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This paper describes a methodology of photopolymer mold fabrication with multi-level microstructures for
polydimethylsiloxane (PDMS) microfluidic device manufacture. Multi-level microstructures can be
performed by varying UVA exposure time and channel width. Scanning Electron Microscopy (SEM),
Atomic Force Microscopy (AFM) and profilometry techniques have been employed to characterize the
molds. Multiple molds with multi-level microstructures can be formed in a unique piece. Overall height/

depth of the structures reaches up to 677 um and a minimum of 21 um. The method provides several
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Introduction

Several methods have been developed over the last few years to
fabricate multi-level microfluidic structures in order to enhance
the performance and/or to increase the capabilities of a variety
of microfluidic devices." Within the methods are membrane
sandwich,? reaction-diffusion,® multilayer processes,* diffuse
UV exposure erosion,® etching,® laser fabrication,” photoresist
reflow,® micromilling,” 3D-printing,* electroplating,' photoli-
thography,'” and liquid molding.*® Recent applications of multi-
level microstructures have been reported for colloidal particle
separation,™ separation and extraction of microparticles,*
neuron culture,” microfluidic mixers,® cancer research appli-
cations,"® chemical processing,"” and to produce microvascular
networks for in vitro laboratory systems," among others. In this
sense, the development of novel and cost-effective methods for
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the fabrication of microfluidic devices with multi-level struc-
tures has recently gained considerable attention in the scientific
and industrial communities.

In cell biology, the multi-level microstructures present great
potential for cells culture and proliferation. In regard, suspen-
sion cells culturing within microfluidic devices is challenging
because simply renewing the medium can lead to accidental cell
loss without a trapping mechanism.'®** Yue et al. reported the
fabrication of multi-level channels for cell quantification and
cell culture by using a screen printing method.”® Moreover,
microchannels with trapezoidal cross-section have been re-
ported as a retention mechanism that enabled the capture and
suspension culture of mammalian cells through inertial
microfluidics.>*> Besides, a microenvironment mimetic
microfluidic device has been fabricated with a microchannel
with a micro-well branched structure to simulate tumor
microenvironment interactions.”® At present, microfabricated
spherical chambers have been used as a micro pocket culture
system to retain breast cancer cells aggregates." Furthermore,
long term live-cell imaging of immune cells is demanding due
to their non-adherent nature.”* Therefore, several strategies
have been used to try and overcome these problems, such as
micro droplet encapsulation,® optical trapping,*® and cell
isolation arrays.”” Thus, the fabrication of molds with multi-
level microstructures for the PDMS microdevice fabrication
presents a useful potential for biological applications.®**%>®

Recently, we reported the manufacture of PDMS microfluidic
devices by employing a flexographic photopolymer as mold.****

RSC Adv, 2020, 10, 4071-4079 | 4071


http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra07955f&domain=pdf&date_stamp=2020-01-23
http://orcid.org/0000-0002-0294-0325
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra07955f
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA010007

Open Access Article. Published on 23 January 2020. Downloaded on 1/21/2026 10:07:14 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

Advantages related to resolution, mold size, aspect ratio,
roughness, availability, scalability and costs were demon-
strated.® It is possible to obtain minimum channel widths
lower than non-traditional techniques such as CO, laser abla-
tion,* building blocks,** laser ablation,** laser swelling,* semi-
contact writing,*® 3D printing,*** WAX mold.* In regard to
roughness, the Fmold present smoother structures in contrast
to techniques such as CO, laser ablation,* laser ablation®** and
3D printing.*”*® On the other hand, between the methodologies
to obtain inexpensive devices are the microfluidic paper-based,
PMMA based and F-mold based.******* Thus, it is possible to
obtain devices cheapest than the fabricated by using etching
(FIB),* lytography (photoresins),”*** electron beam lithog-
raphy*® traditional techniques. Finally, the reported method-
ology allowed obtaining molds with different topologies and
channeling dimensions (length, width, and height). Further-
more, large molds with dimensions of 1270 x 2062 mm?
structure heights ranging from 53 to 1500 pm, can be manu-
factured keeping the same resolutions (10 microns) that are
obtained in small standard wafer size molds.*

In this work, we have developed an unconventional mold
fabrication methodology with multi-level positive and negative
structures by using the flexographic photopolymer. Multi-level
structures were performed by varying UVA exposure and
channel width. The resulting molds were characterized by
Scanning Electron Microscopy (SEM), Atomic Force Microscopy
(AFM) and profilometry techniques. Furthermore, we tested the
multi-level structures of PDMS microfluidic devices to demon-
strate its biological viability and functionality by monitoring
Jurkat cell proliferation.

