†). It is revealed that
the processing method for the problem of data imbalance in
this study is effective for improving the prediction performance
of the VS model.

Third, three types of classiers in ENS-VS were replaced by
only one type of classier: SVM, decision tree and Fisher,
denoted as ComModel3_SVM, ComModel3_Dtree and
Fig. 4 The MCC and AUC of ComModel2 and ENS-VS for 12 targets.
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ComModel3_Fisher, respectively. ThemeanMCC of ENS-VS was
statistically signicantly higher than that of ComModel3_SVM,
ComModel3_Dtree and ComModel3_Fisher (MCC: ENS-VS ¼
0.82, ComModel3_SVM ¼ 0.75, ComModel3_Dtree ¼ 0.60,
ComModel3_Fisher ¼ 0.60), with P < 0.05 (Fig. 5). The AUC of
ENS-VS was statistically signicantly higher than that of Com-
Model3_SVM and ComModel3_Dtree, and had no signicant
difference compared with ComModel3_Fisher (AUC: ENS-VS ¼
0.989, ComModel3_SVM ¼ 0.984, ComModel3_Dtree ¼ 0.978
and ComModel3_Fisher ¼ 0.99). The results show that ENS-VS
integrating three types of classier effectively improves the
prediction performance of the VS model.

Next, we compared ENS-VS with Autodock vina,11 because we
used Vina to generate the poses of the ligands in ENS-VS. The EF
and AUC results for the diverse subsets of DUD-E are shown in
Table 5. TheROC curves are shown in Fig. 6. The EF 1%andEF 10%
results for ENS-VS were both improved signicantly for all twelve
targets. On average, the EF 1% for ENS-VS was 6 times higher than
that for Vina, which indicated that 6 times more active compounds
were found by ENS-VS than by Vina on average when the top 1%
ranked compounds were biologically assayed for these target
proteins. The ROC curve of ENS-VS was very close to the upper le
corner for each target, which means that the classier is effective.

We also considered a comparison with RF-Score-
VS_v3_vina22 and SIEVE-Score.51 RF-Score-VS20–22 is a state-of-
the-art machine learning-based scoring function. RF-Score-
VS_v3_vina is the latest version of RF-Score-VS with docking
pose generation by Vina. SIEVE-Score is the newest study about
virtual screening method and it has been proved that SIEVE-
Score achieves a better performance than three versions of RF-
Score-VS. Fig. 7 shows boxplots for ENS-VS, Autodock vina,
RF-Score-VS_v3_vina and SIEVE-Score on 37 targets. The results
of RF-Score-VS and SIEVE-Score are taken from the original
paper of SIEVE-Score.51 Each boxplot shows the EF 1% results
on the DUD-E datasets. The EF 1% of RF-Score-VS_v3_vina was
Fig. 5 The MCC and AUC of ComModel3_SVM, ComModel3_Dtree,
ComModel3_Fisher and ENS-VS for 12 targets.

This journal is © The Royal Society of Chemistry 2020
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Table 5 Comparison of EF 1%, EF 10% and AUC results between ENS-
VS and Autodock vina for 12 targets. The bold means the better value
between the two methodsa

Target

EF 1% EF 10% AUC

Vina ENS-VS Vina ENS-VS Vina ENS-VS

try1 12.71 58 4.59 9.78 0.786 0.974
thrb 3.9 53.7 3.75 9.99 0.798 0.998
bace1 4.94 59.5 2.97 9.3 0.713 0.975
esr1 18.23 53 4.49 9.73 0.801 0.986
ppara 6.7 51 5.6 9.99 0.871 0.999
src 3.8 55.44 2.02 9.8 0.647 0.988
egfr 3.53 65 2.04 9.81 0.634 0.998
vgfr2 9.06 61 3.42 10 0.714 0.998
aa2ar 2.08 62.97 1.68 9.58 0.616 0.977
adrb1 3.23 64 2.47 10 0.717 0.999
hivrt 4.46 56 2.23 10.02 0.654 0.999
pgh2 24.44 46.09 5.1 9.32 0.75 0.974
Average 8.09 57.14 3.36 9.78 0.725 0.989

a The bold means the best value among the two models.
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higher than that of Vina and less than that of SIEVE-Score. But
the performance of ENS-VS about EF 1%was the best among the
four methods. Fig. 8 presents a scatter plot of the EF 1% results
Fig. 6 ROC curve comparing the performance of Autodock vina (blue line
for 12 targets. Random performance is indicated by the black line.

