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fural-based DOPO-containing co-
curing agent for fire-safe epoxy resins†

Weiqi Xie, ‡a Shiwen Huang,‡a Donglin Tang, a Shumei Liu *ab

and Jianqing Zhao*ab

A furfural-based DOPO-containing flame retardant, 6,60-(((methylenebis(4,1-phenylene))bis(azanediyl))

bis(furan-2-ylmethylene))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (MBF-DOPO), was synthesized

and utilized as a co-curing agent of 4,40-diaminodiphenyl methane (DDM) for fire-safe epoxy

thermosets. For the cured epoxy resin containing 4.0% MBF-DOPO, the limiting oxygen index (LOI)

reached 32.9% (with the V-0 rating in UL-94 test), and the peak heat release rate and total smoke

production values were respectively decreased by 29.3% and 33.6%, compared to pure epoxy resin.

Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) results

confirmed that the furfural-based flame retardant MBF-DOPO promoted the charring formation of the

epoxy matrix, which effectively isolated the gas and heat transfer during combustion and thus enhanced

the fire-safety performance of the epoxy thermosets. This work provides an effective route for

synthesizing a furfural-based flame retardant, which possesses great potential for application in fire-safe

epoxy thermosets.
Introduction

Recently, there has been more and more interest in the prepa-
ration of new materials and chemicals from furfural, which is
a multi-functional compound containing a furan ring and an
aldehyde group.1,2 It is mainly extracted from abundant agri-
cultural residues like plant hulls and corn cobs, thus enabling
furfural to be more feasible as a platform molecule for renew-
able chemicals and materials.3,4 Moreover, with a reactive
aldehyde group, furfural is deemed to be a promising renewable
resource for preparing various chemicals and materials, and
has been used in diverse research elds.5,6

Epoxy resins are a signicant class of polymers and have
been adopted in many different elds (i.e., coatings, adhesive,
and laminate materials) for their excellent chemical resistance
and mechanical properties.7–10 However, epoxy resins have the
drawback of poor re resistance performance, which greatly
limits their application in areas requiring high ame retard-
ancy.11 Various kinds of ame retardants (phosphorus-,
nitrogen- and silicon-containing compounds) were adopted to
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improve the re-safety performance of epoxy resins.12–14 Among
them, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
(DOPO) and its derivatives are eco-friendly ame retardants
with many advantages (e.g., high efficiency and low toxicity).15,16

Recently, the preparation of a furfural-based ame retardant
has aroused extensive attention for sustainable develop-
ment.17–19 In order to meet the urgent needs for achieving
sustainable development, the preparation of DOPO derivatives
derived from furfural is a potential and sustainable strategy.20

However, the preparation of furfural-based DOPO derivatives
for epoxy resins is still in its infancy.

Herein, a novel furfural-based DOPO derivative, 6,60-
(((methylenebis(4,1-phenylene))bis(azanediyl))bis(furan-2-
ylmethylene))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide)
(MBF-DOPO), is prepared and utilized as a co-curing agent of
4,40-diaminodiphenyl methane (DDM) for re-safe epoxy ther-
mosets. It is expected that the ame retardancy from furfural
and DOPO will have outstanding re resistance efficiency.
Moreover, the thermal and mechanical performance of epoxy
thermosets are also evaluated.
Materials and methods
Materials

4,40-Diaminodiphenyl methane (DDM), DOPO, and furfural
were obtained from Aladdin Reagent Co. Ltd., China. DGEBA
(epoxy value ¼ 0.51 mol/100 g) was obtained from SINOPEC
Baling company, China. 1,4-Dioxane and ethanol were obtained
from Guangzhou Chemical Reagent Factory, China.
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Synthesis route of MBF-DOPO.
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Synthesis of MBF-DOPO

DDM (9.91 g, 0.05 mol) and furfural (9.61 g, 0.10 mol) were
added to 200 mL of 1,4-dioxane under a N2 atmosphere. Aer
continuous stirring for 3 h at 80 �C, the system was cooled to
room temperature, followed by the addition of 100 mL of 1,4-
dioxane solution containing DOPO (21.6 g, 0.10 mol) into the
system and then stirred at 55 �C for 12 h. Aer that, the mixture
was transferred to ice water. The crude product was ltered,
washed (three times using ethanol) and vacuum dried (75 �C for
24 h) to give a white powder (the yield was 92.4%). The synthetic
route of MBF-DOPO is depicted in Fig. 1.

