Open Access Article. Published on 13 January 2020. Downloaded on 11/14/2025 9:55:26 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

W) Check for updates ‘

Cite this: RSC Adv., 2020, 10, 2347

Received 20th September 2019
Accepted 30th December 2019

DOI: 10.1039/c9ra07621b

ROYAL SOCIETY
OF CHEMISTRY

(3

High-throughput liquid chromatography mass-
spectrometry-driven lipidomics discover metabolic
biomarkers and pathways as promising targets to
reveal the therapeutic effects of the Shenqi pilly

Wen-xiu Li, Ai-hua Zhang,{ Xiao-hang Zhou, Yang Nan, Qi Liu, Hui Sun, Heng Fang
and Xi-jun Wang (®*

Lipidomics, a branch of metabonomics, could provide a powerful technique for discovery of lipid molecules
to reveal disease status and drug efficacy. The Shengi pill (SQP) is a representative prescription for clinical
application in the prevention and treatment of kidney-yang deficiency syndrome (KYDS). However, its effect
mechanism is still not clear. This article aims to reveal the intervention effect of SQP on KYDS from the
perspective of lipid metabolism. In this study, SQP was used to intervene in the rat model of KYDS, on
the foundation of successfully replicating the rat model of KYDS induced by corticosterone. The
MetaboAnalyst tool was used for analysis of the serum metabolic profile and pattern recognition of KYDS
model, based on UPLC-SYNAPT-G2-Si-HDMS. Finally, twenty-two potential lipid biomarkers related to
the KYDS model were characterized, and the effects of SQP on regulating potential lipid markers in
serum of KYDS model were analyzed. There were 10 biomarkers and seven metabolic pathways closely
related to SQP therapy for KYDS were found. The action mechanism and targets of SQP in treating KYDS
were explored based on high-throughput lipidomics. This work could provide valuable data and scientific
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1. Introduction

Kidney-yang deficiency syndrome (KYDS) is a kind of basic
syndrome which often leads to extensive pathophysiological
change in the body. Modern research has shown that KYDS can
cause various degrees of disorders in the hypothalamus—
pituitary-target gland axis,” and it is tightly associated with
energy metabolism, the neuroendocrine-immune system, the
heart and kidneys, which is a comprehensive manifestation of
multi-system and organ functions.*”* As the glucocorticoid
model can better simulate the basic symptoms of KYDS
patients, it is the most pervasive method of establishing an
animal model of KYDS, which can inhibit the secretion function
of the hypothalamus-pituitary-target gland. Once the intake of
exogenous corticosteroid is stopped, the inhibition state of the
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evidence in subsequent studies for the treatment of KYDS.

hypothalamus-pituitary-target gland function will be exposed
and cannot be restored in a short time.*®

Lipidomics is one of the important branches of metabo-
nomics, which provides a useful technique for development and
change of lipid molecules to revealdisease status.® Lipid
metabolites play diverse and important roles in the structure
and function of cells and tissues.’®'* As the technology of mass
spectrometry (MS) is continuing to thrive, the powerful analysis
capability of MS has accelerated the development of this new
scientific discipline.**** This high-throughput method and
process enable us to obtain the metabolism information by
means of quantifying changes in individual lipid species that
reflect metabolic differences, even provides favorable condi-
tions for the diagnosis of diseases.">'® Studies have shown that
more and more diseases are associated with lipid metabolism
disorders, such as hypertension,” kidney diseases,'® dia-
betes,'** hepatopathy, and other diseases.

Based on the previous metabonomic study of effect and
regulation of SQP on KYDS,* for further exploration of mech-
anism of lipid metabolic regulation, this experiment used the
UPLC-HDMS to collect the information about lipid metabolites
of blood, combined with pattern recognition analysis method,*
to reveal the possible pathogenesis of KYDS from the perspec-
tive of lipidomics, and provide scientific basis for clinical
diagnosis of KYDS.
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2. Experiment
2.1 Chemical reagents

Methanol and acetonitrile of UPLC were both obtained from
Dikma Company (USA). Water for UPLC was made by Milli-Q
system (USA). Methanoic acid of UPLC was supplied by Hon-
eywell company (USA); sodium pentobarbital (no. 20080603,
purchased from Shanghai Chemical Reagent Factory); corti-
costerone (analytical grade, purchased from Sigma); olive oil
(Oliver grade) was produced from Beijing Huasheng Biological
Co., Ltd. leucine-enkephalin (SIGMA Technology Co., Ltd.,
USA); SQP was provided by Beijing Tongren Tang Drug Store
(Harbin, China).

