New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status

Imtiaz Khan, a,b Sumera Zaib c and Aliya Ibrar d

Heterocycles are among the well-established classes of compounds, constituting a wide range of organic molecules. These structural motifs not only have a dominant presence in a wide variety of drugs but are also equally present as ubiquitous fragments of numerous vitamins, biologically active natural products, biomolecules, and synthetic drug candidates. Their key role in medicinal chemistry in the design of safe, effective, and efficacious drug molecules gives an impetus to the scientific community to access heterocyclic entities from robust chemical reactions. In this review, we summarize a diverse range of synthetic methods employing alkynoates as key starting materials to furnish useful bioactive heterocyclic frameworks (nitrogen, oxygen, sulfur, fused- and hetero-spirocycles), thus offering new opportunities and expanding the toolbox of synthetic chemistry reactions under transition-metal-free conditions. Several reaction parameters such as the use of easily available starting materials, commercially accessible reagents, and ease of synthesis (moderate temperatures, short reaction times, high yields, limited by-products) are included in the discussion alongside the reaction scope and limitations as well as mechanistic insights. The application of these methodologies in the synthesis of natural products and pharmaceuticals has also been discussed. We hope that the diverse utilities of alkynoates in the delivery of various heterocycles will fulfill the objectives of medicinal chemists in overcoming the formidable challenges associated with drug discovery and development.

1. Introduction

Heterocycles are ubiquitous fragments of numerous natural products, pharmaceuticals, designed bioactive drug candidates and agrochemicals. 1,2 Their significant prevalence in drug candidates improves the solubility and reduces the lipophilic character of the drug molecules. 3,4 In the drug discovery field, heterocyclic entities demonstrate a wide range of biological activities such as anti-inflammatory, antitumor, antidepressant, antibacterial, anti-HIV, antimalarial, antimicrobial, antiviral, and anticancer activities. In addition, these heterocycles also inhibit various enzymes (aldehyde/aldose reductase, α-glucosidase, α-amylase, cholinesterase, monoamine oxidase, urease, β-glucuronidase, alkaline phosphatase) for effective lead identification and the treatment of several chronic disorders. 5-26 These heteroarenes are also well-recognized core structural units in organic chemistry 2 and materials sciences. 37 Fig. 1 shows the representative examples of heterocycles reported in the literature and included in the current review/discussion.

Recognizing the well-established significance of heterocycles in synthetic and medicinal chemistry as well as in the drug discovery arena, their easy, facile and practical synthesis remains a continuous challenge. In this pursuit, several efficient protocols have been established using transition-metal catalysts such as silver, 28,29 gold, 30-33 copper, 34-36 cobalt, 37 iron, 38-40 palladium, 41,42 ruthenium, 43-45 mercury, 46 and rare-earth metals. 47 Several specific transformations such as cycloaddition reactions, 48-52 cycloisomerization reactions, 53,54 Sonogashira reaction, 55,56 C-H bond functionalization processes, 57-59 metathesis reactions, 60-62 and multi-component reactions, 63-65 have also been reported to produce heterocyclic structures. In addition, various starting materials such as azides, 66-68 α-oxoesters, 69 isocyanides, 70-73 aryloxyls, 74 and diazo compounds, 75-76 have also been employed to deliver a range of heterocycles. Despite these fascinating developments, the generation of molecular/modular complexity in

aDepartment of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK. E-mail: imtiaz.khan@manchester.ac.uk
bManchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
cDepartment of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
dDepartment of Chemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590, Pakistan
the pharmaceutical industry with good atom- and step-economy and broad functional group tolerance from readily available starting materials and commercial feedstock continues to be a driving force for synthetic chemists to develop sustainable methods. In addition, transition-metal-free reactions offer several advantages over transformations involving transition-metal catalysts. For instance, transition-metal-catalyzed protocols are often very sensitive to air and moisture and require very toxic and expensive catalysts and non-commercial supporting ligands. The removal of trace amounts of transition-metal residues from the desired products is quite costly and challenging while crucial, especially in the pharmaceutical industry. In many cases, special additives and cocatalysts are also critical to promote the efficiency and selectivity of transformations. Finally, the large consumption of transition-metal catalysts does not indeed meet the requirement of sustainable synthesis. Therefore, alternative approaches to form various bonds particularly in heterocyclic synthesis under transition-metal-free and generally practical and sustainable conditions are highly desirable obviating the need for metal catalysts, ligands, additives and cocatalysts.

In the present review, we summarize and showcase the utility of transition-metal-free approaches for the construction of a variety of heterocycles. These easy, practical and efficient synthetic methods involve the use of alkynoates as cheap, readily accessible and simple feedstock. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on the carbon–carbon triple bond posed by electron-withdrawing groups. A range of chemical reactions could be exploited involving the reactivity of zwitterions derived from activated acetylenic esters with nucleophilic trivalent phosphines such as Wittig reactions, annulations, and cycloadditions. In addition, the reaction between trivalent phosphorus compounds and acetylenic esters in the presence of organic acids such as CH acids, NH acids, OH acids, or SH acids to give a vinyl trivalent phosphonium cation as the important intermediate has also been studied extensively. Other carbon-, nitrogen-, or sulfur-based nucleophiles could be employed as Michael donors while alkynoates act as Michael acceptors. Alkynoates can also undergo isomerization into the corresponding allenes under basic conditions which could be utilized in conjugate addition. Meanwhile, the unusual reactivity of the isocyanide functionality with alkynoates (DMAD) offers opportunities for the generation of complex and diverse drug-like small heterocyclic compounds using the multi-component reaction (MCR) methodology. Thus, this review will consider the use of the triple bond

Imtiaz Khan

Imtiaz Khan received his PhD degree from The University of Nottingham, United Kingdom under the direction of Professor Hon Wai Lam where he developed new synthetic methodologies involving C–H functionalization of inert bonds for the synthesis of carbo- and heterocycles. Later, he worked as a postdoctoral research associate in the same group for one year. He then spent two years (2016–2018) as a Leverhulme Trust research fellow at Cardiff University, before joining The University of Manchester, United Kingdom in 2018. He has a good contribution towards the scientific and academic community with numerous research publications in highly prestigious international journals and various presentations in both national and international conferences. He has published over 60 peer-reviewed articles and reviews with an impact factor of >250 that have been cited over 1800 times. He is serving as an editorial board member of several journals including Current Organic Chemistry, Current Organocatalysis, Mini-Reviews in Medicinal Chemistry, and Anti-Cancer Agents in Medicinal Chemistry. His research interests include the development of novel synthetic methodologies for the efficient synthesis of biologically active heterocycles and carbocycles, frustrated Lewis pair (FLP) chemistry and integrated chemo- and biocatalysis.

Sumera Zaib

Sumera Zaib received her PhD degree in biochemistry from Hazara University, Mansehra, Pakistan. She has also been a visiting DAAD research fellow at Bonn University, Germany. She is currently serving as an assistant professor in the Department of Biochemistry at the University of Central Punjab, Lahore, Pakistan. She has produced >80 research publications and reviews in international journals of high impact with an h-index of 20 and an impact factor of >250. She is also the recipient of the research productivity award from the Pakistan Council of Science & Technology (PCST) in recognition of her contribution to the scientific field. Her research interests include the identification of potent structural leads of biological importance.
directly attached to an electron-withdrawing ester group and its transformation into double or single bonds. The mechanistic details of the selective transformations as well as the postsynthetic manipulations (Suzuki–Miyaura cross-coupling, Buchwald–Hartwig amination, oxidation and hydrogenolysis reactions among many others) have also been included. The robust use of these methods in the synthesis of natural products, pharmaceuticals and bioactive drug candidates has also been discussed. Selected examples of heterocycles accessed by using DMAD and DEAD as coupling units have been reviewed previously; thus they have not been discussed exhaustively here and are excluded from the scope of this review except a few representative examples demonstrating the diversity of transformations.

2. Synthetic methods

2.1. Synthesis of nitrogen-containing heterocycles

Nitrogen-containing heteroaromatic skeletons are well-recognized structural motifs of numerous pharmaceuticals, natural products and bioactive drug molecules. These heterocyclic
entities also find several useful applications in organic dyes for solar cells and as important building units in organic chemistry. Therefore, environmentally benign and green synthetic approaches to access these N-heterocycles need unlocking under mild reaction conditions.

2.1.1. Synthesis of pyrroles. Anary-Abbasinejad and co-workers developed a facile one-pot multi-component approach to access highly functionalized pyrroles (Scheme 1). The reaction was performed using dialkyl acetylenedicarboxylates, aromatic amines, triphenylphosphine, and aryglyoxals in dichloromethane at room temperature. Various amines and aryglyoxals were tested to broaden the reaction scope and the anticipated products were furnished in good yields.

Mantellini and co-workers established a facile Lewis acid-catalyzed approach for the construction of highly functionalized pyrroles from α-aminohydrazones and dialkyl acetylenedicarboxylates (Scheme 3). α-Aminohydrazones were in turn synthesized from primary amines and 1,2-diaza-1,3-butadienes via Michael addition. Initially, various Lewis/Brønsted acid catalysts were screened and the results revealed that Zn(OTf)₂ alongside ZnCl₂, Zn(TfO)₂, In(TfO)₃, Yb(TfO)₃, InCl₃ and InBr₃ produces the best conversions; however, in the case of Zn(OTf)₂, the reaction time was 0.5 h. Using this catalyst, various pyrrole derivatives were synthesized. This methodology was expedient due to the use of simple and easily accessible starting materials like 1,2-diaza-1,3-butadienes, as well as the mild experimental conditions.

Favi and co-workers introduced a new acid-catalyzed sequential three-component protocol for the rapid assembly of functionalized pyrroles from amines, alkynoates and 1,2-diaza-1,3-dienes (Scheme 4). The reaction proceeds in a regioselective manner with the formation of an enamino ester intermediate followed by Michael addition and subsequent azaheterocyclization. After extensive screening of reaction parameters, suitable conditions were identified. The substrate scope was examined using a model system. Various amines,
alkynoates and 1,2-diaza-1,3-dienes were tolerated to afford the desired pyrrole derivatives. In the case of aliphatic amines, the acid-promoted enamine–azoene cyclization failed due to the reduced nucleophilicity of the amine nitrogen atom. Moreover, DMAD, DEAD, ethyl propiolate and ethyl 3-phenylprop-2-ynoate were successfully coupled delivering the anticipated products in moderate to good yields. The reaction conditions also tolerated various 1,2-diaza-1,3-dienes with a variety of different functional groups.

In another study, Das and co-workers98 demonstrated the synthesis of polysubstituted pyrrole derivatives 25 from an iodine-catalyzed one-pot four-component process involving aldehydes 21, amines 22, dialkyl acetylenedicarboxylates 23 and nitromethane 24. The corresponding tetrasubstituted pyroles were isolated in good yields (Scheme 5). Using 20 mol% of molecular iodine, the scope of pyrrole formation was examined. A range of aldehydes, amines, and dialkyl acetylenedicarboxylates were tested. Both aromatic and heteroaromatic aldehydes with various functional groups (electron-rich, electron-deficient) participated well in the reaction. However, aliphatic aldehydes remained reluctant to produce the corresponding pyroles.

Building on their previous work,96 Mantellini and co-workers99 demonstrated the synthesis of pyrrole derivatives 32 (Scheme 6). The reaction sequence involves the generation of α-aminohydrazones 28 by Michael addition of primary amines 26 to 1,2-diaza-1,3-dienes 27 followed by the coupling with dialkyl acetylenedicarboxylates 29 to produce α-(N-enamino)-hydrazones 30, 31 which were cyclized to the corresponding pyroles 32. α-Amino ketones were replaced with α-aminohydrazones in this methodology. Among the different Lewis acids screened for this transformation, Zn(OTf)2 (20 mol%) produced the best results in dichloromethane under reflux. In general, this method was widely applicable for the construction of more complex systems using mild conditions from stable and easily accessible building blocks.

Sayyed-Alangi and co-workers100 synthesized a range of functionalized pyrroles 36 from a one-pot multi-component methodology using dialkyl acetylenedicarboxylates 33, primary amines 34 and propiolates 35 in the presence of N-methylimidazole in water at room temperature (Scheme 7).
The products were furnished in good yields. The easy availability of the starting materials and their cyclization to pyrrole compounds in water were the key features of this procedure.

Yan and co-workers101 also utilized a one-pot domino methodology to prepare pentasubstituted pyrroles \textbf{40} from amines \textbf{37}, acetylenedicarboxylates \textbf{38}, and 3-phenacylideneoxindoles \textbf{39} (Scheme 8). Initially, \textit{p}-methylaniline was treated with dimethyl acetylenedicarboxylate to furnish the \textit{β}-enamino ester which was coupled with 3-\textit{p}-chlorophenacylideneoxindole in refluxing acetic acid to afford the corresponding pentasubstituted pyrrole in 74\% yield. Later, the scope and versatility of the domino reaction were explored with differently substituted amines. Benzylamine, \textit{α}-phenylethylamine and \textit{β}-phenylamines were used. In addition, 3-phenacylideneoxindoles incorporating both electron-donating (methyl, methoxy) and inductively electron-withdrawing (chloro) substituents participated efficiently under the optimized set of reaction conditions. All the reactions provided smooth cyclization to nitrogen heterocycles in good yields. It is interesting to note that isatinyl substituted products obtained using this method are unusual because under normal circumstances the reaction of isatin and 3-isatinylidene compounds usually provides spirocyclic oxindoles.102

Madabhushi and co-workers103 reported a facile approach for the preparation of fully functionalized pyrrole derivatives \textbf{43} from amine \textbf{41} and dimethyl acetylenedicarboxylate \textbf{42} using ceric(\textit{iv}) ammonium nitrate (Scheme 9). The reaction parameters were screened to obtain the optimal conditions. The results indicated that using equimolar quantities of all the starting materials, the desired product was isolated in 81\% yield in ethanol under reflux conditions. Under the optimal conditions, the substrate scope was investigated. Various substituents (methoxy, methyl, fluoro, chloro) on the aryl ring of glyoxal as well as heteroarylglyoxal worked well alongside aliphatic substituents. Similarly, anilines containing electron-rich and electron-deficient substituents were also well endured and the corresponding pyrrole products were obtained in good yields. However, the reaction showed no progress when methyl (or ethyl) 2-cyanoacetate was employed with phenylglyoxal monohydrate, 4-methylaniline, and dimethyl but-2-ynedioate under the optimized reaction conditions.

Based on the literature reports (Shu \textit{et al.}, 2013)105 and the results obtained from this domino process, the proposed mechanism is illustrated in Scheme 11 which starts with the addition of aniline \textbf{45} to alkyne \textbf{46} to generate intermediate \textbf{49}. Simultaneously, Knoevenagel condensation of aryglyoxal monohydrate \textbf{44} and malononitrile \textbf{47} produced intermediate \textbf{50}. Michael addition of \textit{β}-enamino ester \textbf{49} to intermediate \textbf{50} afforded \textbf{51}, which was cyclized via intramolecular nucleophi-
lic addition to deliver intermediate 52. Another intramolecular cyclization of 52 produced 53, which tautomerized to the more stable intermediate 54. Finally, a ring-opening reaction of intermediate 54 furnished the polysubstituted pyrrole 48.

Furthermore, density functional theory (DFT) calculations were performed at the B3LYP/6-31G level of theory for intermediates 53 and 54 and the results suggested that intermediate 54 could be easily transformed into the more stable pyrrole product 48.

Liu and co-workers described a tandem cyclization for the construction of heterocycles through the formation of new carbon–carbon and carbon–nitrogen bonds (Scheme 12). 1,2,4-Trisubstituted 1H-pyrroles 57 were synthesized from amines 55 and alkynoates 56 in the presence of tert-butyl perbenzoate (TBPB). A model reaction was used to develop the optimized reaction parameters using dimethyl but-2-ynedioate and p-toluidine in dioxane at 100 °C in the presence of TBHP. Dimethyl 1-p-tolyl-1H-pyrrole-2,4-dicarboxylate was obtained in 92% yield when 2.3 equivalents of TBHP was employed in dioxane. Using these conditions, the substrate scope was investigated. A diverse range of alkynoates and amines were coupled to generate heterocyclic products. The presence of electronically different substituents on the amine ring imparted a significant effect on the yield of the corresponding product. Substrates bearing electron-rich groups provided superior results whereas those bearing strongly electron-deficient (NO₂) groups did not show reactivity. Aliphatic amines also successfully delivered the corresponding pyrroles in excellent yields. On the other hand, diethyl but-2-ynedioate produced the desired pyrrole in 79% isolated yield. However, other amines such as ethyl but-2-ynoate, ethyl 3-phenylpropiolate, and methyl oct-2-ynoate did not produce any product under the optimized reaction conditions.

