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Wood-based solar steam generation devices (W-SSGDs) show great promise for desalination and
wastewater treatment since they are cheap and sustainable. The fabrication of green, sustainable and
efficient solar-to-thermal materials for use in W-SSGDs, however, remains a challenge. Here, we have
developed coordination complexes between Fe** and naturally occurring phenolic compounds as solar-
to-thermal materials. The as-prepared solar-to-thermal material prepared by coordinating Fe* with
catechin showed wide optical absorbance and efficient conversion efficiency, and was stable under
different pH conditions. The good photothermal properties of this as-prepared solar-to-thermal material
allowed us to construct a high performance W-SSGD that had a steam generation efficiency of 54.32%
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Introduction

Solar steam generation techniques show promise for desalina-
tion and wastewater treatment."® Wood-based solar steam
generation devices (W-SSGDs), in particular, show great poten-
tial for water distillation because they are sustainable, easily
prepared and green.'® W-SSGDs typically have two components,
a solar-to-thermal layer and a wood matrix, which serve as
thermal insulation and water transportation layers, respec-
tively."* Recently, many efficient materials, including carbon
materials, such as carbon nanotubes and graphene, and plasma
metals, have been developed as the solar-to-thermal layer for W-
SSGDs.">* For example, Li et al.*® reported an efficient (80%
under one-sun illumination) and effective (four orders salinity
decrement) solar desalination device. A foldable graphene oxide
film, was served as efficient solar absorbers (>94%), vapor
channels, and thermal insulators by a scalable process. Chen
et al.”® reported the use of carbon nanotube (CNT)-modified
flexible wood membrane (F-Wood/CNTs) is demonstrated as
a flexible, portable, recyclable, and efficient solar steam gener-
ation device for low-cost and scalable solar steam generation
applications. Solar steam generation device based on the F-
Wood/CNTs membrane demonstrates a high efficiency of 81%
at 10 kW cm™2, representing one of the highest values ever-
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and an evaporation rate as high as 0.9204 kg m=2 h™,

reported. Nevertheless, the identification of new solar-to-
thermal materials, with higher photothermal conversion effi-
ciency, sustainability and easy preparation, for use in W-SSGDs
remains an important goal. Recently, biomass-derived catechol-
containing compounds have been reported to show efficient
photothermal conversion when they are coordinated with metal
cations.””*° The fabrication of these light-to-thermal materials
was convenient, green and cheap. Inspired by this, we now
report the successful preparation of new solar-to-thermal
materials (termed PCF-n, where n denotes different biomass-
derived phenolic compounds), which are formed by coordina-
tion between natural phenolic substances and Fe*", for use in
W-SSGDs. As-prepared PCF-1 (coordination between catechin
and Fe*"), particularly, showed good thermal stability and effi-
cient photothermal conversion. As-prepared PCF-1 was coated
onto the surface of basswood to prepare a W-SSGD (Fig. 1). The
as-prepared W-SSGD showed a high steam generation efficiency
(54%) under one sun irradiation, with an evaporation rate as
high as 0.92 kg m > h™', which was attributed to the highly
efficient photothermal layer. PCF-1 is thus a promising
sustainable solar-to-thermal material that can be used for the
construction of a high-performance W-SSGD in a convenient
and green manner.

Experimental section
Materials

The basswood was purchased from Alibaba (Hangzhou, China).
Natural phenolics were purchased from Sigma (Shanghai
Warehouse, China). All other reagents and solvents were

This journal is © The Royal Society of Chemistry 2020


http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra08235b&domain=pdf&date_stamp=2020-01-06
http://orcid.org/0000-0002-8370-8332
http://orcid.org/0000-0002-0491-8885
http://orcid.org/0000-0001-7203-5788
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra08235b
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA010002

Open Access Article. Published on 07 January 2020. Downloaded on 11/2/2025 8:50:36 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Preparation

ey

Wood lumens

View Article Online

RSC Advances

()
Photothermal °\/£,§ °
layer

RS
Q,

Wood layer

Sun light
Water vapor

()

~ 5
”~ /
o /4-%
//

Bulk water

Fig. 1 Schematic illustration of (a) preparation of W-SSGD; (b) magnified structure of wood; (c) solar desalination of sea water.

purchased from Merck Life Science Co., Ltd. (Shanghai, China)
or Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China).