2.2 Animals

Wistar rats (SPF), male, weighting 226 g + 10 g, purchased from
Beijing Witonglihua Laboratory. Feeding temperature was
controlled at 21 + 2 °C and the range of humidity was from 65%
to 75%. The light and dark by turns per 12 h and with natural
drink and food. All the Wistar rats were acclimatized to the
environment for one week before model establishment. All the
rats were raised and supervised by GAP of Heilongjiang
University of Chinese Medicine.

2.3 Reproduction of KYDS rat model

According to the weight of rats, they were assigned randomly
to three groups: control group, model group and SQP group
with each group of 10 rats. The model group was subcutane-
ously injected with 10 mg mL™" corticosterone solutions,
which were diluted with olive oil, continuous injection at 1 mL
kg for 21 days. And then lavage with purified water for 21
consecutive days, injected daily with the same dosages of olive
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Fig. 1 Flow diagram for data processing and analysis.
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oil last 21 days for the control group. During the first 21 days,
rats of SQP group were administrated in exactly the same way
as the model group. On the 22nd day, the SQP group was
lavage with precise concentrations of SQP (SQP were crushed
and dissolved in distilled water to 0.36 g mL "), 10 mL kg™ " as
the weight of rats for 21 consecutive days. The experimental
procedures were approved by the Animal Care and Ethics
Committee at Heilongjiang University of Chinese Medicine
and all experiments were performed in accordance to the
declaration of Helsinki.

2.4 Preparation and collection of sample

On the last day of the experiment, all rats were taken blood by
the hepatic portal vein. The blood samples were kept at 4 °C for
30 minutes, and centrifuged at 4000g for 10 minutes. The upper
serum was taken and stored in the refrigerator at —80 °C. The
serum sample was defrosted at room temperature before anal-
ysis. Then we add 800 pL of methanol into 200 pL of the thawed
serum samples to precipitate protein. Centrifuge separates the
samples at 13 000g for 10 minutes after vortexing for 30
seconds. The supernatant was dried by nitrogen on water bath
at 40 °C, and the residue was dissolved with 200 pL of 80%
methanol, following centrifuged at 13 000g for 10 minutes. The
supernatant was filtered byPTFE membrane (0.22 pm) for UPLC-
HDMS analysis.

2.5 Instruments and experimental conditions

Waters Acquity TM UPLC combined with Waters Synapt G2-Si
High Definition Mass Spectrometer (HDMS) system and the
MassLynx™ 4.1 workstation were utilised for following data
acquisition and processing.
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Fig. 2 Metabolic profiling analysis. (A) Serum samples of the control group in positive ion mode; (B) serum samples of KYDS model group in
positive ion mode; (C) serum samples of the control group in negative ion mode; (D) serum samples of KYDS model group in negative ion mode.
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Chromatographic conditions: ACQUITY UPLC™ HSS T3
(100 mm x 2.1 mm i.d., 1.8 pum, Waters, USA) was chosen as the
chromatographic column. The temperature of column was
40 °C and the autosampler was set at 4 °C. Mobile phase system
comprise 0.1% methanoic acid-acetonitrile (A) and 0.1%
methanoic acid-water (B), with flow velocity of 0.4 mL min .
Injection volume of sample was 3 uL for both ESI" and ESI~
mode. Gradient elution as follows: 0-2 min, 5-50% A; 2-4 min,
50-60% A; 4-7 min, 60-80% A; 7-10 min, 80-100% A; 10-
12 min, stay 100% A.

Mass spectrometry conditions: the ionization source of ESI
was operated inion mode of positive (EST") with 30 V of sample
cone bore voltage, and 3.0 kV of capillary voltage. Temperature of
desolvation was 400 °C, and ion source was 110 °C. Desolvent and
cone gas flow velocity were 500 L h™* and 50 L h™*, respectively. In
the ion mode of negative (ESI™), the sample cone bore voltage was
40V, desolvation temperature was 300 °C, velocity of desolvation
gas flow was 550 L h™'. Other parameters of the negative ion
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mode were the same with the positive ion mode. Data were
captured under centroid mode and the range of mass scan was
50-1000 Da. For precise mass detection, leucine-enkephalin ([M +
H]"=556.2771 and [M — H]|~ = 554.2615) was selected as internal
standard, and the lock-mass solution with the concentration of
0.2 ng mL™".