Mehrabi and co-workers developed a metal-free one-pot two-step synthetic protocol involving alkyl acetoacetates 58, dialkyl acetylenedicarboxylates 59 and amines 60 to access a range of pentasubstituted pyrroles 61 (Scheme 13). The reaction sequence produces 4-hydroxypenta-1,3-diene-tricarboxylates in the first step followed by cyclization with amines. The heterocyclic products were isolated in excellent yields. The reaction parameters were mainly optimized for the second step where the solvent, temperature, time, and amount of acid were screened. Although 4-hydroxypenta-1,3-diene-tricarboxylates underwent cyclization successfully at room temperature, a slight increase in the yield was noticed under reflux conditions. With an optimized set of reaction conditions, the possibility of using various starting materials to produce functionalized pyrroles was explored. The results indicated that the reactions proceeded smoothly to furnish the pyrrole product in good to excellent yields. Aromatic amines bearing different substituents as well as alkyl amines were successfully coupled to 4-hydroxypenta-1,3-diene-tricarboxylates which were generated from various alkyl acetoacetates and dialkyl acetylenedicarboxylates.

2.1.2. Synthesis of dihydropyrroles. Jiang and co-workers demonstrated a multi-component methodology to
construct tetra- and pentasubstituted dihydropyrroles 66, 67 in good yields (Scheme 14). This process involves but-2-yne diado-
eates 62, amines 63, 64, and aldehydes 65 as starting materials. Various parameters including solvents, additives, reactant ratios, and temperature were investigated for the identification of the best reaction conditions. Using different starting materials, a range of tetrasubstituted dihydropyrroles were syn-
thesized, no matter whether the same or different primary or secondary amines of aliphatic or aromatic nature were employed. Different substituents (methyl, fluoro, bromo) at the aryl ring were successfully tolerated.

Similarly, some efforts were made to optimize the reaction conditions to produce pentasubstituted dihydropyrroles 67 using alkynoates 62, amines 63, 64 and aldehydes 65; however, the order of the addition of reactants was changed. Again, the compatibility of different functional groups was tested and the corresponding dihydropyrole products were isolated in good to excellent yields (Scheme 15).

Two different mechanistic approaches were considered for the formation of tetrasubstituted and polysubstituted dihy-
pyrroles. The first one comprises the domino hydroamination/nucleophilic addition/amidation–cyclization sequence (Scheme 16), whereas the second one involves the hydroamination/amidation/intramolecular cyclization/imine-enamine tautomeration sequence (Scheme 17).

Marinetti and co-workers investigated a [3 + 2] cyclization reaction between allenoates 77 or 2-butynoates 78 and imines 79 using a phosphine catalyst to deliver pyrrolines 80 (Scheme 18). The effect of imine protecting groups on the enantioselectivity was explored by comparing N-Ts- and N-DPP-imines. Under the optimized reaction conditions, good conversions were obtained when N-DPP-imines were used. In addition, the use of a DPP protecting group remains advantageous over the Ts group due to its easy deprotection. In the asymmetric version, good yields and enantioselectivities were observed using the (S)-81 catalyst.

Scheme 14 Multi-component synthesis of polysubstituted dihydropyrroles.

Scheme 15 Synthesis of multisubstituted dihydropyrroles from alkynoates, amines and aldehydes.

Scheme 16 Proposed mechanism for the formation of polysubstituted dihydropyrroles 66.
2.1.3. Synthesis of dihydropyridines. Jiang and co-workers110 developed a new L-proline-catalyzed one-pot four-component reaction methodology for the facile synthesis of densely functionalized 1,4-dihydropyridines86 from alkynoates82, amines83, 1,3-dicarbonyl compounds84 and aldehydes85 (Scheme 19). The process operates under environmentally benign conditions involving various reactions such as hydroamination/Knoevenagel condensation/Michael-type addition/intramolecular cyclization and delivers 1,4-dihydropyridines in moderate to good yields. After screening various catalysts, L-proline was identified as the optimal. Other reaction parameters including solvents, reactant ratios, and temperature were also considered to obtain the optimized set of conditions. The scope and diversity of 1,4-dihydropyridines were realized where the different electronic nature of the functional groups on the aryl ring of the amines showed a minor impact on the reactivity. As such, electron-rich substituents showed preference over electron-deficient systems producing the anticipated products in higher yields. Sterically hindered amines were also effective coupling partners alongside aliphatic primary amines that showed higher reactivity than the aromatic ones. A limited diversification around the other coupling partners was also investigated.

The authors proposed the reaction mechanism which starts with the activation of aldehyde carbonyl by hydrogen bonding from L-proline and subsequent attack of the proline nitrogen on the activated carbonyl to generate intermediate87 which on Knoevenagel condensation with 1,3-dicarbonyl compound84 furnished88 Knoevenagel product89 was obtained with the regeneration of L-proline.111–113 Meanwhile intermediate90 was formed by the addition of amines to alkynes which on Michael-type addition to89 furnished intermediate91. The tautomerization of91 to92 followed by an intramolecular cyclization provided86 (Scheme 20).

Yan and co-workers114 established a one-pot three-component methodology incorporating aldehydes93, aromatic amines94 and acetylenedicarboxylates95 to afford 2-hydroxy-dihydropyridines96 (Scheme 21). Based on the literature reports (Ziyaei-Halimehjani & Saidi, 2008; Glotova et al., 2009; Li et al., 2009; Yavari et al., 2010; Jiang et al., 2010)115–119 that conjugate addition of aniline to acetylenedicarboxylates smoothly provides 2-(phenylamino)but-2-enioate, the authors believed that double conjugate addition is possible if another molecule of acetylenedicarboxylates is present in the reaction system. With this idea in mind, they started investigating a range of conditions to identify the optimal parameters for this methodology. The required product was formed in 71% yield in ethanol at room temperature with the presence of an unexpected hydroxyl group at the C-2 position presumably resulting from a hydration step in the reaction process. Other sol-
vents including tetrahydrofuran, acetonitrile, dichloromethane and chloroform retarded the reaction. Similarly, elevated temperatures and the addition of a base to the reaction pot provided a complex mixture of unidentified compounds. The reaction scope was assessed with several aromatic aldehydes as well as amines and the desired dihydropyridine products were isolated in 70–87% yields. Both electron-donating and electron-withdrawing substituents were equally tolerated in the reaction. α-Naphthylamine and benzylamine also provided the corresponding 2-hydroxyhydropyridines in good isolated yields. In addition, the reaction was also performed under inert conditions using absolute ethanol to avoid the formation of 1,6-dihydropyridines bearing a hydroxyl group at the C-2 position and the required products were isolated in 68–81% yields. Similar results were obtained when p-toluenesulfonic acid (TsOH) was employed as a catalyst to convert 2-hydroxyhydropyridines to 1,4-dihydropyridines in ethanol under reflux.

Tehrani and co-workers developed a Zn(OTf)_2-catalyzed three-component cascade approach to produce less explored 1,6-dihydropyridines 101 from aldimines 98, terminal alkynes 99 and electron-deficient alkynes 100. The heterocyclic products were achieved in good to excellent chemical yields (Scheme 22). In a mixture of solvents (toluene and DMF), various reaction parameters such as the catalyst and temperature were screened. Other catalysts including ZnBr_2, ZnI_2, Zn(OAc)_2 and CuBr_2 were less effective. The reaction scope was explored by testing a range of aldimines and ketimines in the first instance. The anticipated products were isolated in good yields. The variation of the alkyne component was also examined. Both aromatic and aliphatic alkynes were successfully tolerated. The presence of electron-rich and electron-deficient substituents on the aryl ring of alkynes had no influence on the reactivity of this cascade process. The use of electron-deficient propiolates instead of DMAD produced the 1,6-dihydropyridine heterocycle with the regiospecific incorporation of the ester moiety.

Scheme 20 Proposed mechanism for the formation of 1,4-dihydropyridines 86.

Scheme 21 Three-component synthesis of 2-hydroxyhydropyridines and 1,4-dihydropyridines from aromatic aldehydes, arylamines and acetylenedicarboxylates.

Scheme 22 Zn(OTf)_2-catalyzed three-component synthesis of highly functionalized 1,6-dihydropyridines from aldimines and two alkynes.
2.1.4. Synthesis of tetrahydropyrimidines. Jiang and co-workers121 unearthed a facile and convenient one-pot multi-component approach involving alkynoates 102, amines 103, 104 and formaldehyde 105 to access a range of diversely functionalized tetrahydropyrimidines 106 (Scheme 23). This domino reaction works smoothly in the absence of a catalyst with the production of nitrogenous heterocycles in high yields. The relay process comprised of hydroamination, Mannich-type reaction and amine-aldehyde dehydration–cyclization sequence. After extensive screening of reaction parameters, including solvent, time and reactant ratios, the best results were furnished when but-2-ynedioic acid diethyl ester 102/aniline 103/formaldehyde 105/benzylamine 104 are used in a ratio of 1 : 1 : 4 : 1.1–1.2 in DMF. Although, both aliphatic and aromatic amines were effective coupling partners, the reaction proceeded much faster with aliphatic primary amines. The reaction was also insensitive to electron-donating and electron-withdrawing substituents present on the aromatic amines. All the tetrahydropyrimidinoides products were formed in good to excellent yields except the ortho-aryl-substituted product which was obtained in a lower yield (62%).

In a subsequent study, Jiang and co-workers122 developed two multi-component methodologies towards polysubstituted pyrimidine derivatives 111, 112. In the metal-free approach, electron-deficient amines 107, amines 108, 109 and formaldehyde 110 were coupled to obtain the heterocyclic product in an efficient yield (Scheme 24). The product was furnished with high regioselectivity with Markovnikov addition only. Upon the addition of two different amines, the reactivity was in favour of aliphatic amine while no product was formed when aromatic amine was added first. Various aliphatic amines were employed in this method to deliver aza-heterocycles with high yields and regioselectivities. In the second approach where aromatic amines served as potential substrates, extensive catalyst screening was performed to identify the optimized conditions favouring the hydroamination–cyclization reaction sequence. In this pursuit, AgBF\textsubscript{4}/L-proline was identified as the most effective catalyst. The best working conditions include AgBF\textsubscript{4} (5 mol%) and l-proline (5 mol%) in DMF at room temperature, furnishing the desired product in 80% yield in 6 h. Using this set of conditions, various anilines bearing electron-rich (Me, OMe) and electron-deficient (F, Cl, Br, CF\textsubscript{3}) substituents were illustrated as suitable coupling partners and the corresponding products were formed in good yields.

Next, the same group123 investigated a multi-component methodology to construct functionalized tetrahydropyrimidines 117 from but-2-ynedioates 113, amines 114, 115, and formaldehyde 116 (Scheme 25). After screening of the initial reaction conditions, more ambient conditions were developed, and the results were compared with the heat-promoted MCRs.124 The products were obtained at much lower temperature and in much shorter time with higher yields.

2.1.5. Synthesis of quinolines. Asghari and co-workers125 established the synthesis of quinoline derivatives 120 by the addition of acetylenic esters 118 to aromatic amines 119 in the presence of triphenylphosphine (Scheme 26). The initial addition of triphenylphosphine to the acetylenic ester led to functionalized phosphoranes which upon the intramolecular Wittig reaction produced the desired quinoline compounds.

2.1.6. Synthesis of pyrrolidines and indolines. Fu and co-workers126 demonstrated a straightforward phosphine-cata-

Scheme 23 Catalyst-free one-pot multi-component synthesis of poly-substituted tetrahydropyrimidines.

Scheme 24 One-pot multi-component divergent synthesis of polysubstituted tetrahydropyrimidines.

Scheme 25 Multi-component synthesis of polysubstituted tetrahydropyrimidines from alkynoates, amines and formaldehyde.
analyzed intramolecular approach to access highly functionalized enantioenriched nitrogenous heterocycles (pyrrolidines and indolines) via γ C–N bond formation using alkynoate substrates (Scheme 27). This enantioselective strategy also successfully tolerated various electron-withdrawing and electron-donating functional groups on the aromatic ring delivering indoline products with good enantioselectivity but with insignificant reduction in the yield. The presence of a methyl group ortho to nitrogen did not impede the reaction and smooth cyclization was observed towards the corresponding product in 67% yield and 88% ee.

2.1.7. Synthesis of pyrrolidinones. Based on the results obtained from the three-component methodology for the formation of 2-hydroxyhydropyridines or 1,4-dihydropyridines, Yan and co-workers combined the three-component methodology with an acid-catalyzed dehydration step to afford 1,4-dihydropyridines in a convenient fashion. However, the expected product was not furnished; rather 2-hydroxytetrahydropyridine was formed and an unexpected pyrrolidinone derivative was generated as the major product (Scheme 28). The result was interesting because there was no literature report to construct pyrrolidinones from electron-deficient alkynes in this manner. The reaction conditions were then optimized and it was revealed that stirring the aldehyde with amine in the presence of 20 mol% of p-toluenesulfonic acid for 30 min followed by the introduction of acetylenedicarboxylate provided the desired polysubstituted pyrrolidinone in 62% yield after 24 h. Various amines and aldehydes with dimethyl or diethyl acetylenedicarboxylates were successfully coupled with the generation of the desired pyrrolidinone products in good yields.

The proposed mechanism for this transformation suggests that the acid-catalyzed condensation of the aromatic aldehyde with amine produced imine intermediate. Upon the addition of acetylenedicarboxylate in the presence of water, intermediate was generated by the nucleophilic addition of water to an electron-deficient alkyne. Then, addition of to imine provided intermediate which was cyclized via an intramolecular attack of the amine nitrogen on the ester carbonyl resulting in the formation of five-membered ring. Finally, the desired product was delivered by the elimination of protonated alcohol (Scheme 29).

2.1.8. Synthesis of indoles. Nasiri and co-workers synthesized a variety of alkyl 2-[1-benzyl-2,4-dioxo-2,3,4,5,6,7-hexahydro-1H-indol-3-yl]acetates using enamiones and acetylenic esters as starting materials (Scheme 30). The reactions were catalyzed by triphenylphosphine and the corresponding products were isolated in moderate yields (61–65%).

2.1.9. Synthesis of lactams. Based on the previous efforts to use alkynoates for lactone synthesis (Deng & Chuang, 2011), Chuang and co-workers elaborated the approach while using N-tosyl aldimines, phosphines and alkynoates to deliver fluorescent γ-lactams (Scheme 31). The highest reactivity was achieved in an aprotic etherate solvent (THF) at 60 °C. The reaction conditions were comparable to those previously developed for lactone synthesis. The scope and generality of the three-component methodology revealed the use of various triarylphosphines and electron-deficient aldimines. A range of γ-lactam products were accessed in 49–79% yields while using different triarylphosphines containing electron-donating and electron-withdrawing substituents and 4-nitrobenzaldehyde. The coupling of more nucleophilic tricyclohexylphosphine with 4-cyano aldimine furnished the desired product in a poor yield (22%). Consistent with the pre-
2.1.10. Synthesis of succinimides. Esmaeili and co-workers132 described a one-pot three-component reaction for the generation of N-benzoyl-2-triphenylphosphoranylidene succinimide derivatives142 from triphenylphosphine139, acetylenic esters140 and aryl isocyanates141 (Scheme 32). The reaction performs well under metal-free conditions and the anticipated products were formed in good to high yields. Several properties such as structural, electronic, energetic and mechanistic properties were explored with density functional theory (DFT) calculations using the Gaussian 09 computational package.133–135

2.2. Synthesis of oxygen-containing heterocycles

Oxygen-containing heterocycles constitute a privileged class of heterocyclic compounds that contribute enormously to the development of new medicinal and bioactive drug molecules.136 Therefore, the development of new synthetic methods using mild reaction conditions remains an attractive field.

2.2.1. Synthesis of coumarins. Song and co-workers137 successfully developed an intramolecular hydroarylation method for the regioselective synthesis of coumarins144 using aryl phenylpropiolates143 (Scheme 33). The intramolecular cyclization was catalyzed by Hf(OTf)\textsubscript{4} in a mixture of an ionic liquid and methylcyclohexane. The reaction was high yielding at 85 °C for 9–10 h. Aryl 2-butynoate was also tested as a promising substrate and the corresponding coumarin was obtained in 89% yield. However, a lower stabilizing effect of the alkyl group compared to the phenyl group promoted self-oligomerization of the alkynes featuring alkyl substituents. In general, the explored methodology employing an ionic liquid provided an alternative approach to access a diverse variety of products where conventional methods showed a hindered scope.