This journal is © The Royal Society of Chemistry 2020
for ENS-VS vs. SIEVE-Score. Each point represents a target. ENS-
VS achieved better predictions for 30 of the 37 DUD-E targets
and was tied with SIEVE-Score for the remaining seven targets.
The overall EF 1% of ENS-VS for all 37 targets was signicantly
higher than that of SIEVE-Score (mean EF 1%: ENS-VS ¼ 52.77,
SIEVE-Score ¼ 42.64), with p < 0.05. Similarly, the overall EF
10% (mean EF 10%: ENS-VS ¼ 9.72, SIEVE-Score ¼ 7.66) and
AUC (mean AUC: ENS-VS ¼ 0.982, SIEVE-Score ¼ 0.912) were
also signicantly higher (Fig. S3†).

We further compared our method with the recent similar
research. The selected methods are shown as follows:

Refmodel1: Yan et al.13developed a classicationmodel (PLEIC-SVM)
with protein–ligand empirical interaction components as descriptors.

Refmodel2: Ragoza et al.16 proposed a neural network for
protein–ligand scoring consisting of three convolutional layers.
They scored all docked poses using a single, universal model,
and took the maximum as the nal score.

Refmodel3: Fergus et al.34 coupled densely connected CNN
with a transfer learning approach to produce an ensemble of
protein family-specic models.

Refmodel4: Janaina et al.33 proposed a deep learning
approach to improve docking-based virtual screening, which
) and that of the ENS-VS (red line) at discriminating actives from decoys

RSC Adv., 2020, 10, 7609–7618 | 7615
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a

Fig. 7 Comparison among the results of ENS-VS, RF-Score-
VS_v3_vina, SIEVE-Score and Autodock vina. Each boxplot shows the
EF 1% values for the 37 target proteins in DUD-E as obtained with the
given method.
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outperformed the other 25 docking methods in both AUC ROC
and enrichment factor when evaluated on the DUD datasets.

Excluding try1 data set, the AUC value of ENS-VS is the
highest of the ve methods for the other eleven targets, and the
standard deviation of ENS-VS is the lowest (Table 6), which
suggests that the performance of ENS-VS is better than the other
four methods, and ENS-VS has strong robustness.

We also used DEKOIS 2.0 database as independent test sets
and performed the test by Vina, Glide, SIEVE-Score, RF-Score-
VS_v3_vina and ENS-VS, respectively. The methodology is
described in more detail in the Methods section. The EF 1%, EF
10% and AUC of Vina, Glide, SIEVE-Score, RF-Score-VS_v3_vina
and ENS-VS are shown in Table 7. Except adrb2 and the EF 10%
of fa10, ENS-VS outperformed the other four methods for all the
metrics. The mean EF 1%, EF 10% and AUC of ENS-VS are the
best among the ve methods. Therefore, ENS-VS performs
better than Vina, Glide, SIEVE-Score and RF-Score-VS_v3_vina
for DEKOIS test sets. The mean EF 1%, EF 10% and AUC of
ENS-VS for DEKOIS test sets are all less than those for DUD-E
test sets. The reason may be in part that the ligand structural
similarity between the training set and the test set of DUD-E is
Fig. 8 Scatter plot of the EF 1% results of ENS-VS and SIEVE-Score.
Each point corresponds to the results for one target protein in the
DUD-E dataset. The dotted line represents identical results.

7616 | RSC Adv., 2020, 10, 7609–7618
higher than that between the test set of DEKOIS and the
training set of DUD-E.

ENS-VS succeeds in improving the virtual screening accu-
racy. There are several reasons. First, the combination
descriptor can effectively describe both the characteristic of
protein–ligand interactions and the structural characteristic of
ligands. Aer PCA dimension reduction, the number of
descriptor was moderate. Thus the combination descriptor is
able to not only improve the performance of the model but also
prevent overtting. Second, in order to solve the severe imbal-
ance issue of the dataset that was oen ignored in previous
studies, we designed a method using the ensemble learning
mechanism to sample the decoys. Several subsets of decoys with
the same size as actives were sampled from original decoys by
stratied sampling. The subset of decoys and all of actives
composed a subset for training sub-classier. The nal result
was decided by all the sub-classiers. In this way, the decoys are
under-sampled in each sub-classier, but the important infor-
mation of the decoys is not lost in the whole situation. Third, to
solve the problem that a single machine learning method is not
suitable for most targets, ENS-VS integrates a variety of classi-
ers, i.e. SVM, decision tree and Fisher, to increase diversity,
and adaptively selects suitable classiers for different targets by
Fscore&Diff method. It can improve the performance and
enhance the robustness of the model for different targets by
combining the advantages of three types of classiers.