Preparation of epoxy networks

The epoxy networks were prepared by the curing reaction of
DGEBA with various weights of DDM and MBF-DOPO (see
Table 1, the molar ratio of the N–H in DDM and MBF-DOPO to
epoxy groups is 1). DGEBA and MBF-DOPO were added to
a ask and stirred at 170 �C for 60 min. Aer that, the system
was cooled to 80 �C, followed by adding DDM. The mixture was
stirred for 20 min, and poured into a mould and degassed at
Table 1 Stoichiometric formulation of the epoxy system

Samplesa DGEBA (wt%) DDM (wt%)

EP-0 79.83 20.17
EP-1.0 79.03 19.97
EP-2.0 78.23 19.77
EP-3.0 77.44 19.56
EP-4.0 76.64 19.36
EP-DOPO-4.0 76.64 19.36
EP-5.0 75.84 19.16

a Sample name: EP-X, X represents the weight percentage of MBF-DOPO i
DOPO in the DOPO/DDM/DGEBA system.

This journal is © The Royal Society of Chemistry 2020
80 �C for 20 min. Aerward, the reaction system was cured at
80 �C for 2 h, 110 �C for 2 h, and 180 �C for 2 h to obtain the
epoxy networks. The preparation route for epoxy network is
depicted in Fig. 2.

Characterization
1H, 13C and 31P nuclear magnetic resonance (NMR) spectra were
collected with a Bruker NMR spectrometer (Billerica, MA, USA)
and deuterated dimethylsulfoxide (DMSO-d6) was used as the
solvent. The infrared spectra (FT-IR) were obtained with
a Vertex70 spectrometer (Bruker, Billerica, MA, USA) using KBr
pellets. Mass spectrometry (MS) spectra were collected on
a maXis impact mass spectrometer (Bruker).

Thermogravimetric analyses (TGA) were conducted using
a TG-209F1 TGA (Netzsch, Selb, Germany) at a heating rate of
10 �C min�1 (N2 atmosphere), and the temperature range is
from 50 to 700 �C. Dynamic mechanical analysis (DMA) was
conducted using a TA instrument (DMA Q800, America) at
a heating rate of 3 �Cmin�1 (from 25 to 230 �C). The dimensions
of the cured samples for measurement were 40 � 10 � 3.0 mm.

Tensile and exural properties were analyzed based on ASTM
D638-08 and ASTM D790-07, respectively, on an Instron-5967
universal electronic testing machine.

UL-94 vertical burning tests were conducted with a UL 94
ame chamber (Fire Testing Technology, UK) according to
ASTM D3801-10 (sample dimension of 125 � 13 � 3 mm).
Limiting oxygen index (LOI) tests were conducted using an
oxygen index instrument (Fire Testing Technology, UK)
according to ASTM D2863-97 (sample dimension of 150 � 6.5 �
3.2 mm). Cone calorimeter tests (CCT) were conducted using
a FTT cone calorimeter according to ISO5660 (sample dimen-
sion of 100 � 100 � 5 mm).