Costa and co-workers138 made use of a Lewis acid (zinc chloride) as an efficient catalyst for the construction of coumarins147 by the hydroarylation of acetylenic esters145 with oxygenated phenols146 under solvent-free conditions (Scheme 34). The products were formed in moderate to good yields. The initial reaction of benzene-1,3,5-triol and ethyl propiolate provided the required coumarin in 88% yield. It was worth noting that similar yields were reported by Kaufman and Kelly139 however, a stoichiometric amount of the catalyst (ZnCl\textsubscript{2}) was required, and the reaction time was 12 h. This procedure was improved, delivering the desired coumarins in...
pleasing yields after a reaction time of 5–60 minutes in most of the cases.

Mi et al.140 developed a metal-free tandem acylation/cyclization method using alkynoates 148 and aldehydes 149 for the generation of substituted coumarins 150 (Scheme 35). This method offers the instantaneous formation of two new C–C bonds via C–H functionalization. Regarding the literature methods141–148 which suffer several drawbacks including a hindered substrate scope, low atom-economy and toxic reagents, the present protocol realizes a general and direct approach to 3-acylcoumarins. The reaction scope was fairly general, and several functional groups showed great compatibility under the optimal conditions. However, due to a strongly electron-deficient group (CF3) on the phenoxy ring of the alkynoate, the desired product was furnished in 38% yield. In addition, the steric effect was also quite distinct on the phenoxy ring and in the case of an ortho-substituted system, no reactivity was observed. Alkynoates bearing alkyl substituents were also unreactive.

Based on the previous reports (Liu et al., 2011; Shi & Glorius, 2013; Luo et al., 2014),149–151 the authors proposed a radical mechanism for tandem oxidative acylation/cyclization (Scheme 36). Peroxydisulfate was converted to bis(tetramethylammonium) peroxydisulfate upon reaction with TBAB which was transformed into tetrabutylammonium sulfate radical anions on heating.152,153 The reaction of the tetrabutylammonium sulfate radical with 149 produces the acyl radical 151 which adds selectively to the α-position of the C=O bond in 148 producing vinyl radical 152. Cyclization of 152 then afforded the radical intermediate 153 which subsequently converted into cation 154 via single electron transfer (SET). The intermediate 154 was deprotonated to give the desired product 150.

Similarly, Yamaguchi, Itoh and co-workers154 developed the synthesis of 3-acyl-4-arylcoumarins 157 using alkynoates 155 and simple aldehydes 156 under radical cyclization conditions (Scheme 37). A photocatalyzed generation of acyl radicals was achieved using aldehydes under metal-free and mild reaction conditions. Based on previous reports (Tada et al., 2011; Tada et al., 2012; Shimada et al., 2013),155–157 anthraquinone derivatives (AQNs) were employed where an O-centered radical of 3-AQN* can trap a hydrogen atom. Phenyl-2-propynate and p-tolualdehyde were chosen as model substrates to investigate the reactivity profile of various reaction parameters in the radical addition/cyclization strategy. Photocatalysts including eosin Y, Ru(bpy)3Cl2 and 2-tert-butylanthraquinone (2-t-Bu-AQN) were employed alongside a range of oxidants (BPO,
K₂S₂O₈, H₂O₂, DTBP) under visible light irradiation. The role of bases (K₂CO₃, Na₂CO₃, KOH, Et₃N) was also investigated. The screening results indicated that acylcoumarins could be furnished in the best isolated yields when the reaction mixture containing 2-t-Bu-AQN (10 mol%), BPO (200 mol%), and K₂CO₃ (50 mol%) in t-amyl alcohol was irradiated with four 23 W lamps under an argon atmosphere. Benzaldehydes bearing various substituents such as methyl, tert-butyl, fluoro, chloro, trifluoromethyl, and methoxy at the 3- and 4-positions of the phenyl ring produced the corresponding 3-acyl-4-arylcoumarins in 47–77% yields. Next, the scope of the reaction was examined with various alkynoates representing structural diversification at the para-position of the phenoxy ring. Both electron-donating (methyl, methoxy) and electron-withdrawing (iodo, ester, acetyl, acetoxy) groups were compatible and furnished the desired products in 58–79% isolated yields. With meta-substituted alkynoates, two regioisomers were obtained except in the case of methoxy-substituted substrates; however, ortho-substituted substrates failed to produce the desired coumarin.

Wang and co-workers utilized sulfinic acids, versatile and readily available intermediates, for the formation of coumarin derivatives (Scheme 38). The oxidative cyclization of phenyl propiolates was achieved at room temperature under metal-free conditions. This visible-light induced transformation offered several advantages including broad functional group acceptance, good yields and high regioselectivity except alkyl substituents which were found to be unreactive.

After several control experiments and based on the literature reports (Lu et al., 2013; Luo et al., 2014; Wei et al., 2014; Ouyang et al., 2014), the authors proposed a mechanism for this photoreaction (Scheme 39). The initial radical formation (tert-butoxyl radical) took place by a SET process by the reaction of the excited state of eosin Y* with TBHP. Next, the corresponding sulfonyl radical was produced by the abstraction of a hydrogen radical from 4-methylbenzenesulfinic acid which was transformed into carbocation intermediate via radical intermediate. Finally, intermediate was deprotonated to deliver the desired 3-sulfonated coumarins.

Wu and co-workers reported a catalyst-free approach for the efficient synthesis of 3-sulfonated coumarins from aryl propiolates (Scheme 40). Sulfonyl radicals were produced from aryldiazonium tetrafluoroborates in the presence of DABSO. This tandem process operates through various reaction sequences such as radical addition, spirocyclization, and 1,2-migration of esters. Phenyl propiolate and phenyldiazonium tetrafluoroborate served as the model substrates whereas DABSO was employed as a sulfonyl radical precursor.
Various reaction parameters including solvents and temperature were studied to obtain the optimal conditions (aryl propiolate (0.2 mmol), DABCO-(SO$_2$)$_2$ (0.4 mmol), phenyldiazonium tetrafluoroborate (0.24 mmol), DCE (1.5 mL), under an argon atmosphere, 60 °C, 30 min). Under this set of conditions, aryldiazonium tetrafluoroborates and alkynoates were smoothly cyclized to the desired 3-sulfonated coumarins in good to excellent yields. Several electronically different substituents (methyl, methoxy, tert-butyl, chloro, bromo, ester) on the aromatic ring of aryldiazonium tetrafluoroborates showed remarkable tolerance and produced the coumarin products in 60–95% isolated yields. Quinolinyl aryldiazonium tetrafluoroborate was also tolerated, albeit generating the sulfonated coumarin in 31% yield. On the other hand, phenyl propiolates incorporating an aryl group attached to the alkyne component showed similar reactivity. Both electron-rich (methyl, methoxy) and electron-deficient (fluoro, chloro) substituents engendered the sulfonylated heterocycle in 85–92% yields; however, the presence of an alkyl group (tert-butyl) completely hindered the reaction. Similarly, substrates containing substituents such as benzyl, methoxy, fluoro, and acetyl at the para-position of the phenoxy ring were also examined.

After performing several mechanistic experiments and in line with the literature reports, the authors proposed a possible reaction mechanism which starts with the coordination of aryldiazonium cation 167 with DABSO to form the complex 170 via electrostatic interaction. Homolytic cleavage of the N-S bond in 170 then furnished the radical cation intermediate 171, SO$_2$ and aryl radical 172 which combines with sulfur dioxide to produce the sulfonyl radical 173. The attack of the radical 173 on the triple bond of the alkyne component generates intermediate 174 which on subsequent spirocyclization provides intermediate 175. Oxidation by radical cation 171 then affords 176 followed by 1,2-ester migration to intermediate 177. The desired sulfonylated product 168 was obtained upon aromatization of intermediate 177 (Scheme 41).

Due to the widespread applications of sulfone functionalities in organic and medicinal chemistry, the synthesis of organic molecules with these groups remained an attractive pursuit for many research groups. Recently, Wang and co-workers developed a new metal-free approach to construct structurally diverse 3-sulfonated coumarins 180 (Scheme 42). The easily available starting materials including alkynoates 178 and sulfonylhydrazides 179 were coupled via the direct difunctionalization strategy in the presence of TBAI and TBHP as the catalyst and oxidant, respectively. This procedure is generally convenient for the synthesis of 3-sulfonated coumarins as compared to the previously developed methods, which possess several limitations including harsh reaction conditions, low chemical yields and tedious work-up procedures. The reaction scope was reasonably broader, tolerating several electron-poor and electron-rich substrates effectively; however, the reactivity was stalled by steric factors leading to trace amounts of the desired compounds. Similar results were afforded when alkyl sulfonylhydrazides, such as methyl sulfonylhydrazide, were used as the substrates. Mechanistically, radical-promoted intramolecular cyclization/oxidation was among the key steps for the formation of the title product.

Liu et al. extended the scope of 3-functionalized coumarins 183 by using a range of alkynoates 181 and acetylacetone 182. The 3-acetyloxycoumarins were accessed in moderate yields (Scheme 43). Again, the key step in the mechanistic process was an oxidative tandem 5-exo dearomative spirocyclization and ester migration.

In an effort to develop green organic methodologies using photoredox catalysis, Ni et al. used alkynoates 184 for the synthesis of 3-iodocoumarins 186 driven by sunlight as a catalyst (Scheme 44). The process operates under catalyst-free conditions and cascade radical iodination and cyclization using N-iodosuccinimide (NIS) afforded the coumarin products at room temperature. This methodology was different from their previously developed procedure where the iodina-
tion triggered cascade radical decarboxylative migration reaction of alkynoates afforded 1,1-diiodoalkenes at elevated temperatures. After extensive screening of reaction parameters, suitable conditions were obtained which were utilized for the exploration of the general applicability of the method. Several sensitive functional groups worked well and delivered iodo-coumarins in pleasing yields. It is also notable that the substrates bearing aliphatic substituents such as methyl and ethyl also worked efficiently affording the corresponding coumarins in excellent yields (83–89%). However, no desired product was realized when phenyl propiolate was employed as the substrate. Also, with sterically hindered substrates, only trace amounts of the desired coumarins were achieved.

The proposed catalytic mechanism is illustrated in Scheme 45. The addition of the iodine radical (produced from NIS under sunlight irradiation) to the C≡C bond of the alkynoate provided intermediate 188 which on subsequent intramolecular spirocyclization delivered intermediate 190. The intermediate 190 provided carboxyl radical 191 by the cleavage of the C–O bond which on cyclization and deprotonation by NIS gave the desired product 186 (path A). However, according to the previous reports (Mendis & Tunge, 2015; Ni et al., 2016), intermediate 191 could possibly generate intermediate 193 with the release of a CO₂ molecule. Finally, intermediate 193 reacts with NIS to afford the final 1,1-diiodoalkene product 187. It is worth noting that 187 was not observed under the current sunlight irradiation experimental conditions.

Qiu, Ding and co-workers developed a tandem radical bromination of alkynoates to furnish a range of 3-bromocoumarins catalyzed by K₂S₂O₈ (Scheme 46). This methodology differs from the previous reports where liquid bromine was employed as a bromo source using TBAB and K₂S₂O₈; thus the bromo radical would undergo addition to the C≡C triple bond of the alkynoate, followed by oxidative spirocyclization and 1,2-migration of the ester group to provide 3-bromocoumarin. Using tolyl alkynoate as a standard substrate with TBAB to develop the optimal conditions, various reaction parameters were investigated. The desired 3-bromo-7-methylcoumarin 195 was isolated, whereas 3-bromo-6-methylcoumarin 196 was not observed as evidenced by Wu and...
Further optimization of the relevant reaction parameters (oxidant, solvent, temperature) was then performed. A mixture of DCE and water (v/v = 1 : 1) was identified as the best reaction media. The addition of water was critical to hinder the formation of liquid bromine via homocoupling. With the identification of the optimized conditions (2.0 equiv. TBAB, 2.0 equiv. K$_2$S$_2$O$_8$, in DCE/H$_2$O (v/v = 1 : 1) at 90 °C), the versatility of various alkynoates was explored. The presence of various substituents (R1) such as methyl, tert-butyl, benzyl, methoxy, fluoro, chloro, bromo, iodo, and acetyl at the phenyl ring of the alkynoate was productive in the delivery of the desired products in 63–78% yields. In addition, the scope and versatility of the reaction were further explored using various substituents (R2). Aryl groups bearing electron-rich (methyl, methoxy) and electron-deficient (halogens) substituents were compatible and produced 3-bromocoumarins in 64–80% yields. However, phenyl 3-cyclopropylpropionate showed some hindrance in cyclization and gave the corresponding 3-bromo-4-cyclopropylcoumarin in 42% yield. Other halogen sources such as tetrabutylammonium fluoride (TBAF), tetrabutylammonium chloride (TBAC) and tetrabutylammonium iodide (TBAI) were unsuitable to furnish the desired halogenated products. A mixture of DCE and water was critical to hinder the formation of liquid bromine via homocoupling. With the identification of the optimized conditions (2.0 equiv. TBAB, 2.0 equiv. K$_2$S$_2$O$_8$, in DCE/H$_2$O (v/v = 1 : 1) at 90 °C), the versatility of various alkynoates was explored. The presence of various substituents (R1) such as methyl, tert-butyl, benzyl, methoxy, fluoro, chloro, bromo, iodo, and acetyl at the phenyl ring of the alkynoate was productive in the delivery of the desired products in 63–78% yields. In addition, the scope and versatility of the reaction were further explored using various substituents (R2). Aryl groups bearing electron-rich (methyl, methoxy) and electron-deficient (halogens) substituents were compatible and produced 3-bromocoumarins in 64–80% yields. However, phenyl 3-cyclopropylpropionate showed some hindrance in cyclization and gave the corresponding 3-bromo-4-cyclopropylcoumarin in 42% yield. Other halogen sources such as tetrabutylammonium fluoride (TBAF), tetrabutylammonium chloride (TBAC) and tetrabutylammonium iodide (TBAI) were unsuitable to furnish the desired halogenated product under the optimized reaction conditions. Moreover, keeping in view the synthetic utility of bromo compounds to serve as useful building blocks, synthetic functionalization was performed with the successful installation of alkynyl (197) and phosphite (198) groups onto the coumarin skeleton under palladium catalysis (Scheme 47).

Scheme 47 Palladium-catalyzed synthetic functionalization of 3-bromocoumarin 195.

Pan, Yu and co-workers204 demonstrated the synthesis of substituted coumarins 201 by carboannulation of alkynoates 199 with xanthates 200. This dilauroyl peroxide (DLP)-promoted process involves radical addition/cyclization using metal-free conditions (Scheme 48). The effect of different oxidants in a variety of solvents was examined. Phenyl 3-phenylpropionate and methyl 2-((ethoxycarbonothioyl)thio)acetate were employed in the presence of BPO as an oxidant to develop the optimal conditions. Several other oxidants including DTBP, TBHP, DLP, K$_2$S$_2$O$_8$, PhI(OAc)$_2$ and H$_2$O$_2$ were tested; however, DLP showed superior results and produced methyl 2-(2-oxo-4-phenyl-2H-chromen-3-yl)acetate in 74% yield in dichloroethane solvent. The reaction performed in various other solvents (DCM, MeCN, THF, PhCl, acetone) did not demonstrate any increase in the product yield. The scope and generality of this radical cyclization were expanded using different alkynoate substrates bearing both electron-rich (methyl, isopropyl, tert-butyl, methoxy) and electron-deficient (trifluoromethyl, halogens) substituents on the aryl ring. The corresponding 4-aryl-3-(2-methoxy-2-oxoethyl) coumarins were isolated in moderate to good yields. However, alkynoates incorporating strongly electron-deficient substituents (ester, acetyl) produced the corresponding products in lower yields. 4-Nitrophenyl 3-phenylpropionate remained unreactive. Heterocyclic substituents at the alkynoate were also compatible, albeit producing the coumarin in 42% yield. The structural diversity was also realized when different xanthates featuring alkyl ester, ketone, and cyano were employed and the corresponding products were isolated in moderate to good yields.