Therefore, from the above analysis, we can conclude that the
performance improvement of ENS-VS is related to the selection
of descriptors, imbalanced data processing measure and
ensemble learning method.

Autodock vina is a generic scoring function, which has the
advantage of being applicable to any target without retraining.
But it is not the case of the better performing target-specic
scoring functions. The hit rate is low when Vina is used for
virtual screening.52,53 But using ENS-VS aer the pose genera-
tion by Vina can improve the accuracy of virtual screening
signicantly. Another advantage of ENS-VS is that it can be used
Table 6 AUC of four reference methods and ENS-VS

Targets Refmolde1 Refmolde2 Refmolde3 Refmolde4 ENS-VS

try1 0.95 0.953 0.996 — 0.974
thrb 0.95 0.924 0.978 — 0.998
bace1 0.91 0.808 0.930 — 0.975
esr1 0.97 0.930 0.951 — 0.986
ppara 0.92 0.874 0.988 0.90 0.999
src 0.93 0.950 0.986 0.85 0.988
egfr 0.93 0.966 0.985 0.86 0.998
vgfr2 0.95 0.967 0.993 0.90 0.998
aa2ar 0.95 0.941 0.908 0.77 0.977
adrb1 0.95 0.876 0.947 — 0.999
hivrt 0.89 0.734 0.768 0.88 0.999
pgh2 0.90 0.840 0.877 — 0.974
Average 0.933 0.897 0.942 0.737 0.989
SD 0.024 0.073 0.066 0.049 0.011

a The bold means the best value among the ve models.

This journal is © The Royal Society of Chemistry 2020
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Table 7 EF 1%, EF 10% and AUC results of Vina, Glide, SIEVE-Score, RF-Score-VS_v3_vina and ENS-VS for eight protein targets of the DEKOIS 2.0
dataseta

Target

EF 1% EF 10% AUC

Vina Glide
SIEVE-
Score

RF-Score-
VS_v3_vina

ENS-
VS Vina Glide

SIEVE-
Score

RF-Score-
VS_v3_vina

ENS-
VS Vina Glide

SIEVE-
Score

RF-Score-
VS_v3_vina

ENS-
VS

aa2ar 0 7.8 34.7 16.5 42.9 1.2 1.4 8.7 5.6 9.0 0.744 0.758 0.824 0.805 0.895
aces 8.6 16.9 30.1 24.6 33.4 3.4 7.0 6.5 5.8 8.5 0.721 0.81 0.805 0.758 0.827
adrb2 4.8 6.7 32.6 17.9 28.7 2.7 2.8 9.8 4.7 8.0 0.698 0.715 0.819 0.724 0.798
akt1 7.5 13.6 27.4 22.5 30.4 3.8 1.5 5.0 4.8 6.7 0.675 0.644 0.753 0.712 0.802
fa10 5.3 16.5 28.8 16.8 35.7 2.2 5.8 6.4 3.5 6.0 0.758 0.792 0.842 0.776 0.855
egfr 0 11.2 12.6 10.8 18.8 1.6 4.0 3.5 2.1 5.8 0.642 0.704 0.696 0.677 0.724
hivrt 0 7.5 17.5 11.3 22.3 1.8 1.5 6.8 2.8 8.3 0.607 0.592 0.652 0.628 0.695
ppara 0 5.7 20.8 9.7 25.6 2.0 3.2 7.3 3.9 8.0 0.690 0.698 0.727 0.701 0.746
Average 3.28 10.7 25.56 16.27 29.73 2.34 3.4 6.75 4.15 7.54 0.692 0.714 0.765 0.723 0.793

a The bold means the best value among the ve methods.
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in combination with other docking soware besides Autodock
vina to improve their performance of virtual screening.

However, this method is based on ensemble learning, it will
increase the running time. Therefore, in the future, we will
research on the parallel implementation of ENS-VS to improve
the execution speed.
4. Conclusion

In this study, we developed a target-specic virtual screening
method called ENS-VS to improve the accuracy of structure-
based virtual screening. The combination descriptor of
protein–ligand interaction energy term and ligand structure
vector representation is used; the processing measure for data
imbalanced problem is designed and SVM, decision tree and
Fisher classier are integrated in ENS-VS. We performed
comprehensive comparisons of this method with several state-
of-the-art methods, namely, Autodock vina, Glide, RF-Score-VS
and SIEVE-Score, etc. ENS-VS achieved a signicant improve-
ment in screening accuracy for different target proteins in the
DUD-E and DEKOIS 2.0 benchmark database based on the EF
1%, EF 10% and the AUCs of the ROC curves. Moreover, ENS-VS
can be used in combination with any docking soware to
improve their performance of virtual screening.
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