Scanning electron microscopy (SEM) experiments were con-
ducted with a NOVA NANOSEM 430 machine. The sample was
sputter-coated with gold before testing. X-ray photoelectron
spectroscopy (XPS) was conducted using an Axis Ultra spec-
trometer (Kratos, England). Raman spectroscopy was conducted
using a DXR laser Raman spectrometer (532 nm Helium–Neon
line) at room temperature. Thermogravimetry-Fourier trans-
form infrared spectroscopy (TGA-FTIR) tests were conducted
with a STA449C/3MFC/G instrument (Bruker, USA) (N2 atmo-
sphere, heating rate ¼ 20 �C min�1).
MBF-DOPO (wt%) DOPO (wt%) P (wt%)

0 0 0
1.0 0 0.08
2.0 0 0.16
3.0 0 0.24
4.0 0 0.31
0 4.0 0.57
5.0 0 0.39

n the MBF-DOPO/DDM/DGEBA system. EP-DOPO-4.0 represents 4 wt%

RSC Adv., 2020, 10, 1956–1965 | 1957
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Fig. 2 Route for preparation of the cured network MBF-DOPO/DDM/DGEBA.
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Results and discussion
Characterization of MBF-DOPO

The structure of the obtained MBF-DOPO was characterized by
FT-IR, NMR, and MS techniques. The FTIR spectra of furfural,
DDM, DOPO and MBF-DOPO are shown in Fig. S1.† In the FTIR
spectrum of MBF-DOPO, a few peaks disappeared compared
with the spectra of furfural, DDM and DOPO, such as the peak
at 3430 cm�1 (primary amine (N–H) stretching) in the DDM
spectrum, the peak at 2430 cm�1 (P–H stretching) in the DOPO
spectrum and the peak at 1675 cm�1 (C]O stretching) in the
furfural spectrum. Meanwhile, a peak corresponding to the
secondary amine (C–NH) stretching appears at 3320 cm�1 in the
MBF-DOPO spectrum. The above results conrm the successful
synthesis of MBF-DOPO.

The 1H NMR spectra of furfural, DDM, DOPO, and MBF-
DOPO are shown in Fig. 3(a). The characteristic proton of N–
CH (d ¼ 5.19 ppm) is found in the MBF-DOPO spectrum,
following the disappearance of the peak of P–H (d ¼ 8.64 ppm)
1958 | RSC Adv., 2020, 10, 1956–1965
in the DOPO spectrum, the peak of CH]O (d¼ 9.62 ppm) in the
furfural spectrum and the peak of the primary amine (N–H, d ¼
4.79 ppm) in the DDM spectrum. Fig. S2† illustrates the
assignment of peaks in the 1H-NMR spectrum of MBF-DOPO,
1H NMR (DMSO-d6, ppm): d ¼ 2.50 (DMSO), 3.33 (H2O), 3.47
(H16), 5.19 (H12), 6.11 (H11), 6.37 (H10), 6.43–6.74 (H14, H15, H17,

H18), 7.07–7.82 (H1–3, H6–9), 7.94 (H5), and 8.16–8.19 (H4, H13).
The structure of MBF-DOPO is also conrmed by 13C and 31P
NMR and MS spectra (Fig. 3(b)–(d)). In Fig. 3(b), the expected
chemical shis of the C atoms are in good agreement with the
actual chemical shis, 13C NMR (DMSO-d6, ppm): d ¼ 51.2 (C9),
66.8 (C24), 109.8 (C22), 111.2 (C21), 114.1 (C4, C6), 120.4–120.6
(C2, C8), 121.9 (C11), 122.8 (C14), 123.8–126.0 (C12, C15, C19),
128.9–129.1 (C10, C17), 130.8–132.1 (C3, C7), 134.0–134.3 (C16,

C18), 135.9 (C13), 143.5 (C20), 145.2 (C5), and 149.1–149.5 (C1,

C23). The
31P NMR spectrum of MBF-DOPO shows two peaks at

27.4 and 29.3 ppm, which are due to the chiral structure of the P
atoms in MBF-DOPO.21 The mass spectrometry (MS) spectrum
shows an [M + Na+] ion peak at m/z 809.1944, suggesting
This journal is © The Royal Society of Chemistry 2020
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Fig. 3 (a) 1H NMR spectra of furfural, DDM, DOPO, and MBF-DOPO. (b) 13C-NMR, (c) 31P-NMR, and (d) HRESI-MS spectra of MBF-DOPO.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ja

nu
ar

y 
20

20
. D

ow
nl

oa
de

d 
on

 1
/3

1/
20

26
 1

:2
0:

04
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
a molecular formula of C47H36N2O6P2. All these results fully
conrm the successful synthesis of MBF-DOPO with a facile and
environmental-friendly route. The TGA curves of MBF-DOPO
and DOPO (N2 and air atmosphere) are shown in Fig. 4. As
seen from Fig. 4(a), DOPO possesses an initial decomposition
temperature (T5%) of 217.7 �C under a N2 atmosphere, whereas
Fig. 4 TGA curves of MBF-DOPO and DOPO under a (a) N2 and (b) air

This journal is © The Royal Society of Chemistry 2020
MBF-DOPO exhibits a T5% of 312.0 �C, suggesting that MBF-
DOPO possesses a higher thermal stability compared with
DOPO. The residue (at 700 �C) of MBF-DOPO is 38.9% under
a N2 atmosphere, which is far higher than DOPO (1.73%).
Similarly, in air atmosphere (Fig. 4(b)), MBF-DOPO shows
a higher T5% (336.7 �C) and residue (at 700 �C, 41.8%) compared
atmosphere.

RSC Adv., 2020, 10, 1956–1965 | 1959
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Fig. 5 DSC thermograms of (a) EP-0 and (b) EP-4.0 cured at varying heating rates.

Fig. 6 Plot of ln(b/Tp
2) versus 1/Tp of EP-0 and EP-4.0 according to

Kissinger's method.
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with DOPO. The TGA results indicate that the furfural-based
compound MBF-DOPO possesses excellent charring ability
associated with high thermal stability, which is mainly caused
by the thermally-stable benzene and furan ring structures in
MBF-DOPO.

Curing behavior of the MBF-DOPO/DDM/DGEBA system

In the MBF-DOPO/DDM/DGEBA system, the main reaction for
the curing process is the ring opening of the epoxy by a reaction
with the amine groups (primary or secondary amine) of DDM
and MBF-DOPO.21 The nonisothermal curing kinetics of the
MBF-DOPO/DDM/DGEBA system are studied using DSC at
various heating rates (2.5, 5, 10, 15 and 20 �C min�1) and are
depicted in Fig. 5. Kissinger's method is utilized for the calcu-
lation of the apparent activation energy,22

ln

 
b

Tp
2

!
¼ ln

�
AR

Ea

�
� Ea

RTp

(1)

where b, R, and Tp respectively represent the heating rate, the
ideal gas constant, and the exothermic peak temperature. Ea
and A represent the apparent activation energy and the pre-
exponential factor, respectively. Table S1† lists the Tp values
of the EP-0 and EP-4.0 systems cured at various heating rates.
According to eqn (1), the curing activation energy (Ea) of EP-
0 and EP-4.0 is obtained from the linear plot of ln(b/Tp

2)
versus 1/Tp plot (Fig. 6), as listed in Table S2.† It can be found
that the EP-4.0 curing system possesses a lower Ea
(47.3 kJ mol�1) than the EP-0 curing system (50.4 kJ mol�1),
indicating that the introduction of MBF-DOPO in epoxy resins
can lower the activation energy of the system and accelerate the
crosslinking reaction.

Fire-safety performance

The re-safety performance of cured resins is assessed by LOI
and UL-94 vertical burning (UL-94) tests (see Table 2). The pure
epoxy resin EP-0 possesses the LOI value of 23.5% with melt-
dripping and no rating in the UL-94 test, and the LOI value
increases with the increase of the MBF-DOPO content in the
epoxy matrix. By adding 4.0 wt% of DOPO to the epoxy resin, EP-
1960 | RSC Adv., 2020, 10, 1956–1965
DOPO-4.0 shows a LOI value of 31.4% and passes the UL-94 V-1
rating. Compared with EP-DOPO-4.0, EP-4.0 (containing
4.0 wt% of MBF-DOPO) shows better re-safety properties with
a V-0 rating of the UL-94 test and increases its LOI value to
32.9%. The results show that MBF-DOPO possesses a higher
ame-retardant efficiency for epoxy resins compared with
DOPO. It may be deduced that the unique combination of
phosphorus and nitrogen atoms in MBF-DOPO plays an
important role in enhancing the ame-retardant efficiency of
MBF-DOPO, and the synergistic effect between the phosphorus
and nitrogen elements endows MBF-DOPO with a high ame-
retardant performance in both the gas phase and condensed
phase.