Sun and co-workers205 reported a facile route for the synthesis of cyanomethylated coumarins 203 via cyanomethylation and cyclization of aryl alkynoates 202 (Scheme 49). Acetonitrile was used as a cheap cyanomethyl source in the presence of tert-butyl peroxybenzoate (TBPB) under metal-free conditions. Various oxidants, bases and temperatures were screened to optimize the reaction conditions. A variety of alkynoates bearing different substituents on the aromatic (phenoxy) ring were tested. Both electron-donating and electron-withdrawing substituents were compatible. The effect of substituents present on the alkyne was also investigated. No
significant electronic influence was observed with differently substituted groups. The alkynes bearing an alkyl group however remained inert under the optimized reaction conditions. They further explored the scope using acetone instead of acetonitrile and the desired products (2-oxopropyl substituted coumarins 204) were isolated in good yields. The nitrile functionality was further transformed into other functional groups under different conditions to yield the corresponding products (Scheme 50). For instance, 2-(2-oxo-4-phenyl-2H-chromen-3-yl)acetonitrile was converted into methyl 2-(2-oxo-4-phenyl-2H-chromen-3-yl)acetate 205 and 2-(2-oxo-4-phenyl-2H-chromen-3-yl)acetamide 206.

Chang and co-workers described a facile metal-free sulfonylation/cyclization approach involving aryl alkynoates 207 and N-sulfansulfinimides 208 in the presence of BF₃·Et₂O to produce 3-sulfenylated coumarins 209 in moderate to excellent yields (Scheme 51). Initial screening included the investigation of various parameters to identify the optimal conditions to perform the metal-free transformation. Without the addition of a Lewis acid, no corresponding product was observed, and the electrophilic cyclization furnished the coumarin product in 87% yield when the reaction was performed with 1.5 equivalents of BF₃·Et₂O in dichloromethane at room temperature. Various other Lewis acids (FeCl₃, AlCl₃) and Bronsted acids (TFA or TfOH), however, led to inferior results. The use of other solvents as well as electrophilic sulfonylating reagents led to diminished reactivity. Under the established reaction conditions, the scope and limitations of the cyclization methodology were explored. A range of substituents on the phenyl ring of alkynoates were tested and gave the 3-sulfenylated coumarins in good yields.

Both moderately electron-rich (methyl and tert-butyl) and electron-deficient functional groups (fluoro, chloro, bromo, acetyl) at the para-position of aryl 3-phenylpropiolates produced similar results. ortho-Substituted alkynoates also produced the desired annulated product in good to excellent yields. A sterically bulky naphthyl alkynoate also produced the coumarin product in 81% yield. The reaction scope also included the variation of substituents at the alkynl functionality. Phenyl arylpropiolates with variable degrees of electronic character were found to be compatible in addition to alkylpropiolates. Moreover, additional sulfonylating reagents bearing different arylthiol partners were also made a part of this study and the desired products were furnished in moderate to high isolated yields. Notably, the para-methoxy substituted alkynoate led to the formation of spiro[4.5]triene-2,8-dione, generated via ipso-sulfenylcyclization. Keeping in view the applications of sulfinyl and sulfonl functional groups in organic and medicinal chemistry, 3-sulfinyl 210 and 3-sulfonated coumarins 211 were prepared under oxidative conditions using (diacetoxyiodo)benzene (PIDA) and meta-chloroperbenzoic acid (m-CPBA) as the oxidants (Scheme 52).

Wu, Jiang and co-workers reported an iodine-catalyzed electrophilic cyclization of alkynoates 212 and sodium arylsulfonates 213 to construct 3-sulfenylcoumarins 214 in moderate to good yields (Scheme 53). The optimized reaction conditions were developed using phenyl 3-phenylpropioate and sodium benzenesulfinate as model substrates. Several oxidants including O₂, H₂O₂, TBHP, K₂S₂O₈, DTBP and DMSO and non-metal iodine catalysts such as I₂, NIS, I₂O₅, ICl and TBAI were considered in a variety of solvents. After extensive screening, the optimal conditions were identified and used to explore the generality and scope of this reaction. Sodium arylsulfonates bearing electron-rich phenyl groups and halogens were compatible whereas electron-poor groups at the phenyl ring and heteroaryl and alkyl groups produced only a trace amount of...
the desired products. Moreover, various alkynoate substrates with diverse electronic features were tested. Aryl, alkyl, heteroaryl and extended aryl groups were well tolerated with broad functional group compatibility. Mono-, di-, and tri-substituted substrates were successfully cyclized to coumarin products in good yields.

Zhang, Wang and co-workers212 unearthed a hypervalent iodine reagent (HIR)-catalyzed decarboxylative carbonylation of phenylpropiolates215 with \(\alpha\)-oxocarboxylic acids216. The reaction proceeds under metal-free conditions generating the desired 3,4-disubstituted coumarins217 in good yields at room temperature (Scheme 54). An extensive screening of various reaction parameters was performed to identify the optimal conditions. Blue, purple, red, green and white LEDs and sunlight were used as a light source while using eosin Y, \([\text{Ru(bpy)}_3]\text{Cl}_2, \Phi\text{h(OAc)}_3, [1\text{-hydroxy-1,2-benziodoxol-3(1H)-one}] (\text{BI-OH}), 1,2\text{-benziodoxol-3(1H)-one acetate ester (BI-OAc)} and \text{BI-C==C-Ph} as catalysts. To enhance the reaction performance, several additives (\(\Phi\text{SO}_3\text{Na}, \text{K}_2\text{CO}_3, \text{Na}_2\text{CO}_3, \text{TSOH, PiVOH, (NH}_4\text{)}_2\text{C}_2\text{O}_4, \text{KPF}_6\)) were also tested alongside a range of solvents (toluene, benzene, acetone, THF, DMSO, EtOAc, MeCN, DCE, Et,N). The optimal reaction conditions that were used to explore the scope of the reaction include215 (0.20 mmol), 216 (0.40 mmol), \text{BI-OH} (20 mol\%), and \text{KPF}_6 (1.0 equiv.) in toluene (1.0 mL) under an air atmosphere. The reaction mixture was irradiated with a 1.5 W blue LED at room temperature for 24 h. Broad functional group tolerance was observed when various aryl 3-phenylpropiolates were reacted with 2-oxo-2-phenylacetic acid. A range of electron-rich substituents (methyl, ethyl, isopropyl, tert-butyl) at the \textit{para}-position of the aromatic rings as well as 3,5-(Me)\textsubscript{2} substituents produced the anticipated coumarin products in ample yields. Likewise, electron-deficient functional groups (F, Cl, Br, I) also proved to be equally tolerant to standard conditions. Similarly, the reaction scope was further extended by employing various \(\alpha\)-oxocarboxylic acids. The electronically different substituents survived under the optimized reaction conditions; however, the \textit{ortho}-substituted substrates showed slow progress and reactivity producing the target product in moderate yields. Notably, 2-(naphthalen-1-yl)-2-oxoacetic acid was successfully coupled to 3-phenyl (4-ethylphenyl)propiolate delivering the substituted coumarin in 67\% isolated yield. Heteroaromatic and aliphatic substituted substrates did not produce the desired products, presumably due to the lower stability of the acyl radicals. The radical mechanism was confirmed by using TEMPO or BHT, as a radical scavenger that completely inhibited the reaction.

She and co-workers213 demonstrated a facile approach for the preparation of 3-bromocoumarins220 from alkynoates218 through visible-light-mediated radical cyclization using NBS219 as the bromo source (Scheme 55). This strategy involves a bromo radical addition/spirocyclization/ester migration cascade sequence and can be performed under very mild reaction conditions in the absence of any catalyst or strong oxidant. Initially, various reaction conditions were screened...
using tolyl alkynoate and NBS with an 18 W blue LED as a visible light source. A range of solvents including MeCN, DCM, DMSO, DMF, THF, and 1,4-dioxane were employed. The best results were obtained in THF. The scope and diversity of the substrates used to prepare coumarins were investigated. Various alkyl groups (methyl, ethyl, i-propyl, tert-butyl) at the para-position of the aryl ring were suitable under the optimized reaction conditions to furnish the desired 3-bromocoumarins in 63–75% yields. In the case of the methoxy substituent, the product was isolated in 52% yield only. Substrates featuring a halogen substituent (fluoro, chloro, bromo and iodo) were also compatible, albeit producing the anticipated products in moderate yields (51–59%). ortho-Substituted alkynoate provided a complex mixture without the detection of the desired product. Different substituents at the alkyne carbon were also suitable for this transformation. Moreover, the presence of a bromo substituent at the 3-position of coumarin proved to be a viable functional handle to perform Suzuki–Miyaura cross-coupling and Buchwald–Hartwig amination reactions (Scheme 56). Some 3,4-biphenyl coumarin derivatives having biological significance were also synthesized using this methodology.

Xu and co-workers developed a metal-free, visible-light-promoted direct difunctionalization of alkynoates using eosin Y (EY) as the photocatalyst and tert-butyl-hydroperoxide (TBHP) as the oxidant (Scheme 57). This process involves a radical tandem phosphorylation/cyclization reaction sequence to afford a range of 3-phosphorylated coumarins in good yields and excellent regioselectivities. Avoiding the use of stoichiometric amounts of radical initiators or high-energy UV light, for the generation of P-centered radicals, visible light photoredox catalysis was employed. The reaction optimization was started with phenyl 3-phenylpropionate, diphenylphosphine oxide (radical precursor) with TBHP as the oxidant under the influence of an organic photocatalyst and the irradiation of visible light. A survey of various photocatalysts, oxidants and solvents to produce the 3-phosphorylated coumarin was conducted with the identification of EY as the photocatalyst, TBHP as the oxidant, and DMSO as the solvent rendering the heterocyclic product in 87% yield. This set of conditions was further applied to various alkynoates and phosphoryl radical precursors.

The variation of the R2 substituent at the alkyne component of the alkynoate demonstrated good functional group tolerance. Electron-donating (methyl, methoxy) and electron-withdrawing (fluoro, chloro, bromo, ketone) groups at the phenyl ring showed equal participation in this domino radical cyclization process. Alkyl group substituted alkynoates exhibited no reactivity. Although, other P-centered radical precursors proved to be good coupling partners, diethyl phosphonate furnished the corresponding product in 35% yield only. The next round of structural changes includes the variation of different substituents at the phenoxy ring of alkynoates. Again, various substituents including methyl, ethyl, tert-butyl, methoxy, trifluoromethyl, fluoro, chloro, and bromo were successfully tolerated. The extended aromatic system (2-naphthyl) also gave the desired coumarin in 55% isolated yield; however, ortho-substituted phenoxy rings were found to be sensitive to standard reaction conditions. Gram-scale synthesis was also performed with the isolation of the target product in 74% yield.

Li and co-workers prepared a library of coumarin derivatives using N-iodosuccinimide as a free-radical initiator under photo-irradiation. This metal-free methodology uses readily available starting materials (alkynoates) and involves free radical intramolecular cyclization and ester rearrangement to afford coumarin products at room temperature (Scheme 58). p-Tolyl 3-phenylpropionate served as a model substrate to optimize the reaction conditions. Various iodine...
sources (iodobenzene, TBAI, NIS, I₂) in different solvents (PhMe, DCE, MeCN, DMF, DMSO, THF) were investigated. The best results were obtained in THF using 20 mol% of NIS delivering the coumarin product in 91% yield with a trace amount of 3-iodo-4-phenyl-coumarin. The variation of electronically and sterically different groups was introduced at the aryl component of the alkynoate to investigate the substrate scope. Electron-donating (methyl, ethyl, tert-butyl, methoxy, phenyl) and electron-withdrawing (fluoro, chloro, bromo) groups were successfully tolerated, However, strongly electron-deficient groups such as nitro, trifluoromethyl and formyl substituted alkynoates failed to show any reactivity under the optimized reaction conditions. Di-halogenated alkynoate also produced the desired coumarin in 77% yield. The reaction did not tolerate ortho-substituted and heterocyclic substrates. The scope was further broadened using alkyl and aryl substituents at the C≡C triple bond of the alkynoate. Methyl, ethyl, tert-butyl, methoxy, fluoro, chloro, and bromo at the phenyl ring were all compatible. 3-Alkyl-coumarins were successfully accessed from 3-ethyl- and 3-propyliophenylpropionic acids in good yields; however, unsubstituted as well as heteroaryl substituted alkynoates showed no product formation. The mechanistic experiments revealed that the selection of the wavelength of light and the loading of NIS were critical in the construction of de-iodinated coumarins.

Guo and co-workers²²¹ reported an electrochemical oxidative annulation of alkynoates ²²₈ with diselenides or disulfides ²²₉ to access a range of coumarins ²³₀ (Scheme 59). In an electrochemical environment, oxidative cyclization generated new chalcogen-substituted coumarins under metal- and oxidant-free conditions. The model reaction was composed of a graphite anode and a platinum cathode to perform electrochemical oxidative cyclization of phenyl 3-phenylpropionate, thus delivering 3-organoselenyl-2H-coumarin. A range of different electrolytes (n-Bu₄NBF₄, n-Bu₄NPF₆, n-Bu₄NI, n-Bu₄NBr, Et₄NClO₄) in various solvents (MeCN, DMF, DCE, HFIP) were screened. A variation in the constant current from 15 mA resulted in decreased reactivity. The scope of the electrochemical oxidative reaction includes the investigation of various alkynoates with diselenides or disulfides. The para-substituted phenoxy ring bearing both electron-rich (Me, Et, t-Bu) and electron-deficient (F, Cl, Br, CF₃, Ac) groups demonstrated complete tolerance under the optimized conditions. In addition, the substrates incorporating alkyl (Me, Et) and aryl substituents at the alkyne moiety also showed high compatibility; however, when R² = H, no reaction occurred. Pleasingly, the ortho-methyl substituted alkynoate produced the cyclized product in 75% yield. On the other hand, both aliphatic and aromatic diselenides were smoothly coupled to alkynoates. The reaction of 2-naphthyl alkynoate also gave the coumarin product in 75% yield. Furthermore, disulfide also exhibited good tolerance under electrochemical oxidative cyclization conditions to afford the desired products in 53%–56% yields. This green protocol could also be performed at the 5 mmol scale generating the corresponding product in 58% yield.

2.2.2. Synthesis of chromones. Liu and co-workers²²² developed an organocatalytic intramolecular Stetter-type hydroacylation reaction between an aldehyde and activated alkynes to produce chromones ²³₄, ²³₅ (Scheme 60). A range of parameters including N-heterocyclic carbene, bases, and solvents were tested to generate the optimized reaction conditions. After careful investigation, carbene (20 mol%), triethyl-
amine (20 mol%) and DMF solvent were identified as the optimized conditions. Using these conditions, the scope and generality of the reaction were tested. A diverse majority of salicylaldehydes incorporating electron-rich and electron-deficient groups delivered the desired chromones in good yields. Halogens at the phenyl ring were also successfully tolerated. On the other hand, alkynes bearing a ketone functionality as the electron-deficient substituents (acetyl, trimethylacetyl, benzoyl, phenylacetyl) were efficiently used, delivering the desired products in 66–74% yields.

The proposed mechanism for this transformation starts with the nucleophilic attack of carbene on the electrophilic carbonyl carbon of the aldehyde which on proton transfer results in an acyl anion equivalent (Breslow intermediate). The subsequent attack of a nucleophilic carbon on an activated alkyne thus generates a new carbon–carbon bond. Proton exchange followed by elimination of the catalyst produced the exocyclic kinetic product which underwent isomerization to afford the aromatized product (Scheme 61).

Xue and co-workers demonstrated the synthesis of chromones while investigating the phosphine-catalyzed α-addition reaction of 1,3-diketones with terminal alkynoates (Scheme 62). 1,3-Dicarbonyl substrates containing an alkyl group provide chromone derivatives whereas aromatic substituents lead to the formation of vinylesters, important building units in the construction of nitrogen-containing heterocycles and other functionalized molecules.

Based on the literature reports, the authors proposed the reaction mechanism which starts with the nucleophilic addition of PPh₃ to the electron-deficient alkyne to form zwitierion. 1-(α-Hydroxyaryl)-1,3-diketone was deprotected to produce and 242. Subsequent proton transfer in 242 produced 243 which then adds to 241 to furnish 244. A second proton transfer gave 245 which was cyclized via an intramolecular nucleophilic addition to produce 246, a key divergent intermediate for both products. In the first case, when R¹ is an aryl group, a carbon–carbon bond cleavage in intermediate 246 led to 247, which on elimination of the phosphine catalyst furnished product 237. However, when R¹ is an alkyl group, another proton transfer followed by the elimination of PPh₃ gave 249. The corresponding heterocyclic product was furnished on dehydration of 249. Notably, the divergent reactivity towards the formation of different products was possibly dependent on the stabilization of the intermediate (Scheme 63).