Experimental
Photopolymer mold fabrication

Multi-level microstructure fabrication by varying UVA expo-
sure time and channel width

Multi-level microstructures fabrication by varying UVA exposure
time. Photopolymer Flexcel NX and Thermal Imaging Layer
(TIL) supplied by Eastman Kodak*” were used in the fabrication
of the molds. Mold fabrication process consists of various steps:
(1) microchannels network was designed with a layout editor
software*® and transferred to the TIL with an infrared laser
source of 2400 ppi, (2) the TIL was laminated onto the unex-
posed photopolymer plate, (3) the photopolymer plate was
exposed to UVA light at 0.45 J on the back side during 10 s, (4)
a part of the photopolymer was covered with a mask plate on the
back side, (5) the photopolymer plate was exposed to UVA light
at 0.45 J on the back side for 20 s, (6) the steps 4 and 5 were
repeated one time, (7) the front side was exposed to UVA light at
19 J for 360 s, after the TIL was removed, (8) the photopolymer
plate was washed with solvent PROSOL N-1 (supplied by East-
man Kodak) at 360 mm min~" and dried in an oven during
30 min at 50 °C, (9) the photopolymer plate was exposed to UVC
light at 10 J for 17 min and UVA light at 4 J for 2 min applied on
the front side. The steps 2 to 6 are shown in Fig. 1. The design
consists of adjacent rectangular structures with a width of 1000
pm (Fig. 1a).
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Fig. 1 Photopolymer mold fabrication. (a) Microchannels network
designed for the multi-level microstructures fabrication by varying
UVA exposure time, (b) microchannels network designed for the multi-
level microstructure fabrication by varying channel width and UVA
exposure time (c) multiple multi-level structures in a single photo-
polymer mold. The designs of the mold exhibit in the figure (a) and (b)
were performed on the same photopolymer plate.

The mold fabrication with multi-level structures was per-
formed using the procedure described previously. Three equal
sections were designed. Each section presents adjacent rectan-
gular structures with a width of 50 pm, 100 pm, 150 pm, 200 pm,
250 um, 300 pm, 350 um, 400 um, 450 pm, 500 um, 550 um and
600 pm. UVA exposition at 0.45 J on the back-side during 10, 30
and 50 s were performed on Section 1, 2 and 3, respectively
(Fig. 1b).

Mold characterization. The morphological characterization of
the molds was performed on a Field Emission Gun Scanning
Electron Microscope (TESCAN FEG SEM MIRA3). Previous to the
analysis, the molds were metalized with approximately 20 nm
gold layer with a sputtering evaporator (Quorum Q150R ES).
SEM measurements were carried out at 7 kv and the quantita-
tive measurements were made with the MIRA TC software
version 4.2.24.0. Profilometry measurements were performed
on a Dektak XT profilometer from Bruker. Analyses were carried
out with Vision 64 software. Linear scans were performed with
a 25 um radius tip, at a scan speed of approximately 90 um s~
a sampling rate of 0.01 Hz mm™". Before characterization, the
molds were blown with nitrogen gas to remove dust and then
were ultrasonically cleaned in ethanol (70% v/v) for ten minutes
(this step was repeated 5 times). Afterward, the molds were
dried in an oven at 40 °C for 1 hour. AFM images were acquired
in ScanAsyst mode at ambient conditions by using a cantilever
of spring constant at 0.71 N m ™. The average roughness (R,)
parameter was determined by applying the Nanoscope Analysis
1.8 software to multiple images taken at random positions in
scan areas of 50 x 50 um? AFM images reported in this work
were reproducible over at least five points on the sample
surface.

This journal is © The Royal Society of Chemistry 2020
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Application

Microfluidic device fabrication. In a first step the mold was
manufactured. The microchannel network was designed using
Layout Editor Software and then, it was transferred to the
Thermal Imaging Layer (TIL). Subsequently, the female photo-
polymer mold (Fmold) fabrication was performed as described
in the previous section (Multi-level microstructures fabrication
by varying UVA exposure time). However, the back-side of the
photopolymer plate just was exposed one time during 10
seconds. The design consists of four lines with eleven wells in
series within each one. The positions of the wells are denoted as
L;_W;, where L; corresponds to the line number and W; corre-
spond to the well number (Fig. 5a). In the next step, two PDMS
replicas (PDMS-floor replica and PDMS replica with design)
were manufactured in order to fabricate the microfluidic device.
Briefly, a mixture of epoxy resin and curing agent (Cristal-Tack,
Novarchem - Argentina) was poured onto the female mold to
replicate the design in high relief. After curing, the epoxy resin
mold (ERmold) was peeled off from the Fmold to form the male
mold. Subsequently, a mixture of PDMS and curing agent in
a 10 : 1 weight ratio (Sylgard 184 Silicone Elastomer Kit) was
poured onto the ERmold and cured in an oven at 40 °C over-
night. For the PDMS-floor replica (replica without design), 3
grams of PDMS-curing agent mixture was poured on a glass
slide and cured. Finally, the PDMS-floor replica and the PDMS
replica with the design were exposed to oxygen plasma
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produced by BD-10A High-frequency generator (Electro-Technic
Products, USA) to bond them irreversibly.