The re-safety performance of EP-0 and EP-4.0 is further
evaluated using the cone calorimeter test (CCT) (Fig. 7 and
Table S3†). As can be seen, the time to ignition (TTI) value of EP-
4.0 is lower than EP-0, which is due to the early decomposition
of unstable phosphorus-containing structures from MBF-
DOPO. The peak of the heat release rate (pHRR) of EP-4.0 is
decreased to 680 kWm�2, which is 29.3% lower than that of EP-
0 (962 kW m�2). Similarly, EP-4.0 possesses a 12.6% reduction
in the total heat release (THR) value compared to EP-0. The
This journal is © The Royal Society of Chemistry 2020
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Table 2 UL-94 vertical burning and LOI test result of cured MBF-DOPO/DDM/DGEBA

Samples P (wt%) LOI (%)

UL-94

t1 + t2 (s) Dripping Rating

EP-0 0 23.5 � 0.3 Lasting burning Yes NR
EP-1.0 0.08 26.2 � 0.2 78.5 � 3.1 No V-2
EP-2.0 0.16 28.3 � 0.3 35.6 � 1.7 No V-1
EP-3.0 0.24 31.2 � 0.3 19.5 � 3.4 No V-1
EP-4.0 0.31 32.9 � 0.2 7.5 � 2.1 No V-0
EP-DOPO-4.0 0.57 31.4 � 0.4 28.6 � 4.7 No V-1
EP-5.0 0.39 33.5 � 0.3 5.2 � 1.2 No V-0
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above results further verify the good re resistance performance
of MBF-DOPO for the epoxy matrix. As can be seen in Fig. 7(c),
the residual mass of EP-4.0 aer the cone calorimeter test is
17.9 wt%, and is far higher than that of EP-0 (8.6 wt%), which
suggests that the introduction of MBF-DOPO may promote the
char forming during combustion. The smoke production from
combustion is a very signicant indicator for the re-safety
properties of epoxy resins. In Fig. 7(d), compared to EP-0, the
total smoke production (TSP) value of EP-4.0 is signicantly
decreased by 33.6%, suggesting that the introduction of MBF-
DOPO helps to form compact and protective char layers,
Fig. 7 (a) HRR, (b) THR, (c) residual mass, and (d) TSP curves of EP-0 an

This journal is © The Royal Society of Chemistry 2020
which act as protective barriers to suppress the smoke
production of the epoxy matrix during combustion.

TG-FTIR analysis

TG-FTIR is utilized to understand the gas-phase ame-retardant
effect of MBF-DOPO for epoxy resins by detecting the gases
released from the thermal decomposition of EP-0 and EP-4.0.
The FTIR spectra of gases obtained from the thermal decom-
position of EP-0 and EP-4.0 at the initial degradation tempera-
ture (370 �C for EP-4.0, 390 �C for EP-0) and the maximum
degradation temperature (390 �C for EP-4.0, 405 �C for EP-0) are
d EP-4.0.

RSC Adv., 2020, 10, 1956–1965 | 1961
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Fig. 8 FTIR spectra of the pyrolysis products of EP-0 and EP-4.0 at (a) the initial and (b) maximum degradation temperatures.
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presented in Fig. 8. As can be seen, the gaseous products of EP-
4.0 and EP-0 are identied by the absorptions at 1170 and
1251 cm�1 (ethers), 1598, 1503 and 1332 cm�1 (aromatic
substances), 2343 and 2302 cm�1 (CO2), 3037 and 2960 cm�1

(hydrocarbons), and 3658 cm�1 (phenols).23,24 However, unlike
Fig. 9 SEM photographs of external ((a) EP-0, (b) EP-4.0) and internal c

1962 | RSC Adv., 2020, 10, 1956–1965
EP-0, there is a new peak in the spectrum of EP-4.0, belonging to
P–O–P (1057 cm�1),25 which is generated from the decomposi-
tion of MBF-DOPO in EP-4.0 during combustion, indicating that
the phosphorus-containing gaseous products play an important
role in the gas-phase ame-retardant effect of MBF-DOPO.
har layers ((c) EP-0, (d) EP-4.0) after CCT.