2.2.3. Synthesis of chromanones. Xue and co-workers developed a DABCO-catalyzed condensation method for the synthesis of chromanones from ortho-acylphenols and terminal alkynoates where KOt-Bu was employed in the
second step of this one-pot process for intramolecular cyclization (Scheme 64). During the course of reaction optimization, the addition of DABCO and KOt-Bu in two subsequent steps was found to be critical as a trace amount of the product was observed when both were added simultaneously. A diverse range of chromanone products were furnished using various ortho-acylphenols bearing different functional groups. Substrates endowed with electron-rich substituents on the aromatic part performed better compared to electron-deficient substituted ortho-acylphenols. Notably, the multi-substituted ortho-acylphenols were also found to be viable substrates producing the corresponding products in moderate yields.

2.2.4. Synthesis of furans. Deng and Chuang developed a multi-component approach involving diynedioates, phosphines and aromatic aldehydes delivering a range of multisubstituted furans bearing phosphorus ylides in good yields (Scheme 65). The reaction sequence involves the nucleophilic attack of phosphine on diynedioates generating a 1,5-dipolar species which undergoes addition to aromatic aldehydes followed by 5-endo-dig cyclization. Various reaction conditions were explored to optimize the yield and selectivity of the product.
conditions were screened, and the desired product was isolated in an optimal yield when o-dichlorobenzene was employed as a solvent at 60 °C. The scope of the reaction was examined using various phosphines, diynedioates, and aldehydes. Electron-rich phosphines performed better producing the corresponding furans in 81–85% yields compared to electron-deficient phosphines. Furan products were also isolated in comparable yields when heteroaromatic phosphines were employed. Various substituted benzaldehydes and 4-pyridinedicarboxaldehyde also participated generating the anticipated heterocyclic products in remarkable yields. Moreover, di-n-butyl hexa-2,4-diyndedioate, diethyl hexa-2,4-diyndedioate, and dibenzyl hexa-2,4-diyndedioate delivered the furans in good yields. Notably, the highly nucleophilic phosphines (PMe$_3$ or PBu$_3$) were unreactive under the optimized conditions in chloro, bromo, trifluoromethyl, cyano, nitro, dichloro) at the atmosphere (Scheme 67). Subsequent experiments were performed using these conditions to demonstrate the versatility of the reaction. A range of substituents (methyl, methoxy, fluoro, chloro, bromo, trifluoromethyl, cyano, nitro, dichloro) at the phenyl ring of sulfonium ylides were compatible. 1-Naphthyl and 2-naphthyl bearing sulfonium ylides also produced the desired products in 85% and 75% yields, respectively. Diethyl acetylenedicarboxylate was also successfully reacted with different dimethylsulfonium 2-aryl-2-oxoethylides. The scope was further extended to allyl 2-substituted furan-3-carboxylates using alkyl propynoates and the desired 4-trifluoromethyl-furan-3-carboxylates were constructed in 44–57% yields; however, methyl propynoate remained less reactive and delivered the corresponding furan-3-carboxylate product in 15% yield. This method was also useful to deliver trialkyl furan-2,3,4-tricarboxylates when the reactions were performed at 160 °C under microwave irradiation conditions. Furthermore, dialkyl furan-2,4-dicarboxylates were prepared; however, the regioselectivity was different from those reported in the literature.

In view of the significant influence of the trifluoromethyl or perfluoroalkyl group on the lipophilicity, metabolic stability and permeability of biologically active molecules, trifluoromethylated or perfluoroalkylated furans have gained central importance due to their anti-HIV, antibacterial and antiparasite activities. To access these scaffolds, Zhang, Cao and co-workers developed a one-pot multi-component methodology using isocyanides, methyl perfluoroalkyl-2-ynoates, and aromatic aldehydes. The process operates at room temperature providing an easy access to a diverse range of 2-amino-3-perfluoroalkylfurans in good to excellent yields (Scheme 68). Based on previously developed conditions for the synthesis of perfluoroalkylated cyclopentadienes, the optimization investigation was started using isocyanides, 2-isocyanoo-2-methylpropene, methyl 4,4,4-trifluorobut-2-ynoate and 2-nitrobenzaldehyde as model substrates in dichloromethane. Other solvents such as THF, CHCl$_3$ and toluene produced poor results. The reaction scope survey revealed the compatibility of all the three components. Both aliphatic and aromatic aldehydes incorporating electron-donating and electron-poor groups were employed. The electronic nature of the substituents displayed significant influence on the reactivity with electron-withdrawing groups being more productive in terms of the product yields. Electron-deficient heterocyclic aldehydes (picolinaldehyde) also turned out to be good coupling units. Moreover, various perfluoroalkyl-2-ynoates were also included in the multi-component reaction.

Scheme 66: Proposed mechanism for the formation of polysubstituted furans 260.
Alkynoates with CF₃, C₂F₅, and n-C₃F₇ groups were well tolerated delivering the desired products in high yields. The scope was further expanded to isocyanides bearing tert-butyl, cyclohexyl and 2,4,6-trimethylphenyl groups displaying high reactivity and furnishing the corresponding 2-amino-3-perfluoroalkylfurans in good to excellent yields.

Mechanistically, this multi-component methodology starts with a regioselective Michael addition of isocyanide and methyl perfluoroalk-2-ynoates and aldehydes.

The proposed mechanism is illustrated in Scheme 71 which starts with the addition of DMAP to the electron-deficient alkyne 273 to generate zwitterion 274. Deprotonation of 272 followed by proton transfer afforded intermediate 278 which on Michael addition to 276 furnished compound 279. Another proton transfer followed by the loss of N₂ delivered intermediate 281 which underwent another proton transfer to form 282. Intramolecular nucleophilic addition of 282 produced intermediate 283, followed by proton transfer and elimination of DMAP to afford the heterocyclic product 274.

2.2.6. Synthesis of dioxanones and benzodioxinones

Taran and co-workers²⁷² introduced a one-step phosphine-catalyzed method for the preparation of 1,4-dioxane-2-one 288 and 1,4-benzodioxin-2-one derivatives 289 from 1,2-diol starting materials 286, 287 (Scheme 72). A range of diols were efficiently converted to the desired products at room temperature. The methodology was further extended to the synthesis of 1,4-benzodioxin-2-ones using the phosphate-catalyzed α-O-addition and transesterification reaction. The title products were obtained as Z-isomers in acceptable yields. The reactivity of the reaction was found to be highly dependent on the pKₐ of the diol and/or the nucleophilicity of the corresponding catecholate. Electron-rich catechols furnished the best results compared to electron-deficient catechols.

2.2.7. Synthesis of lactones

Yu, Pu and co-workers²⁷³ discovered a convenient protocol for the asymmetric synthesis of 4-amino-2(5H)-furanones 293 involving alkyne 290, aldehydes and amines 292 (Scheme 73). The reaction can be performed at room temperature producing the heterocyclic products with high enantioselectivity (84–90% ee). The investigation is based on their previous reports where γ-hydroxy-α,β-acetylenic esters²⁷⁴–²⁷⁸ were synthesized from an enantioselective reaction of methyl propiolate and aldehydes using 1,1’-bi-2-naphthol (BINOL) in combination with ZnEt₂, Ti(O′Pr)₄, and HMPA. In the present approach, these esters were subsequently cyclized with aliphatic amines to produce amino furanones. Various conditions were tested for this two-step process to establish the optimized protocol. Under the optimal reaction conditions, different aldehydes were initially coupled to methyl propiolate followed by the addition of benzylamine to afford 4-amino-2(5H)-furanones. Moderate to good isolated yields were obtained with high enantioselectivity. Linear and branched aliphatic aldehydes were efficiently tolerated along-

Scheme 68 Multi-component synthesis of 2-amino-3-perfluoroalkylfurans from isocyanides, methyl perfluoroalk-2-ynoates and aldehydes.

Scheme 69 Proposed mechanism for the formation of 2-amino-3-perfluoroalkylfurans 268.

Scheme 70 Dimethylaminopyridine-catalyzed synthesis of 2-amino-benzofuran-3(2H)-ones from 2-azido-1-(2-hydroxyphenyl)ethanones and alkynoates.

This journal is © the Partner Organisations 2020
side cyclic and few aromatic amines. Moreover, the use of racemic alkyl- and aryl-substituted acetylenic esters were also investigated for the addition reaction of primary and secondary amines. The corresponding products were isolated in good yields. The synthetic modification of the products illustrated that 3-brominated heterocycle 294 could be accessed when treated with Br₂, although bromination and iodination of 4-amino-2(5H)-furanones using NBS 279 and ICl or I(ppy)₂BF₄ 280–282 were previously known. Similarly, C-acylated product 296 was isolated in an excellent yield (95%) instead of an N-acylated product using trifluoroacetic anhydride at room temperature; however, N-protected product 295 was furnished in 99% yield when the reaction was performed with (Boc)₂O using DMAP at room temperature (Scheme 74).

Zlotin and co-workers 283 investigated the reaction of methyl 4-hydroxyalk-3-ynoates 297 and amines 298 to afford 4-amino-2(5H)-furanones 299 in ionic liquids (Scheme 75). The reaction rate was accelerated many fold while reducing the time and improving the product yield. Several examples were synthesized, and the data were compared with the literature showing the supremacy of the reaction conditions employing ionic liquids. Additionally, the recyclability of IL [bmim][BF₄] was demonstrated in the synthesis of butenolides. Reaction rates and product yields remained unaffected over at least five reaction cycles.

Deng and Chuang 284 reported a series of γ-lactones 203 bearing an α-phosphorus ylide functionality from hex-2-en-4-yneedioic acid dialkyl esters 200, phosphines 201 and aldehydes

Scheme 71 Proposed mechanism for the formation of 2-aminobenzofuran-3(2H)-ones 274.

Scheme 72 Phosphine-catalyzed synthesis of 1,4-dioxane-2-ones and 1,4-benzodioxine-2-ones from 1,2-diols and alkyanoates.

Scheme 73 Asymmetric synthesis of 4-amino-2(5H)-furanones from alkyanoates, aldehydes and amines.
The authors investigated various reaction conditions including solvents (THF, DCE, DCM) at different reaction times and temperatures. Chlorinated solvents were found to be less effective compared to THF. Initially, the reactivity of different phosphines was tested. Triarylphosphines produced the desired lactones in moderate to good yields (55–79%). Electron-donating aryl bearing phosphines generally performed better compared to the electron-withdrawing one whereas heteroaryl phosphine was also a smooth coupling partner, albeit producing the lactone in a lower yield (55%). Moreover, phosphine endowed with an alkyl substituent could only produce the desired product in 38% yield. On the other hand, substituted aldehydes were explored to expand the reaction scope. Electron-deficient aldehydes containing nitro, chloro and nitrile functional groups generally produced efficient results; however, attempts to use alkyl and electron-rich substituted aldehydes remained unproductive.

Chen, Li and co-workers demonstrated a task-specific acidic ionic liquid-catalyzed synthesis of β-enaminolactones. Alkynoates and β-amino alcohols were successfully cyclized to the desired products in ample yields (Scheme 77). The formation of a seven-membered ring involves tandem intermolecular hydroamination and intramolecular transesterification reaction sequences. Diethyl but-2-ynedioate and 2-amino-2-phenylethanol were chosen as model substrates. Initially, various Lewis acid catalysts (AlCl₃, ZnCl₂, FeCl₃, Yb(OTf)₃, Cu(OTf)₂, Zn(OTf)₂) were tested and the results indicated that Cu(OTf)₂ and Zn(OTf)₂ exhibit good reactivity. As the role of the acid catalyst was found to be critical, the sulfonic-functionalized ionic liquid (TSFIL-1 : [TMBSA]HSO₄) was tested due to its many advantages and it showed an excellent reactivity and produced the desired lactone in 94% yield. Other parameters including variation of solvents and temperature exhibited inferior results. Under the established reaction conditions, the flexibility of this protocol was assessed. Both alkynoates and β-amino alcohols bearing different groups were employed. Two-point structural diversity was present in each component of this methodology. Substrates with various alkyl and aryl substituents were smoothly converted to their corresponding lactones in moderate to good yields. Primary and secondary alcohols also produced promising results. In general, this method showed a broad substrate scope with good functional group tolerance and operational simplicity.

Waldmann, Kumar and co-workers developed organocatalyzed tricyclic benzopyrones involving a [4 + 2] annulation reaction of 3-formylchromones with electron-deficient alkynes (Scheme 78). Under the optimized reaction conditions, a varied range of substituents were endured at the chromone ring and alkynoates. Unsubstituted, alkyl- and alkoxy-substituted chromones and alkynoate esters were efficiently coupled to produce pyran-fused chromones in good yields. Moreover, acyclic oxadienes were also employed as substrates with acetylene carboxylates to generate [4 + 2] annulation products that underwent a subsequent Claisen

Scheme 74 Synthetic modification of 4-amino-2(5H)-furanone 293.

Scheme 75 Synthesis of 4-aminofuran-2(5H)-ones from methyl 4-hydroxalkyl-3-ynoates and amines in ionic liquids.

Scheme 76 Multi-component synthesis of γ-lactones featuring α-phosphorus ylides from enynes, phosphines and aldehydes.

Scheme 77 Task-specific acidic ionic liquid-catalyzed synthesis of β-enaminolactones from alkynoates and β-amino alcohols.
rearrangement to afford dehydropyrrans 311. A range of different substituents on both starting materials were successfully tolerated. Next, the asymmetric version of this transformation was explored by employing a β-isquinidine catalyst.

2.2.8. Synthesis of pyrones. Jiang and co-workers297 developed a multi-component methodology involving the hydroalkylation of alkynoates 312 and activated methylenes 313 for the preparation of functionalized 2H-pyran-2-ones 314 (Scheme 79). The target products were obtained in ample yields. Various reaction parameters including temperature, alkaline additives and solvents were screened to obtain the appropriate reaction conditions. The use of 1.0 equivalent of sodium hydroxide in 1,4-dioxane solvent at 80 °C proved to be the optimal conditions producing the desired heterocycle in 89% yield; however, the further experimentation was conducted using 10 mol% of sodium hydroxide as 88% yield was observed. Using these conditions, the scope of the methodology was examined. Several active methylene compounds were successfully coupled to alkynoates to generate six-membered oxygen heterocycles in good yields. Moreover, when ethyl 3-phenylprop-2-ynoate and diethyl propanedioate and formaldehyde were coupled in one pot, diethyl 6-oxo-4-phenyl-2H-pyran-3,3(6H)-dicarboxylate 315 was obtained in 82% isolated yield. Trisubstituted 2H-pyran-2-ones were only obtained when dibenzoylmethane, 1-phenyl-1,3-butanedione, 2,4-pentanedione, and ethyl acetoacetate were used as activated methylene partners.

Scheme 80 illustrates the possible mechanistic pathway which starts with the activation of 1,3-dicarbonyl compound 313 to form 316. Nucleophilic addition of 316 to alkynoate 312 produced intermediate 317 which could possibly be present in different resonance structures, such as 318, 319, and 320. Nucleophilic attack on the carbonyl carbon delivered product 314. In the presence of an aldehyde, intermediate 320 was converted to intermediate 322. An intramolecular oxygen nucleophilic cyclization furnished the desired product 315.

2.3. Synthesis of saturated oxygen-containing heterocycles

Chung and Fu298 established that chiral spiro phosphine ligand 323 can transform a variety of hydroxy-2-alkynoates 324 into various saturated oxygen heterocycles 325 (tetrahydrofurans, tetrahydropyrans, dihydrobenzopyrans) with good enantioselectivity (Scheme 81). Using the optimized reaction conditions, a variety of substrates were converted to products with high enantioselectivity and good yields.

In the same year, Pedduri and Williamson299 reported a phosphine-catalyzed reaction to access various functionalized tetrahydrofurans 328, 329 using electron-deficient propargyl alcohols 326 and Michael acceptors 327 as starting materials (Scheme 82). Several reaction conditions were investigated to identify the suitable conditions. Under the optimized conditions, alkylidene-, arylidene-, and heteroarylidene malonate/Meldrum’s acid-based alkene derivatives were included to assess the diversity of the reaction. The corresponding heterocyclic products were furnished in good yields as a separable E:Z mixture.