Cell culturing. Microfluidic devices were flushed with ethanol
70%, NaOH (0.5 M) during 30 minutes and ultrapure water
before seeding cells. The leukemic cell line Jurkat (ACC-282,
Leibniz Institute German Collection of Microorganisms and
Cell Cultures, DSMZ) was cultivated using Roswell Park
Memorial Institute (RPMI) 1640 medium (Gibco) supplemented
with 10% fetal bovine serum (FBS) and 1% Pen Strep (10 000 pug
ml ™" penicillin, 10 000 pg ml~" streptomycin; Gibco). Jurkat
cells were incubated at 37 °C in a humidified atmosphere con-
taining 5% CO, and passaged to a new flask containing fresh
medium every three days. A volume of 65 pl of Jurkat cell
suspension at a concentration of 3.33 x 10> cells per ml~" was
injected into each line of the microfluidic device using an A22
syringe pump (ADOX, Argentina) at flow rate of 26 ul min '
during 3 minutes. The syringe pump was rotated 90° to prevent
cell sedimentation along the syringe lateral wall. Medium was
renewed at day 3 using a flow rate of 2 ul min~" during 35
minutes for each line of the microfluidic device. Cell concen-
tration in medium extracted from the outlets was measured
with TC10™ Automated Cell Counter Bio-Rad (Lighthouse Core
Facility, Germany). Jurkat cells were microscopically monitored
and images were acquired at days 1 to 5 with an inverted Zeiss
Observer microscope (Lighthouse Core Facility, Germany) using
the EC Plan-Neofluar 2.5x/0.075 and 10x/0.3 objectives. In
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Fig.2 Multi-level structures on female and male molds. (a) and (b) Schematic drawing of principal steps to fabricate multilevel microchannels, (c)
and (f) SEM images of top-view female and male molds, (d) and (g) cross-section of female and male molds, (e) and (h) depth/height channel
measurements recorded by profilometry. Using the L-edit software, channel width was drawn of 1000 pm. Three section of the photopolymer
plate were exposed in total to UVA light at 0.45 J on the back side during 10 s, 30 s and 50 s, respectively. This corresponds with the three UVA
exposure steps of 10 s, 20 s and 20 s. D: Depth channel, H: height channel.

This journal is © The Royal Society of Chemistry 2020
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order to prevent evaporation, the microfluidic device was placed
inside a Petri dish supplied with water reservoirs. The Petri dish
was taken out from the incubator to transport the microfluidic
device to the microscope. Image sequences of Jurkat cells after
being seeded were obtained with an Olympus Scan”R micro-
scope (Lighthouse Core Facility, Germany) and are presented in
ESI Video S1.}

Image analysis. In order to estimate cell proliferation, the area
occupied by the suspension cells was measured using a macro
written in FIJI Image J. The day of seeding was considered as day
1, while the day after Jurkat cells settled was considered as day 2.
The area of the whole image was considered to be 100% and the
percentage of area occupied by the cells was reported. Seven wells
were monitored microscopically and images were acquired daily.

Identification of dead cells. For detecting cell death events,
culture medium was supplemented with 0.25 pg ml~" of Pro-
pidium Iodide (PI)* and it was flushed into the microchannels
at day 5. PI is a DNA intercalating dye which does not pass
through the plasma membrane of viable cells as described by
Zaretsky et al.*® Images were acquired with the inverted Zeiss
Observer microscope using the PI filter set. To state the
percentage of dead cells, the total cell area on the bright field
image was considered to be 100% whereas the area of cells
which were PI-positive was reported as the area of dead cells.
This measurement allowed determining the biological viability
of the multilevel structures of the device.