Characterization

SEM images were captured using an FEI Sirion 200 scanning
electron microscope (Philips Research, Eindhoven, Nether-
lands). Light absorbance of the photothermal materials was
measured using a Cary 5000 UV-vis-NIR spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA) over the spectral
range 400-2500 nm. An integrating sphere was used to collect
the reflected light. A CEL-S500 xenon lamp (Aulight Co., Ltd.,
Beijing, China), which simulates solar radiation, was used as
the light source. Temperatures were measured using a DTM-
180A digital thermometer (Zhaohui Instruments Co., Ltd.,
Hengshui, China). All photographs were taken using a Huawei
P20 mobile phone (Huawei Technologies Co., Ltd., Shenzhen,
China).

Preparation of PCF-n

Natural phenolic compound (catechin, cyanidin, chlorogenic
acid and tannic acid, 1 g) was stirred with water until completely
dissolved. FeCl;-6H,0 (10% w/w) was then added to the solu-
tion and the mixture was stirred for 30 min at room tempera-
ture. PCF-1, 3, 4, 5 were obtained by centrifugation and washed
three times with deionized water. For PCF-2, quercetin (1 g) was
stirred with ethanol until completely dissolved. FeCl;-6H,0
(10% w/w) was then added to the solution and the mixture was

This journal is © The Royal Society of Chemistry 2020

stirred for 30 min at room temperature. PCF-2 were obtained by
centrifugation and washed three times with deionized water.

Preparation of W-SSGD

The W-SSGD was prepared by coating the surface of a bulk
basswood sample (4 cm x 2 cm x 2 cm) with PCF-1 (0.5 g).
Specifically, the dispersion of PCF-1 (0.5 g) in water (10 mL) was
brushed on the wood surface. After that, the wood was dried at
the room temperature for 24 h.

Solar steam generation efficiency calculation
Typically, steam generation efficiency can be calculated using
eqn (1):

mhy

= 1
K Coptqi ( )

where 7 is the evaporation rate, h;y is the total enthalpy,
including both sensible heat and heat used in the phase change
of liquid water to steam, C, is the optical concentration and g;
is the normal solar irradiation (100 mW c¢cm™?).

Results and discussion

PCF-n (n = 1-5) were prepared by coordinating different
biomass-derived phenolic compounds, catechin (1), quercetin
(2), cyanidin (3), chlorogenic acid (4) and tannic acid (5), with
Fe’" (Fig. S1f). A possible structure for the coordination
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Fig. 2
absorbance spectra of PCF-n (n = 1-5) and solar irradiation spectrum.

complexes is shown in Fig. 2a. As-prepared PCF-n (n = 1-5) were
black powders (Fig. 2b-f) and could be easily produced on
a large scale. The UV-vis-NIR spectra of PCF-n (n = 1-5) were
investigated over the range 400-2500 nm, which encompasses
the majority of the sun's output. All of the PCF samples showed
absorbance over this range (Fig. 2g), with PCF-1 and PCF-2,
formed by coordination between catechol and Fe*" and quer-
cetin and Fe®', respectively, showing the highest absorbance.
These two complexes thus have the greatest potential for
absorbing and converting solar energy. The phenolic molecules
themselves, on the other hand, showed significant absorbance
only in the UV-vis region of the spectrum (wavelength < 700
nm), confirming that coordination of biomass-derived phenolic
compounds with Fe** significantly enhances their absorption in
the NIR region and thus increases their potential as solar-to-
thermal materials. The reason for enhancement of NIR region
might be attributed to the characteristic ligand (phenolic
compounds)-to-metal (iron) charge transfer (LMCT) caused by
coordination. The LMCT enabled the molecule to have low
energy gap, which eventually red shifted the absorbance wave-
length.*” PCF-1 and PCF-2 might have strongest LMCT,
compared to other complexes, which triggered their nice
performance in the NIR absorbance. Following this proposed
mechanism, stronger NIR absorbance of PCF-1 and PCF-2
might be caused by their more intensive LMCT. Since PCF-1
and PCF-2 showed the most efficient solar absorbance, they
were selected for further investigation. X-ray photoelectron
spectroscopic (XPS) analysis showed that as-prepared PCF-1 and
PCF-2 contain C, O and Fe atoms (Fig. S21), indicating
successful coordination between the phenolic compounds and
Fe’*.