Osman and Koide300 developed a new synthetic route for the synthesis of functionalized cyclic acetals 333 using 2-pyridinecarboxaldehyde 332 and γ-hydroxy-α,β-acetylenic esters 331 (Scheme 83). The methodology operates under mild reaction conditions avoiding the need for any additive. After optimizing the suitability of various solvents, methanol was identified to produce the highest conversion and was chosen for subsequent experiments to explore the reaction scope. Various acetylenic esters bearing cyclohexyl, tert-butyl, aromatic and hetero-aromatic substituents were successfully tolerated. The post-synthetic functionalization of the products was also performed under hydrogenolysis conditions301 (Scheme 84).
2.4. Synthesis of sulfur-containing heterocycles

Sulfur-containing heterocycles constitute the core structure of various pharmaceuticals, natural products and bioactive pharmacophores. These heterocycles also find wide applications in synthetic organic chemistry. Due to their widespread utility, facile and efficient synthetic methods are always required to meet the requirements in several drug discovery programs.

2.4.1. Synthesis of iminothiazolidin-4-ones and 2-thioxo-4-thiazolidinones. Taran and co-workers developed an efficient and facile phosphine-catalyzed approach for the construction of sulfur heterocycles (Scheme 85). This methodology involves a tandem umpolung addition and intramolecular cyclization of bifunctional sulfur pronucleophiles on aryl propilates. The method appeared to tolerate a diverse range of substituents.

Scheme 80 Proposed mechanism for the formation of pyranones 314, 315.

Scheme 81 Phosphine-catalyzed enantioselective synthesis of oxygen heterocycles.

Scheme 82 Phosphine-catalyzed synthesis of functionalized tetrahydrofurans using electron-deficient propargyl alcohols and Michael acceptors.

Scheme 83 Cyclic acetal formation between 2-pyridinecarboxaldehyde and γ-hydroxy-α,β-acetylenic esters.
of substrates (sulfur–oxygen or sulfur–nitrogen pronucleophiles) leading to 5- and 6-membered sulfur-containing heterocycles 339, 340. Mercapto alcohols, amines, and amides all worked well to provide the desired arylidene heterocycle Z isomers in moderate to good yields. Moreover, thioureas can also be employed as bifunctional S,N-pronucleophiles producing 2-iminothiazolidin-4-one compounds. Finally, the synthesis of rhodanine (2-thioxo-4-thiazolidinone) was accomplished using dithiocarbamates and aryl propiolates under similar reaction conditions. A variety of amines were reacted with carbon disulfide to generate dithiocarbamates in situ which were used to afford the desired cyclized product.

2.4.2. Synthesis of thiohydantoins. Loreau, Taran and co-workers304 made use of arylpropiolates 341 and thioureas 342 for the synthesis of thiohydantoins 343, 344 (Scheme 86). The present methodology operates via phosphine-catalyzed tandem umpolung addition and an intramolecular cyclization process. This method is different from the classical approach which involves two-step synthesis, aiming at the preparation of the thiohydantoin moiety followed by a Knoevenagel condensation with aldehydes.305,306 This concept originates from the dual reactivity of thioureas where α-N-addition occurs at aryl propiolates under Bu₃P catalysis followed by cyclization to produce thiohydantoins. With the optimized reaction conditions in hand, a range of thioureas were employed as coupling partners.

- **Scheme 84** Synthetic modification of cyclic acetals 333.

- **Scheme 85** Phosphine-catalyzed synthesis of sulfur heterocycles.

- **Scheme 86** Phosphine-catalyzed synthesis of thiohydantoins from thioureas and arylpropiolates.
with aryl propiolates to afford numerous 5-arylidene-2-thiohydantoins. The regioselectivity was dependent on the nature of the substituents present in the thiourea functionality. Alkyl, aryl and hetero-aryl bearing thioureas participated efficiently. However, there is a competition in the \(\alpha \)-N-addition step between the two nitrogen atoms of the thiourea functionality and the reactivity of the NH groups is influenced by steric hindrance, nucleophilicity and \(pK_a \). Despite some limitations (poor yield and a mixture of regioisomers in certain cases), this method presents some advantages over the reported methods.

2.4.3. Synthesis of thiophenes. Liu and co-workers\(^\text{307}\) demonstrated a facile and convenient approach to access a small library of decorated thiophenes 347 \(\text{via} \) the \([2 + 2 + 1]\) cycloaddition reaction. A variety of alkynoates 345 and elemental sulfur 346 coupled together to generate the title products (Scheme 87).

2.5. Synthesis of O,N-heterocycles

2.5.1. Synthesis of oxazines. Jiang and co-workers\(^\text{308}\) described a multi-component one-pot synthetic route for the synthesis of 3,4,5-trisubstituted-3,6-dihydro-2\(H\)-1,3-oxazines 351 from readily available starting materials (alkynoates 348, anilines 349, formaldehyde 350). The formation of a six-membered N,O-heterocyclic scaffold occurs \(\text{via} \) a Brønsted acid-catalyzed reaction sequence involving domino hydroamination/Prins reaction/cyclization/dehydration (Scheme 88). After successful identification of the optimized reaction conditions, the scope of the multi-component methodology was explored. A range of anilines and electron-deficient alkynes were employed alongside formaldehyde delivering the desired oxazines in good to excellent yields. Substituents at different positions of anilines were successfully tolerated; however, \(\textit{ortho}\)-substituted anilines remained reluctant to produce the desired products.

Curini and co-workers\(^\text{309}\) described the same methodology and produced 3,4,5-trisubstituted-3,6-dihydro-2\(^H\)-1,3-oxazines 352 \(\text{via} \) the ytterbium triflate promoted reaction sequence (Scheme 89). This methodology differs from the previous report in the use of both aliphatic and aromatic amines while avoiding excess formaldehyde and strong mineral acids like HCl.

2.5.2. Synthesis of oxazinones. Jiang and co-workers\(^\text{310}\) developed a highly efficient three-component methodology involving but-2-ynedioic acid diethyl esters 353, amines 354 and aldehydes 355 to furnish polysubstituted ethyl 2,5-dihydro-2\(^H\)-1,3-oxazine-6-one-4-carboxylates 356 in good to excellent isolated yields (Scheme 90). A range of solvents (MeCN, PhMe, Et\(_2\)O, DCM, THF, EtOH, H\(_2\)O) and bases (Na\(_2\)CO\(_3\), Et\(_3\)N, NaOH, KOH) were screened. A mixture of MeCN and H\(_2\)O (10 : 1) was the best choice with the isolation of the heterocyclic product in 78% yield. A variety of amines and aldehydes were utilized to explore the reaction scope. In the case of aliphatic aldehydes, the corresponding products could be isolated in less than three minutes and in excellent yields. Both electron-rich and electron-deficient substituents at the aryl rings of both amines and aromatic aldehydes were also successful coupling partners.

2.6. Synthesis of fused heterocycles

2.6.1. Synthesis of imidazo[1,2-\(a\)]pyridines. Chen, Wang and co-workers\(^\text{311}\) developed a highly efficient transition-metal-free cyclization methodology for the preparation of 2,3-diarylimidazo[1,2-\(a\)]pyridines 359 involving 2-aminopyridines 357 and alkynoates 358 (Scheme 91). These starting materials were found to be compatible under the optimal conditions.
The scope and limitations of the one-pot methodology were explored using a variety of both components. Electron-donating and electron-withdrawing groups were successfully tolerated on the alkynoate. In addition, the effect of different groups at various positions of the 2-aminopyridine moiety was also tested. Halogens including fluoro, chloro, and bromo substituents were also well tolerated. Alkynoates bearing a heteroaryl ring also gave the desired product in good yields; however, in certain cases, a longer reaction time was required.

Mechanistically, 2-aminopyridine 357 was reacted with alkynoate 358 to produce intermediate 360 via intermolecular Michael addition which upon an intramolecular [2 + 2] cycloaddition reaction produced intermediate 362. The desired product 359 was furnished on cleavage of the carbon–carbon bond of the cyclobutene ring via a ring-opening reaction. Diethyl but-2-enedioate byproduct 363 was detected with GC-MS (Scheme 92).

2.6.2. Synthesis of isoindolin-1-ones. Zhou, Lu and co-workers demonstrated a phosphine-catalyzed [3 + 2] annulation reaction involving electron-deficient alkynes 364 and N-hydroxyphthalimide 365 to provide a facile access to 3a-hydroxyisoxazolo[3,2-a]isoindol-8(3aH)-ones 366 (Scheme 93). The target fused products were isolated in remarkable yields. Various phosphines, solvents and temperatures were screened. Isoindolin-1-one products were isolated in excellent yields using triphehnylphosphine (20 mol%) in DMF at room temperature. Under the optimized conditions, the scope of the reaction was explored delivering a variety of fused products in high yields. Initially, various terminal alkynoates were tested. A variety of ester substituents participated efficiently. The aromatic ring of benzyl propiolates bearing electron-donating and electron-withdrawing functional groups was found to be compatible. A long aliphatic chain (n-hexyl) substituted alkynoate showed no reactivity; however, ethyl 2-butylnoate and ethyl 3-phenylpropio late furnished the corresponding 3a-hydroxyisoxazolo[3,2-a]isoindol-8(3aH)-ones in 55% and 99% yields, respectively. These reaction conditions produce different results to those observed in the literature when the reaction was performed using DMAD and a stoichiometric amount of triphenylphosphate at room temperature in dichloromethane and a pyrroloisoindole compound was isolated.

The authors proposed the mechanism of this transformation which was initiated by the nucleophilic addition of PPh3 to the electron-deficient C=C bond of alkynoate 365 to form zwitterion 367, which was used to deprotonate N-hydroxyphthalimide 364 generating intermediates 368 and 369. Michael addition of 368 to 369 produced intermediate 370. Intramolecular nucleophilic cyclization furnished the cyclized intermediate 371 followed by proton transfer to give 372. Subsequent elimination of PPh3 produced the desired fused product 366 (Scheme 94).

In a subsequent study, the same group reported a metal-free approach to access highly functionalized pyrazolo[3,1-a]isoindol-8(3aH)-ones 375 through a phosphine-catalyzed tandem Michael addition/intramolecular Morita–Baylis–Hillman reaction sequence involving alkynoates 374 and N-amino substituted phthalimide 373 (Scheme 95). Using the optimized reaction conditions, various alkynoates were tested producing the title products in moderate to good yields. Terminal alkynoates were compatible; however, methyl and phenyl substituted derivatives were unreactive. Various elec-
tron-rich and electron-deficient groups at the benzyl ring of propiolates appeared to be well tolerated. However, the presence of a strongly electron-withdrawing nitro group impeded the reaction, producing the corresponding product in 27% yield.

2.6.3. Synthesis of furo-thiazepines. Ma and co-workers318 developed a three-component method involving thiazole or benzothiazole carbenes376, substituted acetyl chloride377 and electron-deficient alkynes378 resulting in the formation of the polysubstituted heterocyclic scaffold furo[2,3-c]thiazepine379. The title products were isolated in good yields using these simple and readily available starting materials (Scheme 96). Based on the previous efforts on the use of thiazole carbenes,319–325 the authors investigated a domino approach to construct a fused heterocyclic skeleton.326 For the investigation of reaction conditions, a thiazolium salt and α-methyl phenylacetyl chloride were used that generated thiazole carbene and ketene in situ.172 The effect of several typical bases such as NEt\textsubscript{3}, i-Pr\textsubscript{2}NEt, DBU, and NaH was also studied. i-Pr\textsubscript{2}NEt in dichloromethane provided the best result. Using the optimized reaction conditions, a diverse range of disubstituted acetyl chlorides were reacted with the thiazolium salt. The corresponding products were isolated in good to excellent yields. Substrates incorporating electron-rich and electron-deficient functional groups participated efficiently; however, the electron-poor system produced sluggish yields. The size of the alkyl group was also important as the isopropyl substituted substrate did not produce any product whereas methyl and ethyl substituents were completely productive. Dialkyl substituted substrates were also equally reactive producing the desired compounds in good yields. The reaction scope was further extended using various thiazolium salts and similar reactivities were observed in terms of the yields of the fused products. Furthermore, two different procedures were developed to investigate various electron-deficient alkynes and in most of the cases better yields were observed where ketenes were used. The authors also tested the benzothiazole carbenes and tricyclic heteroaromatic compounds were furnished in moderate yields. The synthetic utility of the selected derivatives was investigated in the Diels–Alder reaction with arynes to deliver 1,4-thiazepine-fused 7-oxanorbornadienes in excellent yields.327–329

2.6.4. Synthesis of tetrahydropyrazolopyrazolones and tetrahydropyrazolopyridazinones. Zhong, Guo and co-workers330 unveiled a facile approach for the preparation of tetrahydropyrazolopyrazolones382 and tetrahydropyrazolopyridazinones383 \textit{via} phosphine-catalyzed [3 + 2] and [3 + 3] annulation reactions of azomethine imines380 and ethyl 2-butyanoate381 (Scheme 97). This coupling reaction was optimized by using ethyl 2-butyanoate with 1-(p-nitrobenzylidene)-3-oxopyrazolidin-
Phosphine-catalyzed [3 + 2] and [3 + 3] annulations of azomethine imines with ethyl 2-butyneoate.

Yields. Using the optimized conditions, DMAD (1.2 mmol), isatylidene malononitrile (ethyl cyanoacetate) was furnished in moderate to good yields. Interestingly, the best results were achieved when dimethylphenylphosphine was employed with the isolation of 382 and 383 in 65% and 14% yields, respectively, the authors were interested to isolate both products due to their biological significance;\(^3\) therefore, the subsequent experimentation was performed with tributylphosphine as the catalyst. A range of azomethine imines were annulated with ethyl 2-butyneoate in dichloromethane at room temperature. Tetrahydropyrazolopyrazolone and tetrahydropyrazolopyridazine derivatives were obtained in moderate to good yields. Both electron-rich and electron-deficient substituents at the phenyl ring were compatible. Strongly electron-deficient groups (nitro, cyano) at the ortho- or para-position of the phenyl ring provided the target products in relatively much higher yields compared to electron-rich and weakly electron-withdrawing substituents, albeit with poor chemoselectivities toward the [3 + 2] annulation product. Moreover, azomethine imines bearing 1-naphthyl, 2-naphthyl and cyclohexyl groups also underwent a smooth reaction with 2-butyneoate, producing the corresponding pyrazolidinone derivatives.

2.6.5. Synthesis of spirooxindoles. Yan and co-workers\(^3\) developed a divergent three-component approach using isatylidene malononitrile (ethyl cyanoacetate) 384 and triphenylphosphine 385 (Scheme 98). Depending upon the addition of the third component (but-2-ynedioate 386 or hex-2-en-4-ynedioate 387) in dimethoxyethane, triphenylphosphanylidene spiro[cyclopentane-1,3'-indolines] 388 and spiro[cyclopent[2]ene-1,3'-indolines] 389 were furnished in moderate to good yields. Using the optimized conditions, DMAD (1.2 mmol), isatylidene malononitrile (ethyl cyanoacetate, 1.0 mmol), and PPh\(_3\) (1.0 mmol) in DME (10 mL) at 0 °C → r.t. for 2 h, various spirocyclic compounds were accessed. Similarly, dialkyl hex-2-en-4-ynedioates were also employed to expand the substrate scope and the relevant products were isolated in good yields.

The mechanism for the formation of spiro[cyclopentane-1,3'-indolines] 388 is illustrated in Scheme 99. Intermediate 390 was furnished via a 1,4-dipolar addition reaction of PPh\(_3\) 385 and DMAD 386,\(^3\) which then added to isatinyldiene malononitrile 384 and delivered the intermediate 391. Subsequently, an intramolecular nucleophilic substitution reaction of the carbanion to alkoxide in the ester furnished the cyclic intermediate 392 which on 1,3-arrangement of the triphenylphosphanyl cation led to carbonium intermediate 393. The desired product was obtained by the coupling of carbonium 393 with methoxide in solution.

Scheme 100 illustrates the mechanistic pathway for the formation of product 389 in line with the literature precedents.\(^4\) Addition of PPh\(_3\) 385 to hex-2-en-4-ynedioate 387 furnished 1,3-dipolar zwitterionic intermediate 394 followed by the addition to isatinyldiene malononitrile 384 leading to the formation of adduct 395. Subsequently, an intramolecular Michael addition of the carbanion to the 1,3-diene holding a stronger electron-deficient triphenylphosphanyl cation afforded the cyclized intermediate 396. Next, intermediate 397 was formed from 396 by allylic arrangement of the carbanion. Finally, the target product 389 was obtained via phosphorus ylide transfer.