Results and discussion

The molds fabrication of the present study was carried out by
using a photopolymerization process.*® The photo-
polymerization of the plate by UVA exposure on the back-side is
the step that controls the height/depth of the structures and to
support the anchoring of fine details.** This step starts with
a radical chain reaction of the reactive monomers that react
with other monomers and the polymer binder and form
a crosslinked network. As long as the UVA exposure is switched
on the polymerization continues.*® In regard, in a previous
work, an inverse relationship between UVA exposure time and
structure height was demonstrated.*! In addition, the exposure
on the front side is carried out with UVA light in order to form
the structures on the polymer. After UVA exposure on the front
side, the photopolymer plate is chemically and mechanically
washed. Therefore, unexposed parts of polymer material are
removed and structures are formed. In this sense, the proposed
methodology in this work enables the fabrication of multi-level
structures on a single mold by varying the UVA exposure time
and/or the channel width. In the next sections, the variation of
each one of these factors as well as the result of modifying both
will be described. In addition, an application of multi-level
microfluidic device will be shown.

Multi-level microstructures fabrication by varying UVA
exposure time

Fig. 2a and b show the principal steps to fabricate molds with
male and female multi-level microchannels. As it can be seen in
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the figure the photopolymer mold was exposed multiple times.
Representative SEM images of manufactured female and male
molds are shown in Fig. 2c-g. The height and depth channel
measurements obtained by profilometry are included in Fig. 2e
and h. The results demonstrate that height/depth of the struc-
tures varies according to UVA exposure time. For UVA exposure of
10, 30 and 50 were obtained positive structures (male mold) with
a height of 677.6, 565.9 and 357.6 pum, respectively. On the same
photopolymer plate, negative structures (female mold) were
performed with deep of 273.6, 175.1 and 114 um, respectively.
From the results, it can be seen that an inverse relationship
between UVA exposure time and height/depth structure exists.
Furthermore, it can be observed that female molds show struc-
tures with lower thickness in comparison with male molds, this
is due overlapping of the sidewalls (Fig. 2d). For male mold, the
heights of the structures are dependent on the spacing between
individual structures have been reported in previous work.** The
results demonstrate that on a single photopolymer plate, it is
possible to obtain uniform male/female molds with a great
variety of height/depth dimensions on the microstructures by
varying UVA exposure time (ESI Fig. S1t).

Multi-level microstructure fabrication by varying UVA
exposure time and channel width

Fig. 3 shows the channel depth as a function of channel width
and UVA exposure time. The procedure of the mold fabrication

(@) 300
Exposure time
250 - = 10 Seconds
z e 30 Seconds
= 4 50 Seconds
:200- Cw-1
E .t
@ CW-2 L
= 150+ . = g .
E CW3 e 2 L .4 a .
£ 100+ cw4 g -
Q
2
50 e
2
0 T T T
0 200 400 600
(b) Channel width (um)

(c) Exposure time
Fig. 3 (a) Channel depth as a function of channel width and UVA

exposure time, (b) cross section of channels obtained by UVA expo-
sure on the back side by 10 s. (c) Schematic representation of depth of
the structures obtained by varying the channel width and exposure
time. Depth and width measurements were determined by profilom-
etry technique (n = 3). cw: channel width.

This journal is © The Royal Society of Chemistry 2020
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consisted of the variation of both parameters in a single
photopolymer plate. The mask of the mold is shown in Fig. 1;
adjacent linear structures with different channel widths were
designed.

The photopolymer was exposed on the back-side by 10, 30
and 50 s, respectively. Depth measurements of the microstruc-
tures are exhibited in Fig. 3a which indicates that channel width
between 50 pm and 300 um presents similar depth under the
three UVA exposure time applied. Similar behavior was
observed when applying UVA exposure time of 30 s and 50 s and
channel widths were lower than 400 pm. While channels width
higher than 400 pm showed a considerable variation of the
depth. The results indicate that the height of the structures with
channel width lower than 400 um was not dependent on the
time exposure. This behavior is due to the trapezoidal shape
that presents the structures; this characteristic shape generates
an overlapping of sidewalls of the structures as shown in the
schematic representation (Fig. 3c). SEM images show clearly the

View Article Online
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decreasing of the depth of the structures by effect of the over-
lapping of the sidewalls (Fig. 3b). Finally, the results indicate
that the multi-level structures can be performed by varying
channel width and UVA exposure time in a single step.