2.6 Data processing and screening

As displayed in Fig. 1, all the source data of serum metab-
olomics were imported into Progenesis QI 1.0 software for peak
processing and normalization. By matching and screening, only
the lipid ion peaks were analyzed. The pretreatment data were
processed by the method of multivariate statistical analysis,
include PCA (principal component analysis) and OPLS-DA
(orthogonal partial least squares discriminant analysis) via the
EZinfo 3.0.3 software. The value of VIP greater than 1 and P <
0.05 in T-test was selected as potential biomarkers for further
identification.
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Fig. 3 Score plots of serum samples of control group and KYDS model group. (A) PCA score plots for control and KYDS model group in positive
mode; (B) 3D plots of OPLS-DA based on serum metabolites discriminating control and KYDS model group in positive mode; (C) PCA score plots

for control and KYDS model group in negative mode; (D) 3D plots of
model group in negative mode.
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Fig. 4 The biomarkers in the VIP and S-plot between control and KYDS model groupanalyzed by OPLS-DA. (A) In positive ion mode; (B) in negative ion mode.

3. Results conditions of serum endogenous metabolites, and through
full scanning analysis by UPLC-HDMS. Typical metabolic
profiles of both positive and negative ion pattern were shown
in Fig. 2.

3.1 Analysis of serum metabolism profile in rats with KYDS
model

The samples of blank group and model group were collected
and processed according to the established analysis

I

- LMPK12110058 CoN
2 MOD

LMGPOL1010594 i
LMFAQS020105

LMSTOZ030146
L MG POGOS00 10 =1
E LMGPO1060014 -2

LMSTO4010044 -3

LMSPO2010040
LMGFO1030129
[ LMGPOZ060003
LMPROL03450003
LMGPO4010958

LMFA01060170
I LMSTO4010168
LMF&01040028
[ LMST04030213

LMPK12020084
| LMPK12111800

LMFAD1030800
| | LMF201030800.
LM GPO2050046
| LM GPO2050045.
LM GPO2050039

\ LK STOZ030088
(] [=) (] a [l o [ x] [} (] = = = = = = =
L=-] w =1 T e —_— =l o wn rJd e —_ v = == =]

=

—-

0tH

(]
=
=

Fig. 5 The heatmap showed the relationship between control group and model group, and the comparison of contents of lipid metabolites.
Each color blocks correspond to the value of content of each biomarker.
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3.2 Identification of potential lipid biomarkers of KYDS

When used the Progenesis QI to identify compounds, we
selected lipid omics and basic lipids as search parameters, and
then multiple database searches also be used for data matching
and identification, such as LIPID MAPS® Lipidomics Gateway,
Metaboanalyst, KEGG, etc. Combining the above databases with
the potential biomarkers met the criteria (VIP > 1, P < 0.05), we
regarded the screened compound as the lipid biomarkers of
KYDS model.

3.3 Multivariate statistical analysis of metabolite profiling

Software of MarkerLynx 4.2 was used for preprocess the raw
data of UPLC-HDMS. The results of PCA analysis by EZinfo 3.0.3
software were shown as Fig. 3, included 2D and 3D PCA plots in
both positive and negative ion model. As displayed, the control
group and the KYDS model group were clustered into two
groups with no obvious interaction, it means that the endoge-
nous metabolic network in serum of rats changed significantly
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after corticosterone injection. VIP-plot (shown in Fig. 4) was
obtained by further analysis of OPLS-DA based on serum
metabolic profile data, and we chose the ions that satisfy both
VIP > 1 and P < 0.05 (ttest) as the target ions. Eventually,
according to relative signal intensity of the potential lipid
biomarkers, there were 22 lipid biomarkers be discovered. In
addition, the significant difference in the lipid metabolites of
the control and model group was shown in clustering heatmap
as Fig. 5.

3.4 Intervention and profile analysis of SQP against KYDS

According to the analytical methods mentioned above, three-
dimensional information (Rt_m/z_intensity) in serum samples
of the control group, model group and SQP group were
analyzed, to determine the relative content and the relationship
of potential lipid biomarkers in blood of the three groups. The
2D and 3D plots of PLS-DA analysis by EZinfo 3.0.3 software
were shown as Fig. 6. The results showed that after SQP
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Fig. 6 Score plots of serum samples of control group, KYDS group and SQP group. (A) PCA score plots for the three groups in positive mode; (B)
3D plots of OPLS-DA based on serum metabolites discriminating the three groups in positive mode; (C) PCA score plots for the three groups in
negative mode; (D) 3D plots of OPLS-DA based on serum metabolites discriminating the three groups in negative mode.
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treatment, the contents of the 22 potential biomarkers
mentioned above all tended to be called back to the control
group. Finally, 10 biomarkers with significant differences were
identified, compared with the model group. For more detailed
information and the intervention effect of SQP on lipid
biomarkers based on KYDS were specified in Table S1.T The
relative signal intensity of them was displayed in the bar graph
as Fig. 7.