In a subsequent study, isatin-derived \(\alpha,\beta\)-unsaturated ketones 398 were cyclized with alkynoates 399 providing access to various cyclopentene spirooxindole compounds 400 using the previously optimized conditions (Scheme 101). The title products were isolated in good to excellent yields with high regioselectivity and moderate to high diastereoselectivities (up to 20:1 dr). This methodology provides biologically active spiro-(cyclopentene) oxindoles featuring three contiguous stereocenters, including the quaternary stereogenic center joining the two rings. Similar to previous efforts, good functional group tolerance and structural diversity were observed.\(^3\)

2.6.6. Synthesis of spirocyclic oxindole-butenolides. Li, Jia and co-workers\(^4\) explored a multi-component methodology to produce spirocyclic oxindole-butenolides 404 via intramolecular [2 + 2 + 1] cycloaddition involving easily accessible...
starting materials (isocyanides 401, alkynoates 402 and isatins 403). This atom-economical approach operates through a Michael addition–nucleophilic addition–intramolecular cyclization sequence delivering the title products with good stereoselectivity (Scheme 102). After identifying the suitable conditions, the scope of the reaction with regard to all the three components was envisioned. The first point of variation includes the use of various aromatic isocyanides where sterically encumbered isocyanides were found to be less potent. Next, the scope of various isatins was examined carrying electron-neutral, electron-poor and electron-rich substituents on the aryl component. Moreover, a range of protecting groups on the indole nitrogen also proved to be viable and remained critical for the good conversion to the products. Furthermore, the coupling of [2 + 2 + 1] cycloaddition with a hydrolysis sequence led to the insertion of CO in a one-pot fashion obviating the need to achieve carbonylation under metal catalysis (product 405).

cyclopentene spirorhodanine derivatives in high yields and excellent enantioselectivities using alkynoates and 5-arylidene-3-(tert-butyl)-2-thioxothiazolidin-4-ones in the presence of PBu₃ (Scheme 103). Ethyl 5-phenylpent-2-ynoate and 5-phenylidene-3-(tert-butyl)-2-thioxothiazolidin-4-one were chosen as model substrates to perform the optimization studies. The reactions were carried out using various phosphine catalysts (PPh₃, PPh₂Me, PBu₃, DPPE, DPPP, DPPB) in different solvents (PhMe, DCM, THF, CHCl₃, MeCN, MTBE) at room temperature. However, tributylphosphine (PBu₃) produced the cycloaddition product cyclopentene spirorhodanines with 95% yield and excellent diastereoselectivity (dr: >20 : 1) in toluene after 24 h. Further attention was paid to explore the scope of this spirocyclization using the optimized reaction conditions. A range of different alkynoates and 5-arylidene-3-(tert-butyl)-2-thioxothiazolidin-4-ones were coupled. The aryl component of rhodanine bearing electron-rich and electron-deficient substituents at various positions was tolerant to the optimized conditions. Disubstitution at the aryl ring was also compatible. In all cases, the desired products cyclopentene spirorhodanines were isolated in good to high yields with excellent diastereoselectivities (>20 : 1 dr). 5-Arylidene rhodamine substrates containing naphthyl and thienyl groups also provided the corresponding products with smooth sequential cyclization in 87% and 99% yields and with excellent diastereoselectivities (>20 : 1 dr). However, when the benzyl group in the alkynoate was changed to a phenyl substituent, the reaction outcome was excellent in terms of the yield (81–93%) but with poor diastereoselectivities, signifying that the benzyl group in the alkynoates remains critical for achieving a high diastereoselectivity.

The scope was further extended using the one-pot multi-component methodology. Cyclopentene 5-spirorhodanine compounds were accessed via phosphine-catalyzed one-pot sequential [3 + 2]/[3 + 2] cycloaddition. Ethyl 5-phenylpent-2-ynoate, phenylethylpropiolate benzylamine and carbon disulfide were used to optimize the reaction conditions. As the alkynoate bearing a homobenzyl group was critical for high diastereoselectivity, it was kept unchanged with carbon disulfide while changing the structural diversity on the other two components of the four-component methodology. Methyl, ethyl and fluoro substituents at the para-position were tolerated whereas benzylamine, n-butyamine and n-propylamine were employed. The corresponding products were obtained in 74–92% yields with excellent diastereoselectivities (>20 : 1 dr) except para-fluoro substituted spirocyclic rhodanine that was furnished with low diastereoselectivity (6 : 1 dr).

In line with the literature findings (Gabillet et al., 2007; Yang et al., 2013; Gabillet et al., 2014), the authors proposed the reaction mechanism for this spirocyclization methodology as shown in Scheme 104. Initially, a nucleophilic attack of the phosphine on phenylethylpropiolate produced the phosphonium salt (zwitterionic intermediate) followed by the addition of an amine and carbon disulfide adduct to generate intermediate. Proton transfer followed by intramolecular cyclization delivered intermediate. Subsequent β-elimination of the catalyst furnished the phenylidene rhodamine (cycle A). On the other hand, the nucleophilic attack
of the regenerated catalyst PBU₃ on ethyl alkynoate gave mono-

zwitterion 416, which is in equilibrium with intermediate 417. The addition of phenylidene rhodanine 407 to 417 generated intermediate 418. Intramolecular cyclization led to phosphor-

ane 419 which on elimination of the catalyst furnished the desired product 408 (cycle B).

2.7. Divergent reactivity of alkynoates

Mbofana and Miller³⁵⁴ reported a phosphine-catalyzed annula-

tion methodology involving 2-alkynoates 420 and α-keto esters 421 to generate substituted cyclopentene products 422, 423 (Scheme 105). Initially, a range of phosphines were tested to obtain the desired products in optimal yields. Tricyclohexylphosphine was identified as the lead catalyst. The addition of 4 Å molecular sieves to the reaction mixture (to remove the methanol byproduct) led to the formation of the cyclopentene fused product in 76% yield whereas the addition of methanol after 24 h followed by stirring for 3 h generated cyclopentene exclusively in 74% yield. With two different sets of conditions, the scope of monocyclic and bicyclic products was investigated. A range of α-keto esters were employed under the optimized reaction conditions. Electron-donating (methyl, methoxy) and electron-withdrawing (chloro) groups were tolerated efficiently; however, methoxy-substituted products were isolated in low yields. Substituents at the para- and meta-poi-
sitions were also cyclized successfully; however, the monosubstituted substrate remained unreactive. With a naphthyl ester, both products were isolated in 68% and 65% yields, respectively.

Based on the literature reports and initial mechanistic experi-

ments, the authors proposed a catalytic cycle for this divergent methodology (Scheme 106). Phosphine coordination to methyl 2-butynoate generated zwitterionic intermediate 424 which on addition of another molecule of methyl 2-butynoate delivered interme-

diate 425.³⁵⁵ Proton transfer followed by an addition reaction with a keto ester led to intermediate 427. Subsequent isomerization and rearrangement produced inter-

mediate 429.³⁵⁶–³⁵⁸ Another proton transfer alongside con-

certed ester group migration and cyclization furnished inter-

mediate 431. Isomerization to 432 followed by deprotonation gave intermediate 433 which underwent cyclization to form intermediate 434. Proton transfer followed by catalyst elimin-

ation furnished the desired cyclopentene fused dihydropyrone heterocycle 422. Methanolysis of 422 generated the monocyclic five-membered product 423.

Das and co-workers³⁵⁹ introduced a distinct multi-com-

ponent approach utilizing the reactivity of nitroarenes 436, for-

maldehyde 437, and dialkyl acetylenedicarboxylates 438 under

\[
\text{Scheme 104 Proposed mechanism for the formation of cyclopentene spirorhodanines 408.}
\]

\[
\text{Scheme 105 Phosphine-catalyzed synthesis of cyclopentene derivatives from 2-butynoate and α-keto esters.}
\]

\[
\begin{align*}
R & = \text{Ph, 4-Me-Ph, 4-OMe-Ph, 2-Cl-Ph, 3-Cl-Ph, 4-Cl-Ph, 2-naphthyl} \\
\text{(cyclohexyl)P} & (50 \text{ mol%) THF, 60 °C, 24 h MeOH, 3 h} \\
\text{MeO} & \text{C} \quad \text{MeO} \\
\text{C} & \quad \text{MeO} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} & = \text{Ph, 4-Me-Ph, 4-OMe-Ph, 2-Cl-Ph, 3-Cl-Ph, 4-Cl-Ph, 2-naphthyl} \\
\text{(cyclohexyl)P} & (100 \text{ mol%) 4 Å Mβ, THF, r.t. 24 h} \\
\text{MeO} & \text{C} \quad \text{MeO} \\
\text{C} & \quad \text{MeO} \\
\end{align*}
\]
indium catalysis (Scheme 107). The reactions were performed in dilute aqueous HCl at room temperature. Dioxopyrrolidines 439 and tetrahydropyrimidines 440 were formed in good to high yields using 1 : 1 : 4 and 2 : 1 : 4 molar ratios of the substrates. Other metals including Sn, Zn, and Fe were also tested in aqueous HCl; however, indium produced the best results both in terms of the yield and reaction time (30–40 min). The primary point of structural variations includes the use of different nitro compounds. Various nitroarenes were employed alongside electron-deficient alkynes and formaldehyde to deliver the corresponding heterocyclic products in good to high yields. Electron-neutral, electron-rich and electron-deficient substituents were tolerated. Mechanistically, the nitroarenes were reduced to aryl amines in the presence of

Scheme 106 Proposed mechanism for the formation of cyclopentene fused dihydropyrone 422 and monocyclic five-membered product 423.

Scheme 107 Multi-component synthesis of polysubstituted pyrrolidines and tetrahydropyrimidines in water.

\[R^1 = \text{Ph, 4-MePh, 4-ClMe-Ph, 4-F-Ph, 4-Cl-Ph, 4-Br-Ph, 3-Cl-Ph, 4-OH-Ph, 3-Me-Ph, 4-CF}_2 \text{Ph} \]
\[R^2 = \text{Me, Et} \]
an In/aqueous HCl system and were further reacted with electron-deficient alkynes and formaldehyde, respectively.

2.8. Application in the synthesis of natural products and pharmaceuticals

This section highlights the use of alkynoates in the synthesis of natural products and pharmaceuticals. Various methodologies have been employed to construct several key intermediates in the synthesis of bioactive complex molecules.

2.8.1. Total synthesis of a norsesquiterpene alkaloid

Reddy and co-workers\(^\text{361}\) reported the first total synthesis of an anticancer norsesquiterpene alkaloid \((R)\)-8-hydroxy-4,7,7-trimethyl-7,8-dihydrocyclopenta[e]isoindole-1,3(2H,6H)-dione \(445\), isolated from the solid culture of the mushroom-forming fungus Flammulina velutipes (Scheme 108). The synthesis of the key enyne intermediate \(442\) from \(\alpha\)-(−)-pantolactone \(441\) followed by the ring-closing metathesis (RCM) using Grubbs’ 1st generation catalyst, the Diels–Alder reaction with dimethyl acetylenedicarboxylate (DMAD) and subsequent treatment with DDQ furnished aromatized compound \(443\) in a moderate yield (≈40%). The hydrolysis of an ester in indane \(443\) with aqueous KOH followed by heating with urea in ethylene glycol provided compound \(444\). Finally, the deprotection of the benzyl group was performed using 10% Pd/C under a hydrogen atmosphere in ethanol delivered the norsesquiterpene alkaloid \(445\).

2.8.2. Synthesis of deoxypodophyllotoxin

Andrus, Ess and co-workers\(^\text{362}\) developed a short seven-step synthesis of deoxypodophyllotoxin \(453\). The ISDA strategy led to the simultaneous formation of the cyclohexyl ring and lactone functionality together with a stereocenter in a single step (Scheme 109). Alcohol \(447\) was prepared from commercial 3,4-methylenedioxyxinnamonic acid \(446\) using Fisher esterification and DIBAL reduction procedures whereas alkyne acid \(449\) was obtained by the Corey–Fuchs reaction using trimethoxybenzaldehyde \(448\) followed by trapping with carbon dioxide. Alcohol \(447\) and alkyne acid \(449\) were reacted under Mitsunobu coupling conditions to afford the electron-rich alkyne allyl ester intermediate \(450\). The ISDA reaction using BHT (1.5 equiv.) in benzonitrile afforded two isomeric products \(451\) and \(452\) in 56% overall yield with 1:1.6 selectivity. Both structures were confirmed through X-ray crystallography. Finally, the reduction of \(452\) using Mg/MeOH conditions provided DPT with cis-stereochemistry.

2.8.3. Synthesis of \((-\)\-)CJ-13,982

Rizzaca and co-workers\(^\text{363}\) reported an efficient and step-economical approach to produce alkyl citrate natural products from a cyclobutene dieter (Scheme 110). The enantiospecific synthesis of \((-\)\-)CJ-13,982 \(459\) was started using optically pure lactone \(454\) \(\text{364}\) (prepared from \((S)\)-(+)\-)hydroxymethyl-\(\gamma\)-butyrolactone) which was transformed into the silyl ketene acetal, and cycloaddition with dimethyl acetylenedicarboxylate (DMAD) afforded the major adduct cyclobutene \(455\). Silyl ether and acetal hydrolysis was achieved using HCl in MeOH followed by oxo-Michael addition, and cyclobutene methanolysis afforded the triester as a single stereoisomer in a good yield. Tosyl protection followed by displacement with NaI and zinc-mediated reductive elimination afforded the key alkyl citrate fragment \(457\). Cross metathesis (CM) with undecene followed by hydrogenation produced the \((-\)\-)CJ-13,982 trimethyl ester \(458\). Subsequent hydrolysis using 5.0 equivalents of 1 M aqueous NaOH in dioxane afforded the desired \((-\)\-)CJ-13,982.

2.8.4. Synthesis of \((R)\)-puraquinonic acid

Elmehriki and Gleason\(^\text{365}\) developed a stereoselective method for the construction of cyclic \(\alpha\)-quaternary stereocenters from biselectrophilic substrates and chiral bicyclic sulfonyl lactam (Scheme 111). Using this method, the total synthesis of \((R)\)-puraquinonic acid \(470\) was achieved in an overall yield of 14%. Vinylation of 3-pentyn-1-ol \(460\) using catalytic mercury\((\alpha)\) acetate was performed to deliver ethyl vinyl ether \(461\). A one-pot sequence involving ene-yne metathesis under Grubbs II conditions forming diene, followed by Diels–Alder cycloaddition with dimethyl acetylenedicarboxylate (DMAD) and oxidation with DDQ afforded arene \(462\) in 42% yield (3 steps). Reduction of the ester groups using LiAlH\(_4\) followed by bromination with phosphorus tribromide produced dibromide \(463\) in 95% yield (2 steps). Spiroalkylation was performed using \(465\) to form \(466\) which was transformed to amide \(467\) after reductive/alkylation with greater than 95 : 5 dr. The hydrolysis of \(467\) using sulfuric acid in 1,4-dioxane provided carboxylic

Scheme 108 Total synthesis of a norsesquiterpene alkaloid.
acid 468 in 90% yield which was oxidized to puraquinonic acid 470 in 84% yield using a combination of peracetic acid and acetic acid in DCM at 0 °C. On the other hand, protection of alcohol in 467 with a MOM group followed by oxidation using peracetic acid and acetic acid in chloroform at room temperature afforded quinone 469 which was transformed to puraquinonic acid 470 using the literature conditions.366

2.8.5. Synthesis of discoipyrrole C. Kurian and Manheri367 reported the synthesis of 1H-pyrrol-3(2H)-ones from the reaction of indolizinones with dimethyl acetylenedicarboxylate which was used in the total synthesis of the anticancer discoipyrrole C 478 (Scheme 112). Isovaleric acid 471 was converted to the corresponding Weinreb amide 472 which underwent pyridine ortho acylation followed by alkylation to provide intermediate 473. Deprotection of the TBS group followed by acylation in the presence of triethylamine afforded 474 which on subsequent tandem amino-palladation, reductive elimination and 1,2-alkyl shift afforded indolizinone 475.368 Coupling of 475 with DMAD provided a mixture of tricyclic compound 476 and 1H-pyrrol-3(2H)-one 477 which on deacetylation delivered the discoipyrrole C 478.