The photothermal properties of PCF-1 and PCF-2 were
investigated next, using a xenon lamp to simulate solar radia-
tion. Under standard one sun irradiation (100 mW cm™>), the
surface temperatures of PCF-1 and PCF-2 increased from
~24 °C to ~58 °C and from ~23 °C to ~58 °C, respectively, over
10 min (Fig. 3a and h), suggesting good photothermal conver-
sion. To evaluate stability, the photothermal effects of PCF-1

154 | RSC Adv,, 2020, 10, T152-1158

View Article Online

Paper

(g) 100
S <
[0]
2 504 “
[ “«
Kol
o -
2 ‘A
2 A

0

500 1000 1500 2000

Wavelength (nm)
PCF1 MMPCF2ll PCF3 |l PCF4 Il PCF5 Solar spectra

(a) Possible structure of coordination complexes PCF-n (n = 1-5); (b—f) images of PCF-n (n = 1-5) powders, scale bar = 1 cm; (g)

and PCF-2 were first studied under different pH conditions.
The photothermal properties of PCF-1 were very similar under
acidic (pH = 4.2), neutral (pH = 7) and basic (pH = 9.3)
conditions, indicating that coordination between Fe®" and
catechin is stable in aqueous solution over a range of pH values
(Fig. 3a and b-g). Additionally, PCF-1 and the samples after
acidic/basic treatment did not show the obvious temperature
change after 14 min (Fig. S31). Even after 1 h, the value did not
obviously change, which demonstrated that PCF-1 had nice
photothermal stability (PCF-1 without treatment, 55.2 °C; PCF-1
after basic treatment, 57.9 °C; PCF-1 after acidic treatment 57.1
°C) (Fig. S31). The photothermal efficiency of PCF-2 showed
a noticeable decrease under acidic or basic conditions (Fig. 3h
and 3i-n), demonstrating that PCF-2 is less stable in acidic or
basic environments. Additionally, the photothermal effect of
PCF-1 and PCF-2 was found to be reversible, with both
complexes maintaining a good photothermal effect after 15
cycles (Fig. S4 and S51).

Since PCF-1 demonstrated the best photothermal properties,
it was subsequently coated onto basswood to construct a W-
SSGD for solar steam generation (Fig. S6T). The scanning elec-
tron microscope (SEM) images of as-employed wood channels
are shown in Fig. 4a-f. As-prepared W-SSGD was also charac-
terized by SEM (Fig. S6T). SEM results also showed that the PCF-
1 still adhered firmly to the wood after acidic (pH = 4.2) or
alkaline treatment (pH = 9.3) and the morphology did not
change obviously (Fig. S71). These strong adhesion for PCF-1 to
wood might be attributed to the dopamine-like catechol moie-
ties. The catechol could form efficient hydrogen bond with the
hydroxyl moieties of wood surface. Natural basswood has an
overall porosity of ~70%. The mesoporous microstructure of
basswood consists of lumens (with average size ~50 um,
Fig. 4a-f) that are surrounded by fiber tracheids. A slice of wood
2 cm x 2 cm X 0.2 cm was used to demonstrate fluidic trans-
port across the lumens. The water transportation speed for the
basswood reached 0.18 g per g per hour (Fig. 4g). The device was
then placed in a container of similar size to minimize the effect
of evaporation of water surrounding the W-SSGD. The