This journal is © The Royal Society of Chemistry 2020
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Fig. 10 FT-IR spectra of char residues after CCT.
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Char analysis

The SEMmorphology of the char residues aer CCT is depicted
in Fig. 9. For EP-0, both the external and internal char layers
exhibit a cracked char residue with open holes. The external
char layer of EP-4.0 presents a compact and homogeneous
structure without broken bubbles, and the internal char layer
shows a continuous and skeletal morphology with some small
pores. The formation of the strong char layer in EP-4.0 inhibits
the transmission of heat and gas during combustion, which
endows EP-4.0 with excellent re-safety performance.

The chemical structures of the char residue are measured
with the FTIR technique. As shown in Fig. 10, both EP-0 and EP-
4.0 have a peak at 3452 cm�1 (O–H or N–H stretching) and
a peak at 1631 cm�1 (carbonized compound stretching).
Compared with EP-0, two new characteristic peaks occur at
1103 cm�1 (P–O–C stretching) and 1280 cm�1 (P]O stretching)
in the spectrum of EP-4.0, showing that the char residue of EP-
4.0 contains phosphorus- and nitrogen-containing compounds,
which contribute to the charring of the epoxy matrix and lead to
a compact and intumescent char with highly carbonized
aromatic networks. The element composition of the char
Fig. 11 (a) TGA and (b) DTG curves of EP-0 and EP-4.0 under N2 condi

This journal is © The Royal Society of Chemistry 2020
residue aer CCT is analyzed by XPS (see Table S4†). Both EP-
0 and EP-4.0 contain C, O and N elements. Compared to EP-0,
the P element is found in EP-4.0 with a content of 0.32 wt%,
which agrees with the FT-IR results and further conrms that
MBF-DOPO plays an important role in the condensed phase,
which forms a phosphorus-rich char layer to inhibit the heat
and gas transfer during combustion.
Thermal and mechanical properties

TGA is used for assessing the thermal stability of EP-0 and EP-
4.0 under N2 (Fig. 11) and air conditions (Fig. 12), the related
data are shown in Table S5.† As shown in Fig. 11(a), in N2

atmosphere, EP-0 and EP-4.0 have only one weight loss stage.
Compared with EP-0, EP-4.0 has a slightly lower T5% and
maximum decomposition temperature (Td,max) due to the less
stable structures (P–O–C and P]O) from MBF-DOPO in EP-4.0.
In Fig. 11(b), the maximum decomposition rate (Rmax) of EP-4.0
is 27.4% min�1, which is far lower than EP-0 (36.5% min�1),
suggesting that MBF-DOPO has a good inhibition effect on the
thermal degradation of the epoxy matrix. The residual mass (at
700 �C) of EP-0 is 14.7%, whereas EP-4.0 is increased to 21.8%.
The above results show that although the phosphorus-
containing groups in the MBF-DOPO molecule decompose at
a relatively low temperature at the early and middle stages of
thermal degradation, the phosphorus-containing compounds
formed by MBF-DOPO can inhibit the thermal degradation of
epoxy matrix at high temperatures and promote the formation
of a stable char residue, which leads to a high residual mass and
ame retardancy. Under air atmosphere, as shown in Fig. 12,
both EP-0 and EP-4.0 possess two degradation stages. The rst
degradation stage corresponds to the degradation of the epoxy
matrix, the second degradation process corresponds to the
further oxidation of char residues. Similarly, the introduction of
MBF-DOPO helps to catalyze the degradation of the epoxy
thermoset under air conditions, which leads to the decrease of
EP-4.0 in T5% and Td. The early degradation of phosphorus-
containing groups in MBF-DOPO is able to generate
phosphorus-based acid, which is helpful to promote the char
tions.