Mold characterization

The effect of UVA exposure time on the surface morphology was
studied by measuring the roughness of the photopolymer
molds. Fig. 4 shows the average roughness values (R,) and
representative SEM and AFM images recorded from the male
and female molds. On the female mold, it can be observed
a direct dependency between the UVA exposure time and the
roughness. In contrast, the roughness of the male mold did not
show any correlation with the UVA exposure time. Moreover, the
roughness of male/female molds was lower than 29 nm with
exposure time up to 50 s. In previous work, we reported an
average roughness (R,) of photopolymer male molds, obtained
from printing plate photopolymer Flexcel SRH. R, values

50 um

10

. 30 20
40 Ra:27.1 nm

Fig. 4 Surface morphology. Representative SEM images of top-view female (a) and male (b) molds, representative AFM images and R, values
obtained from the female molds (al to a3), representative AFM images and R, values obtained from the male molds (bl to b3). R, represents the
average roughness values. First step: UVA exposure time on back side: 10, 30 and 50 s, respectively. Exposure time on front side: 360 s, second

step: UVA front exposure: 2 min, UVC front exposure: 17 min.

This journal is © The Royal Society of Chemistry 2020
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between 23 nm and 99 nm with exposure time lower than 48 s
were obtained for the Flexcel SRH photopolymer. As rough
surface could be a problem for imaging,** it is important to
obtain molds with the lowest possible roughness. In this sense,
the Flexcel NX is the best choice for the fabrication of molds.

Application

PDMS microdevice. The effectiveness of multi-level micro-
structures fabrication was evaluated by constructing PDMS
microfluidic devices for cells culture and proliferation. The
multi-level microstructures fabrication was performed varying
channel width in a female mold. As shown in Fig. 5, the design
consists of an input and an output connected to four lines with
eleven wells in series within each line. Fig. 5b-d show SEM
images of the mold. The design presents circular and linear
topologies. The channel width measurements were 2100 pm,
2600 pm and 530 um in section C, A and B, respectively. The
profilometry measurements show that depth dimensions are
different in each section (Table 1). The results demonstrate
proportional increases in channel depth as the channel width
increments. Furthermore, it is observed that the results are in
good agreement with the results obtained in the previous
section.

Cell culture and proliferation in the multilevel microfluidic
device. The fabrication of microdevices with multi-level micro-
structures presents useful potential for cell culture and prolif-
eration.” In this sense, Jurkat cells were cultured in the
multilevel microfluidic device as a proof of principle for non-
adherent cell capturing within wells for subsequent cell
culture and proliferation. A volume of 65 pl of Jurkat cell
suspension was injected into each line of the microfluidic
device using. It was observed that the Jurkat cells were
dispersed along the wells (Fig. 6d), subsequently, they settled by
gravity and grouped at the deepest part of the wells. This
behavior highlights the utility of the multilevel device as cells
were immobilized at the bottom (zone B) whereas the upper
zone permitted medium flow (zone C). In order to estimate the
proliferation of Jurkat cells settled, the cells were microscopi-
cally examined over time and the area of the image occupied by
them was measured. Fig. 6 shows the proliferation of Jurkat
cells in position L, W, during 5 days and Fig. S2 (ESIt) presents
a collection of images of the 11 wells of the first line of the
microfluidic device, after being seeded. Fig. 6a-c demonstrate
that Jurkat cells proliferated. Moreover, Fig. 6e exhibit the
proliferation of Jurkat cells by an increase in the average of the
area occupied by the Jurkat cells from day 1 to day 5. The ESI
Video 11 shows the capacity of the multilevel device to capture
Jurkat cells. In addition, the medium was renewed at day 3 and
cell concentration at outlets was under the detection limit of the
automatic cell counter (5 x 10* cells per ml™"), and no changes
were observed by optical microscopy in the chambers, which
indicated the absence of cell loss at a flow rate of 2 pl min™".

The identification of dead cells was evaluated in order to
determinate the viability of the multilevel structures on the
microfluidic device for the cell culture and proliferation. To
address this issue, the percentage of dead cells was quantified
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by image analysis through PI fluorescence following the
labeling procedure assessed by Wlodkowic et al** and per-
formed by Zaretsky et al.** Furthermore, the area occupied by
dead cells was measured by FIJI-Image J°* and it was related to
the area covered by the cell cluster at day 5 as illustrated in
Fig. 6. An average of the area occupied of 0.95% in the wells was
determined which correspond with 5.9% of dead cells. By flow

Section A
Section B
800 - Section C
T 600 -
2
£
£400
a
200
0 T T T
0 5 10 15
Scanning length (mm)
Fig. 5 (a) Microchannels network of the microfluidic device (b) SEM

image of the wells, (c) higher magnification SEM images of zone A, (d)
higher magnification SEM images of zone B and C, (e) SEM images of
the cross section of the mold (f) depth measurements recorded by
profilometry. Photopolymer mold fabrication conditions: first step:
UVA exposure time on back side: 10 s, exposure time on front side:
360 s, second step: UVA front exposure: 2 min, UVC front exposure:
17 min.
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Table 1 Dimensions resulting for section A, B and C*