4. Discussion

Mass spectrometry (MS)-based omics has developed rapidly in
recent years and has become a predictor and interpreter of the
relationship between complex phenotypes and metabolic
characteristics.”**> MS is a sensitive, efficient and high

throughput method of medicine development, which can
provide especially useful structural information for medicine
analysis.*®*** In recent years, exponential growth in the appli-
cation of MS in lipidomics, and separation technology based on
MS also got remarkable progress.**>* It has enabled the
discovery of potential biomarkers and explore disease patho-
diagnosis,*"*

genesis,>***  disease and

treatment.”®#?

prognosis,”*””
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In our study, based on metabolomics and technology of
UPLC-HDMS, the mechanism of SQP related to lipid metabo-
lism was analyzed and characterized, in the model of KYDS
induced by corticosterone. Results of PCA and OPLS-DA score
plots showed that the metabolic profiling of rats with SQP
administration was gradually moving away from the model
group, and close to the control group. It means that SQP has
a tendency to prevent the occurrence and development of
metabolic trajectory in KYDS model. Through various of data-
base and analysis methods, we eventually discovered 22 lipid
markers can be regulated by SQP in the model of KYDS, among
which, 10 markers were significantly regulated. Combined with
the visualized KEGG analysis results, these biomarkers were
input into the MetPA platform to analyze the topological char-
acteristics of metabolic pathways, to search the highly corre-
lated metabolic pathways with them. The underlying
mechanisms of SQP intervention on KYDS was clarified from
the perspective of lipid metabolism as Fig. 8.

Research suggests that there was significant changes of
multiple lipid metabolites in the model of KYDS,** and
renal damage was also clearly associated with changes in
fatty acid metabolism,®*® phospholipid level can be used as an
indicator of clinical diagnosis and it is a marker of chronic

%100000

Fig.7 The relative signalintensities of the lipid biomarkers in control, model and SQP group. Compared with KYDS model group: *p < 0.05, **p <

0.01.
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arachidonic acid metabolism; (F) alpha-linolenic acid metabolism; (G) linoleic acid metabolis.

renal failure.®*® All of the above indicated that lipid
metabolism disorders were intimately linked to kidney
diseases.”* Glycerophospholipid metabolism includes phos-
phatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylglycero (PG), lysophospholipids and so on.
Moreover, PC as precursor of alpha-linolenic acid can influ-
ence mitochon-drial activity and participate in the tricar-
boxylic acid cycle through the metabolism of alpha-linolenic
acid.”> In the experiment, we found that PC, PE, PG and
lysophospholipid were disturbed intensely, however,
compared with the model group, SQP has significant callback
effect on PE (0-18:0/0:0), PG (18:1 (9Z)/20:1 (11Z)), PC (P-16:0/
20:3 (5Z, 8Z, 11Z)), PC (16:0/18:2 (9Z, 12Z)) and SM (d16:1/
18:1). Linoleic acid (d4) and 2-oxo-4-methylthiobutanoic
acid (P < 0.05) related to fatty acid metabolism also can be
up-regulated tends to normal.

Steroid hormone synthesis pathway is an important pathway
in the KYDS model, abnormal steroid levels are common in
patients with KYDS.**** In our study, the steroid content in
KYDS model of rats was obviously different from the control
group, whereas SQP group can effectively reverse 5beta-
pregnane-3,20-dione and pregnenolone in steroid hormone
synthesis pathway (P < 0.05).

5. Conclusions

This work mainly emphasizes the establishment of a combina-
tion of lipidomics and UPLC-MS technology to clarify the
characteristics of lipid metabolism and regulation effect of SQP
on KYDS. Based on the current lipidomics platform, we have
characterized 22 potential lipid biomarkers associated with the
KYDS, and found 10 lipid biomarkers closely related to SQP
treating for KYDS. The efficacy of SQP may have significant
related to the regulation of 10 potential biomarkers. Consider

2354 | RSC Adv,, 2020, 10, 2347-2358

these markers as the possible drug targets, perturbations in the
concentration of them may affect the regulation of relevant lipid
metabolic pathways, including ether lipid metabolism, glycer-
ophospholipid metabolism, steroid hormone biosynthesis,
cysteine and methionine metabolism. It reveals that SQP could
play an intervention role in treatments for KYDS. The UPLC-
SYNAPT-G2-Si-HDMS-based lipidomics is a powerful tool to
study the essence of disease syndrome. This study also could
provide the data basis and scientific method for the further
study of SQP therapy for KYDS.
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