This journal is © The Royal Society of Chemistry 2020
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Fig.4 SEMimages of basswood: (a) 3D view, scale bar =400 um:; (b) top-down view, scale bar = 100 um; (c) magnified top-down view, scale bar
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scale bar = 50 um; (g) weight changes of basswood in water; (h—k) temperature changes of W-SSGD upon light irradiation (100 mW cm™2); ()
mass of water evaporated by W-SSGD under one sun irradiation compared with evaporation of deionized water as the control.
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Fig. 5
seawater sample before and after desalination.

temperature change at the water evaporation surface under one
standard sun irradiation was monitored using an infrared
camera. The surface temperature of the W-SSGD increased
rapidly from ~16 °C to ~37 °C after simulated solar radiation
for 4 min (Fig. 4h-k). The fact that the temperature almost
reached equilibrium after 4 min of irradiation suggests that the
W-SSGD has a rapid response to solar radiation. The photo-
thermal stability of the W-SSGD in water was also measured
over 15 cycles (Fig. S81). The temperature increase did not
noticeably alter, suggesting that the W-SSGD has good photo-
thermal stability. The W-SSGD constructed using PCF-1 ach-
ieved an evaporation rate of 1.25 kg m > h™'. The spontaneous
evaporation in dark field was 0.34 kg m~> h™". Based on this,
the W-SSGD exhibited an efficiency of 54.32% under one sun
irradiation (Fig. 4i). The stability of the W-SSGD was investi-
gated over 50 cycles. The reading for each cycle was taken after
30 min, when the performance had stabilized (Fig. S97). The
results showed that W-SSGD was very stable as a solar steam
generation device.

Encouraged by this result, the W-SSGD was tested using
a real seawater sample from the South China Sea. Before that,
PCF-1 was investigated for its stability in sea water. Immersing
PCF-1 in the seawater for 24 h did not change its UV-vis spectra
(Fig. S107), indicating its nice stability. The water purification
rate by the W-SSGD could be tuned by the intensity of the
irradiation. Light intensities of 50 mW cm™~> and 100 mW c¢m >
enabled average water purification rates of ~0.71 kg m™> h™"
and ~1.03 kg m 2 h™ ', respectively (Fig. 5a). The water purifi-
cation rate was as high as 1.18 kg m~> h™" when the irradiation
intensity was 150 mW c¢cm ™. For seawater desalination, the salt
deposition should influence the water evaporation. However,
Fig. 5a shows that the mass change rate has no obvious change.
That was attributed to the inherent advantages of bimodal
porous structure of wood.*® Taking advantage of the inherent
bimodal porous and interconnected microstructures of the
balsa wood, rapid capillary transport through the micro-
channels and efficient transport between the micro- and mac-
rochannels through ray cells and pits in the bimodal evaporator
can lead to quick replenishment of surface vaporized brine to
ensure fast and continuous clean water vapor generation. The
quality of the collected purified water was measured by induc-
tively coupled plasma spectroscopy. The concentration of all
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four primary ions in seawater (Na*, Mg*", K and Ca®") was
reduced by two orders of magnitude after solar desalination
(Fig. 5b), demonstrating the effectiveness of solar desalination
based on W-SSGD.

Conclusion

In summary, we have demonstrated an efficient and stable
solar-to-thermal material, PCF-1, which was used to construct
a W-SSGD. Under ambient sun conditions, the as-prepared W-
SSGD device exhibited an efficiency of ~54%, with an evapo-
ration rate of 0.92 kg m™> h™" and a water-vapor interface
temperature of ~37 °C. Since our strategy to prepare such solar-
to-thermal materials is easy, cheap and green, this approach
toward solar-to-thermal materials is promising for cost-effective
real-world application. Moreover, the efficiency might be
further enhanced by using other naturally occurring phenolic
compounds.
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