Section
Dimensions A B C
Width (um) 2100 £ 0.01 2600 + 0.01 530 £ 2.65
Depth (um) 387 £ 3.23 468 £ 7.14 175 + 0.01

“ Depth and width measurements were determined by profilometry
technique (n = 3).

cytometry, the reported normal value of dead cells is less than
5%.%> While the values quantified by image analysis are between
5.6 = 2% and 6.7 + 2% under normal culture conditions.* As
less than an average of 10% of dead cells was determined, our
multilevel device harbored Jurkat cells without detrimentally
affecting their development. These results demonstrate that
multilevel microstructures allow renewing the medium avoid-
ing cell loss.

25

N
o
1

-
o
1

-
o
1

(3]
1

Percentage of area occupied (%)

o
1

1 2 3 4 5 Pl
Time (Days)

Fig. 6 Proliferation of Jurkat cells in position L4_W; for 5 days. (a) day
2, (b) day 3, (c) day 5 and (d) detection of dead cells labeled with PI at
day 5, (e) average of the area occupied by the Jurkat cells from day 1 to
day 5. The last bar shows the percentage of area occupied detected for
Pl positive cells. The area occupied by the Jurkat cells was analyzed by
Image J-FIJI. Experimental conditions: after seeding (day 1), Jurkat
cells were imaged in the microfluidic device. At day 3 the medium was
renewed using a flow rate of 2 ul min~* during 35 minutes. Cellular
death events were determined by end point death/live assay.
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From the results, the multilevel microfluidic device showed
the ability to harbor cells in order to monitor their proliferation
over a 5 day time period. Moreover, the characteristics of the
PDMS microdevice made possible the acquisition of images as
the decreased thickness of the bottom PDMS replica (~2 mm)
which contains the microchannels design provides an appro-
priate working distance when using the 10x objective.
Furthermore, the proposed microdevice design allowed
harboring the cells at the deepest part of each well, allowing
cells proliferation. These approaches allowed the characteriza-
tion of suspension cell development due to the different levels
make it possible to gently trap cell clusters within the wells
while allowing the medium to be renewed. Fabrication of
multilevel microstructures by traditional photolithography
methods is expensive, requiring multiple lithography steps and
repeated processing.'” In this sense, this work overcomes these
challenges by using Fmolds.

Conclusions

We successfully demonstrated the Fmold manufacture with
multi-level channels by performing sequential back side UVA
exposure time on the photopolymer and varying the channel
width. Moreover, it was also showed that varying the channel
width could control the thickness of the structures which
represents a powerful feature as thickness could be customized
according to the type of assays. Moreover, the method allows
obtaining multiple molds with a great variety of dimensions
and topologies in a single large area (1270 x 2062 mm?)
reaching a minimum structure size of 10 um and structures
height ranging from 53 to 1500 um. In addition, the molds can
be commercially obtained at low cost and are worldwide avail-
able. Also, they can be used multiple times with the acquisition
of reliable replicas without delamination as the mold and the
structures designed comprise a unique piece. Besides, the mold
is economically feasible, because the Flexcel technology can be
commercially obtained at low cost. Finally, the results demon-
strated that multi-level microfluidic device enabled medium
renewal without detrimentally affecting cell proliferation. The
findings suggest that the developed methodology to generate
multilevel structures has great potential in different micro-
fluidics fields, in particular, it presents an alternative for non-
adherent cells culturing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the financial support from CONICET
(PIP2015), ANPCyT (PICT-STARTUP 3772) and Florencio Fiorini
grant. Dr M. Zaki Ali, Stepanov, Arsen Dr Richard Ollmann and
Team (Miraclon) to provide Flexographic material to make the
microfluidic molds. We would also like to thank Julia Pinter and
J. L. Fernandez for collaboration, Hans Hoch for his support
during the research, Dagmar Wider for helping us with cell lines

RSC Adv, 2020, 10, 4071-4079 | 4077


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra07955f

Open Access Article. Published on 23 January 2020. Downloaded on 1/21/2026 10:07:14 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

management, Lighthouse Core Facility members and Biothera
Foundation for providing funding for equipment and scholar-
ships for the students.

References

1 M. W. Toepke and P. J. A. Kenis, J. Am. Chem. Soc., 2005, 127,
7674-7675.

2 J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Chemiavskaya,
J. C. McDonald, H. Wu, S. H. Whitesides and
G. M. Whitesides, Anal. Chem., 2000, 72, 3158-3164.