RSC Adv., 2020, 10, 1956–1965 | 1963
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Fig. 12 (a) TGA and (b) DTG curves of EP-0 and EP-4.0 under air conditions.

Fig. 13 (a) Storage modulus and (b) tan d curves of EP-0 and EP-4.0.
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forming of the epoxy matrix. As shown in Fig. 12(b), the Rmax

(21.8% min�1) of EP-4.0 is also far lower than that
(31.3% min�1) of EP-0 under air atmosphere, suggesting that
the phosphorus-based acid formed by MBF-DOPO can also
decrease the degradation rate of the epoxy networks.

DMA is utilized for evaluating the thermomechanical
performance of EP-0 and EP-4.0. The storage modulus (E0) and
loss factor (tan d) curves are depicted in Fig. 13, the related data
are shown in Table S6.† EP-4.0 possesses higher E0 values (3.04
GPa) than EP-0 (2.89 GPa) at room temperature (30 �C), indi-
cating that the rigid structures (phosphaphenanthrene and
furan structure) in MBF-DOPO enhance the stiffness of the
epoxy thermosets. In Fig. 13(b), EP-4.0 possesses a Tg (peak
temperature in tan d curve26) of 159.5 �C, which is only 2.7 �C
Table 3 Tensile and flexural properties of EP-0 and EP-4.0

Samples Tensile strength (MPa) Tensile modulus (GP

EP-0 71.8 � 2.1 2.89 � 0.11
EP-4.0 70.2 � 1.9 3.07 � 0.09

1964 | RSC Adv., 2020, 10, 1956–1965
lower than that of EP-0. Thus, EP-4.0 maintains the outstanding
thermal stability of EP-0. The cross-link densities of EP-0 and
EP-4.0 are calculated based on the literature,27,28 as listed in
Table S6.† The EP-4.0 shows a cross-link density of 4.99 �
103 mol m�3, which is slightly lower than that of EP-0, sug-
gesting that the introduction of MBF-DOPO leads to a slight
decrease of the cross-link density of the epoxy resins.

The mechanical properties of EP-0 and EP-4.0 are evaluated
(Table 3). Compared to EP-0, the tensile and exural strengths
of EP-4.0 are respectively decreased by 2.2% and 1.6%. These
differences are mainly due to the lower cross-link density of EP-
4.0. Meanwhile, the tensile and exural moduli of EP-4.0 are
respectively increased by 6.2% and 8.3%, which is mainly
a result of themore rigid structures (e.g., phosphaphenanthrene
a) Flexural strength (MPa) Flexural modulus (GPa)

105.5 � 2.2 2.78 � 0.12
103.8 � 3.1 3.01 � 0.10

This journal is © The Royal Society of Chemistry 2020
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and furan structure) in MBF-DOPO.29–31 In summary, the small
content of MBF-DOPO has little impact on the mechanical
performance of the EP-0 network.

Conclusions

Herein, a new furfural-based DOPO-containing ame retardant,
namely 6,60-(((methylenebis(4,1-phenylene))bis(azanediyl))bis(-
furan-2-ylmethylene))bis(dibenzo[c,e][1,2]oxaphosphinine 6-
oxide) (MBF-DOPO), was successfully prepared and utilized as
a co-curing agent of 4,40-diaminodiphenyl methane (DDM) for
re-safe epoxy thermosets. For the epoxy resin sample con-
taining 4.0% MBF-DOPO, the limiting oxygen index (LOI)
reached 32.9% (with a V-0 rating in the UL-94 test). Besides this,
the mechanical and thermal performance of EP-4.0 were well
maintained. Hence, MBF-DOPO has great potential for appli-
cation in re-safe epoxy thermosets. This work provides an
effective and facile strategy to prepare a furfural-based DOPO-
containing ame retardant.
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