3 C.]J. Campbell, R. Klajn, M. Fialkowski and B. A. Grzybowski,
Langmuir, 2005, 21, 418-423.

4 R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen,
J. G. Santiago, R. J. Adrian, H. Aref and D. ]J. Beebe, J.
Microelectromech. Syst., 2000, 9, 190-197.

5 A. Sayah, P. A. Thivolle, V. K. Parashar and M. A. M. Gijs, J.
Micromech. Microeng., 2009, 19, 085024.

6 M. L. Kovarik and S. C. Jacobson, Anal. Chem., 2006, 78,
5214-5217.

7 D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama,
Lab Chip, 2003, 3, 318-323.

8 Z. Huang, X. Li, M. Martins-Green and Y. Liu, Biomed.
Microdevices, 2012, 14, 873-883.

9 Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault
and G. Voirin, Microelectron. Eng., 1994, 23, 449-454.

10 C. J. Hansen, R. Saksena, D. B. Kolesky, J. J. Vericella,
S. J. Kranz, G. P. Muldowney, K. T. Christensen and
J. A. Lewis, Adv. Mater., 2013, 25, 96-102.

11 J. T. Borenstein, M. M. Tupper, P. J. MacK, E. ]J. Weinberg,
A. S. Khalil, J. Hsiao and G. Garcia-Cardena, Biomed.
Microdevices, 2010, 12, 71-79.

12 M. Kang, J. H. Byun, S. Na and N. L. Jeon, RSC Adv., 2017, 7,
13353-13361.

13 X. Liu, Q. Wang, J. Qin and B. Lin, Lab Chip, 2009, 9, 1200-
1205.

14 N. A. Md Yunus and N. G. Green, Microsyst. Technol., 2010,
16, 2099-2107.

15 Y. Nam, M. Kim and T. Kim, Sens. Actuators, B, 2014, 190, 86—
92.

16 D. Lai, J. M. Labuz, J. Kim, G. D. Luker, A. Shikanov and
S. Takayama, RSC Adv., 2013, 3, 19467-19473.

17 M. Tokeshi, T. Minagawa, K. Uchiyama, A. Hibara, K. Sato,
H. Hisamoto and T. Kitamori, Anal. Chem., 2002, 74, 1565—
1571.

18 V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp,
S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei,
M. Miller, D. Falconnet, A. K. White, D. G. Kent,
M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries,
J. M. Piret and C. L. Hansen, Nat. Methods, 2011, 8(7), 581-
586.

19 L. Zhao, S. Mok and C. Moraes, Biofabrication, 2019, 11(4),
045013.

20 W. Yue, C. W. Li, T. Xu and M. Yang, Biosens. Bioelectron.,
2013, 5(41], 675-683.

21 G. Guan, L. Wu, A. A. Bhagat, Z. Li, P. C. Y. Chen, S. Chao,
C.J. Ong and J. Han, Sci. Rep., 2013, 3, 1475.

4078 | RSC Adv, 2020, 10, 4071-4079

View Article Online

Paper

22 T. Kwon, H. Prentice, ]J. De Oliveira, N. Madziva,
M. E. Warkiani, J. F. P. Hamel and J. Han, Sci. Rep., 2017,
7, 6703.

23 S. W. Lee, S. Hong, B. Jung, S. Y. Jeong, J. H. Byeon,
G. S. Jeong, J. Choi and C. Hwang, Biotechnol. Bioeng.,
2019, 116(11), 3041-3052.

24 J. Park, C. Chen, V. Yeh and R. Booth, J. Immunol., 2018, 200,
174.40.

25 T. Konry, M. Dominguez-Villar, C. Baecher-Allan,
D. A. Hafler and M. L. Yarmush, Biosens. Bioelectron., 2011,
26(5), 2707-2710.

26 J. N. Kuo and H. Z. Hu, jpn. J. Appl. Phys., 2011, 50, 10R.

27 D. Di Carlo, N. Aghdam and L. P. Lee, Anal. Chem., 2006,
78(14), 4925-4930.

28 Z.Zhu, Y. Geng, Z. Yuan, S. Ren, M. Liu, Z. Meng and D. Pan,
Micromachines, 2019, 10(3), 168.

29 Z.Zhu, O. Frey, D. S. Ottoz, F. Rudolf and A. Hierlemann, Lab
Chip, 2012, 12(5), 906-915.

30 C. M. Olmos, A. Vaca, G. Rosero, A. Penaherrera, C. Perez,
I. de Sa Carneiro, K. Vizuete, C. R. Arroyo, A. Debut,
M. S. Pérez, L. Cumbal and B. Lerner, Sens. Actuators, B,
2019, 742-748.

31 N. Bourguignon, C. Olmos, M. Sierra-Rodero,
A. Penaherrera, G. Rosero, P. Pineda, K. Vizuete, C. Arroyo,
L. Cumbal, C. Lasorsa, M. Pérez and B. Lerner, J. Polym.
Sci., Part B: Polym. Phys., 2018, 56, 1433-1442.

32 X. Chen, J. Shen and M. Zhou, J. Micromech. Microeng., 2016,
26, 107001.

33 M. A. Stoller, A. Konda, M. A. Kottwitz and S. A. Morin, RSC
Adv., 2015, 5, 97934-97943,

34 Z. Isiksacan, M. T. Guler, B. Aydogdu, I. Bilican and
C. Elbuken, J. Micromech. Microeng., 2016, 26, 35008.

35 E. Joanni, J. Peressinotto, P. S. Domingues, G. de O. Setti and
D. P. de Jesus, RSC Adv., 2015, 5, 25089-25096.

36 L. Gutzweiler, F. Stumpf, L. Tanguy, G. Roth, P. Koltay,
R. Zengerle and L. Riegger, J. Micromech. Microeng., 2016,
26, 45018.

37 K. ichiro Kamei, Y. Mashimo, Y. Koyama, C. Fockenberg,
M. Nakashima, M. Nakajima, J. Li and Y. Chen, Biomed.
Microdevices, 2015, 17(2), 36.

38 S. Waheed, J.-M. Cabot Canyelles, N. Macdonald, R. M. Guijt,
T. Lewis, B. Paull and M. C. Breadmore, Lab Chip, 2016, 16,
1993-2013.

39 Z. Li, L. Hou, W. Zhang and L. Zhu, Anal. Methods, 2014, 6,
4716-4722.

40 B. Li, Z. Zhang, ]J. Qi, N. Zhou, S. Qin, J. Choo and L. Chen,
ACS Sens., 2017, 2(2), 243-250.

41 Y. Fan, K. Gao, J. Chen, W. Li and Y. Zhang, Oil & Gas Science
and Technology — Revue d’IFP Energies nouvelles, 2018, 73, 26.

42 D. Lin, B. Li, J. Qi, X. Ji, S. Yang, W. Wang and L. Chen, Sens.
Actuators, B, 2019, 127213.

43 A. Waldbaur, H. Rapp, K. Linge and B. E. Rapp, Anal.
Methods, 2011, 3, 2681-2716.

44 C.T. Riche, C. Zhang, M. Gupta and N. Malmstadt, Lab Chip,
2014, 14, 1834-1841.

45 J. Jeon, N. Choi, H. Chen, ]J. Il Moon, L. Chen and ]J. Choo,
Lab Chip, 2019, 19, 674-681.

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra07955f

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 23 January 2020. Downloaded on 1/21/2026 10:07:14 PM.

(cc)

Paper

46 C. Zhang, D. Wen, H. Zhu, X. Zhang, X. Yang, Y. Shi and
T. Zheng, J. Micromech. Microeng., 2017, 27, 125022.

47 Kodak Flexcel NX, 2017, http://www.https://www.kodak.com/
uploadedFiles/FlexceINX_Wide_SSheet_US.pdf.

48 KLayout - High Perform. Layout Viewer Ed, available online,
http://www.klayout.de/index.php., 2018.

49 D. Wlodkowic, J. Skommer, D. McGuinness, S. Faley,
W. Kolch, Z. Darzynkiewicz and J. M. Cooper, Anal. Chem.,
2009, 81(16), 6952-6959.

This journal is © The Royal Society of Chemistry 2020

View Article Online

RSC Advances

50 I. Zaretsky, M. Polonsky, E. Shifrut, S. Reich-Zeliger,
Y. Antebi, G. Aidelberg, N. Waysbort and N. Friedman, Lab
Chip, 2012, 12(23), 5007-5015.

51 J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig,
M. Longair, T. Pietzsch, S. Preibisch, C. Rueden,
S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White,
V. Hartenstein, K. Eliceiri, P. Tomancak and A. Cardona,
Nat. Methods, 2012, 9, 676-682.

52 B.S. Cummings and R. G. Schnellmann, in Current Protocols
in Pharmacology, 2004.

RSC Adv, 2020, 10, 4071-4079 | 4079


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra07955f

	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f

	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f

	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f
	Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufactureElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07955f