2.8.6. Synthesis of amlodipine. Kim and co-workers369 reported the synthesis of amlodipine 486, a calcium ion channel blocker, using the aza-Diels–Alder reaction between the Knoevenagel adduct 479, methyl butynoate 480 and benzylamine 481 as the starting point. Debenzylation of the Diels–Alder product 482 was achieved under palladium catalysis followed by a selective allylic bromination with good selectivity (>80 : 20, mono : di) using a buffered solution of pyridinium perbromide. An azidoethanol moiety was introduced370 which was reduced by Zn/HCl to produce the racemic amlodipine 486 (Scheme 113).

2.8.7. Synthesis of raltegravir. Raltegravir (496, isentress) is an important pyrimidine-based anti-HIV drug launched by Merck in 2008.371 The structural features of this HIV-integrase inhibitor include a functionalized pyrimidone core flanked by an oxadiazole ring with a terminal para-fluorobenzyl moiety. The synthesis of the central pyrimidone ring was initiated by the amination of acetone cyanohydrin 487 followed by Cbz-
protection of the resulting amine and aminolysis of the nitrile with hydroxylamine to give amidoxime 489. The reaction of 489 with dimethyl acetylenedicarboxylate (DMAD) produced pyrimidine 490 which was N-methylated to form 491. Subsequent amide formation and debenzylation produced 492. Finally, coupling of 492 with the corresponding acid

Scheme 111 Synthesis of (R)-puraquinonic acid.

Scheme 112 Synthesis of discoipyrrole C.
chloride of oxadiazole derivative 495 (prepared via a sequence of reactions) afforded the desired raltegravir 496 (Scheme 114).

3. Conclusion and perspectives

Considering the high proportion of heterocycles/heteroaromatics in numerous natural products, synthetic drugs, commercial pharmaceuticals, agrochemicals and designed bioactive pharmacophores, the development of efficient chemical methodologies providing facile access to architecturally complex structures has remained a formidable challenge for both synthetic and medicinal chemists. In the present review, we summarize the remarkable developments in novel synthetic methods allowing the construction of numerous nitrogen-, oxygen-, sulfur-, and fused-heterocycles as well as hetero-spirocycles from alkynoates as simple, readily accessible and commercially available starting materials under transition-metal-free conditions. The discussion focuses on the investigation of the chemical reactivity of the triple bond directly attached to an electron-withdrawing ester group. The unique and inherent properties such as the electronic bias on the carbon–carbon
triple bond posed by electron-withdrawing groups allow a range of chemical reactions (Wittig, annulations, cycloadditions) to occur, exploiting the reactivity of the zwitterions derived from activated acetylenediesters particularly with nucleophilic trivalent phosphines. In addition, the reactions of acetylenic esters in the presence of phosphines with various carbon-, nitrogen-, or sulfur-based nucleophiles were attempted to deliver heterocyclic scaffolds. Organocatalyzed, photocatalyzed, radical, and Lewis and Brønsted-acid-catalyzed reactions of alkynoates were also investigated. Moreover, the alkynoates were also employed in multi-component reactions involving the unusual reactivity of the isocyanide functionality providing ample opportunities for the generation of complex and diverse drug-like small heterocyclic compounds. The investigation of the optimized reaction conditions, viability of the substrates and coupling partners, functional group tolerance and limitations and mechanistic studies as well as post-synthetic functionalization of the heterocyclic products have been performed. Various reaction sequences such as Michael addition/aza-heterocyclization, hydroamination/ nucelophilic addition/amidation, hydroamination/amidation/ intramolecular cyclization/imine-enamine tautomerization, hydroamination/Knoevenagel condensation/Michael-type addition/intramolecular cyclization, hydroamination/Mannich-type reaction/amine-aldehyde dehydration-cyclization, nucleophilic addition/intramolecular Wittig reaction, radical addition/cyclization, radical tandem phosphorylation/cyclization, nucleophilic addition/5-endo-dig cyclization, Michael addition/intramolecular nucleophilic addition/4π ring opening/intramolecular Michael addition/elimination, intermolecular hydroamination/intramolecular transesterification, umpolung addition/intramolecular cyclization, hydroamination/Prins reaction/cyclization/dehydration, Michael addition/ intramolecular Morita–Baylis–Hillman reaction and one-pot sequential [3 + 2]/[3 + 2] cycloaddition reactions were involved to deliver a range of heterocyclic products.

Despite the broad utility of alkynoates leading to various heterocycles over the past decade, there remain several challenges and unexplored opportunities in the demand to develop more general, efficient, sustainable and practical synthetic methods. We present a selection of recommendations for future work. (1) The hindered substrate scope could further be expanded under mild and green reaction conditions. (2) The effect of substitution on the alkyne component could potentially be envisioned from experimental and computational methods. (3) The installation of possibly transformable groups into impactful drugs and pharmaceuticals should be focused. (4) In light of the recent reports on electrochemical oxidative annulation of alkynoates, the field still retains considerable room for synthetic extensions and substantial improvements. (5) It is evident from the literature findings that the development of asymmetric methods to construct enantioenriched heterocycles using alkynoates needs ample attention to further explore the wider chemical space. (6) The strategic combination of efficient chemical synthesis with enzymatic methods to produce small heterocyclic molecules stands as the future goal. Collectively, there is no doubt that the enriched alkynoate chemistry will continue to grow and offer ample opportunities to both synthetic and medicinal chemists in the generation of diverse heterocyclic frameworks of pharmaceutical interest.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>AQN</td>
<td>Anthraquinone</td>
</tr>
<tr>
<td>BHT</td>
<td>2,6-Di-tert-butyl-4-methylphenol</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-Butyloxycarbonyl</td>
</tr>
<tr>
<td>BINOL</td>
<td>1,1’-Bi-2-naphthol</td>
</tr>
<tr>
<td>BI-OH</td>
<td>1-Hydroxy-1,2-benziodoxol-3(1H)-one</td>
</tr>
<tr>
<td>BI-OAc</td>
<td>1,2-Benziodoxol-3(1H)-one acetate</td>
</tr>
<tr>
<td>Bmim</td>
<td>1-Butyl-3-methylimidazolidin</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>BPO</td>
<td>Benzyl peroxide</td>
</tr>
<tr>
<td>bpy</td>
<td>2,2’-Bipyridine</td>
</tr>
<tr>
<td>CAN</td>
<td>Cerium ammonium nitrate</td>
</tr>
<tr>
<td>CM</td>
<td>Cross metathesis</td>
</tr>
<tr>
<td>CPME</td>
<td>Cyclopentyl methyl ether</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-Diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DABSO</td>
<td>1,4-Diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCB</td>
<td>Dichlorobenzene</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-Dichloroethane</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DEAD</td>
<td>Diethyl acetylenedicarboxylate</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DIAD</td>
<td>Diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>DIBAL</td>
<td>Diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DLP</td>
<td>Dilauroyl peroxide</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>DMAD</td>
<td>Dimethyl acetylenedicarboxylate</td>
</tr>
<tr>
<td>DMAP</td>
<td>Dimethylaminopridine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPP</td>
<td>Diphenylphosphoryl</td>
</tr>
<tr>
<td>Dppb</td>
<td>1,4-Bis(diphenylphosphino)butane</td>
</tr>
<tr>
<td>Dpp</td>
<td>1,2-Bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>Dppp</td>
<td>Diphenylpropylenediphosphine</td>
</tr>
<tr>
<td>DPT</td>
<td>Deoxypodophyllotoxin</td>
</tr>
<tr>
<td>DTBP</td>
<td>Di-tert-butylperoxide</td>
</tr>
<tr>
<td>EDC</td>
<td>N-Ethyl-N’-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>EDG</td>
<td>Electron-donating group</td>
</tr>
<tr>
<td>Equiv</td>
<td>Equivalent</td>
</tr>
<tr>
<td>EWG</td>
<td>Electron-withdrawing group</td>
</tr>
<tr>
<td>EY</td>
<td>Eosin Y</td>
</tr>
<tr>
<td>Hex</td>
<td>Hexyl</td>
</tr>
<tr>
<td>HFIP</td>
<td>Hexafluoroisopropanol</td>
</tr>
<tr>
<td>HIR</td>
<td>Hypervalent iodine reagent</td>
</tr>
</tbody>
</table>
| HMPA | Hexamethy phosphoramid
UV Ultraviolet
TMBSA Tri-methylammonium-butane sulfonate
TMS Trimethylsilyl
TFAA Trifluoroacetic anhydride
TFA Trifluoroacetic acid
TBSCl tert
TEMPO 2,2,6,6-Tetramethyl-1-piperidinyloxy
tert
TBAI Tetrabutylammonium iodide
TBAF Tetrabutylammonium fluoride
TBAC Tetrabutylammonium chloride
TBAB Tetrabutylammonium bromide
SET Single electron transfer
R.T. Room temperature
RCM Ring-closing metathesis
PIDA Phenyliodine(III) diacetate
PMP p-Methoxyphenyl
PPTS Pyridinium p-toluenesulfonate
RCM Ring-closing metathesis
R.T. Room temperature
SET Single electron transfer
TBAB Tetrabutylammonium bromide
TBAC Tetrabutylammonium chloride
TBAF Tetrabutylammonium fluoride
TBAI Tetrabutylammonium iodide
TBHP tert-Butyl hydroperoxide
TEMPO 2,2,6,6-Tetramethyl-1-piperidinyloxy
TBPP tert-Butyl perbenzoate
TBSCI tert-Butyl(dimethyl)silyl chloride
TFA Trifluoroacetic acid
TFAA Trifluoroacetic anhydride
THF Tetrahydrofuran
TMS Trimethylsilyl
TMBSA Tri-methylammonium-butane sulfonate
UV Ultraviolet

Conflicts of interest

There are no conflicts to declare.

References

13 I. Khan, S. Zaib, A. Ibrar, N. H. Rama, J. Simpson and J. Iqbal, Synthesis, Crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines, Eur. J. Med. Chem., 2014, 78, 167–177.
Organic Chemistry Frontiers

Review

51 B. Heller and M. Hapke, The fascinating construction of
50 P. R. Chopade and J. Louie, \([2+2+2]\) Cycloaddition reac-
53 V. Michelet, P. Toullec and Y. J.-P. Genêt, Transition metal-
48 M. Lautens, W. Klute and W. Tam, Transition metal-
49 S. Kotha, E. Brahmachary and K. Lahiri, Transition Metal
56 M. M. Heravi and S. Sadjadi, Recent advances in the appli-
57 P. Thansandote and M. Lautens, Construction of nitro-
43 B. M. Trost, M. U. Frederiksen and M. T. Rudd, Ruthenium-catalyzed reactions—A treasure trove of atom-
44 M. Arisawa, Y. Terada, C. Theeraladanon, K. Takahashi,
M. Nakagawa and A. Nishida, Development of novel reac-
tions using ruthenium carbene catalyst and its application
to novel methods for preparing nitrogen-containing het-
erocycles, \(J. \text{ Organomet. Chem.}, 2005, 690, 5398–5406.\)
45 J. Faller and J. Parr, Lewis acid catalysis by ruthenium
complexes, \(Curr. \text{ Org. Chem.}, 2006, 10, 151–163.\)
46 M. Nishizawa, H. Imagawa and H. Yamamoto, A new cata-
lyst for organic synthesis: Mercuric triflate, \(\text{Org. Biomol. Chem.}, 2010, 8, 511–521.\)
47 S. Kobayashi, M. Sugiuara, H. Kitagawa and W. W.-L. Lam,
Rare-earth metal triflates in organic synthesis, \(\text{Chem. Rev.}, 2002, 102, 2227–2302.\)
48 M. Lautens, W. Klute and W. Tam, Transition metal-
mediated cycloaddition reactions, \(\text{Chem. Rev.}, 1996, 96, 49–92.\)
49 S. Kotha, E. Brahmachary and K. Lahiri, Transition Metal
Catalyzed \([2+2+2]\) Cycloaddition and application in organic
50 P. R. Chopade and J. Louie, \([2+2+2]\) Cycloaddition reactions
51 B. Heller and M. Hapke, The fascinating construction of
pyridine ring systems by transition metal-catalysed
\([2+2+2]\) cycloaddition reactions, \(\text{Chem. Soc. Rev.}, 2007, 36, 1085–1094.\)
52 M. Meldal and C. W. Tornøe, Cu-catalysed azide-alkyne
53 V. Michelet, P. Toulec and Y. J.-P. Genêt, Cycloisomeriza-
tion of 1,\(n\)-enynes: Challenging metal-cataly-
ized rearrangements and mechanistic insights, \(\text{Angew. Chem., Int. Ed.}, 2008, 47, 4268–4315.\)
54 P. Belmont and E. Parker, Silver and gold catalysis for
55 R. Chinchilla and C. Najera, The Sonogashira reaction: A
booming methodology in synthetic organic chemistry,
\(\text{Chem. Rev.}, 2007, 107, 874–922.\)
56 M. M. Heravi and S. Sadjadi, Recent advances in the appli-
cation of the Sonogashira method in the synthesis of hetero-
cyclic compounds, \(\text{Tetrahedron}, 2009, 65, 7761–7775.\)
57 P. Thansandote and M. Lautens, Construction of nitro-
gen–containing heterocycles by C–H bond functional-
58 R. Jazdar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer and
O. Baudoin, Functionalization of organic molecules by
transition-metal-catalyzed C\((\text{sp}^3)\)-H activation, \(\text{Chem. –
59 E. M. Beccalli, G. Broggingi, A. Fasana and M. Rigamonti,
Palladium-catalyzed C–N bond formation \(\text{via} \) direct C–H
bond functionalization. Recent developments in hetero-
cyclic synthesis, \(\text{J. Organomet. Chem.}, 2011, 696, 277–295.\)
60 A. Deiters and S. F. Martin, Synthesis of oxygen- and
nitrogen-containing heterocycles by ring-closing metathesis,
\(\text{Chem. Rev.}, 2004, 104, 2199–2238.\)
61 T. J. Donohoe, A. J. Orr and M. Bingham, Ring-closing
metathesis as a basis for the construction of aromatic
compounds, \(\text{Angew. Chem., Int. Ed.}, 2006, 45, 2664–2670.\)
62 T. J. Donohoe, L. P. Fishlock and P. A. Procopiou, Ring-
closing metathesis: Novel routes to aromatic heterocycles,
63 D. M. D’Souza and T. J. J. Muller, Multi-component syn-
theses of heterocycles by transition-metal catalysis,
\(\text{Chem. Soc. Rev.}, 2007, 36, 1095–1108.\)
64 V. Estévez, M. Villacampa and J. C. Menéndez,
Multi component reactions for the synthesis of pyrroles,
\(\text{Chem. Soc. Rev.}, 2010, 39, 4402–4421.\)
65 I. Khan, A. Ibrar, N. Abbas and A. Saeed, One-pot access
to a privileged library of six membered nitrogenous heter-
ocycles through multi-component cascade approach,
\(\text{Res. Chem. Intermed.}, 2016, 42, 5147–5196.\)
66 S. Bräse, C. Gil, K. Knepper and V. Zimmermann,
Organic azides: An exploding diversity of a unique class of
compounds, \(\text{Angew. Chem., Int. Ed.}, 2005, 44, 5188–
5240.\)
67 S. Cenini, E. Gallo, A. Caselli, F. Ragiani, S. Fantuzzi and
C. Piangiolino, Coordination chemistry of organic azides
and amination reactions catalyzed by transition metal
catalysts, \(\text{Coord. Chem. Rev.}, 2008, 2952–2958.\)
68 T. G. Driver, Recent advances in transition metal-catalyzed
\(N\)-atom transfer reactions of azides, \(\text{Org. Biomol. Chem.},
2010, 8, 3831–3846.\)
69 B. Eftekhar-Sis and M. Zirak, Chemistry of \(\alpha\)-oxoesters: A
powerful tool for the synthesis of heterocycles, \(\text{Chem. Rev.},
2015, 115, 151–264.\)
70 J. Zhu, Recent developments in the isonitrile–based multi-
component synthesis of heterocycles, \(\text{Eur. J. Org. Chem.},
2003, 1133–1144.\)
71 A. V. Ivachchenko, Y. A. Ivanenkov, V. M. Kysil,
M. Y. Krasavin and A. P. Illyin, Multicomponent reactions
of isocy anides in the synthesis of heterocycles, \(\text{Russ. Chem.
Rev.}, 2010, 79, 787–817.\)
72 A. V. Lygin and A. de Meijere, Isocyanides in the synthesis
of nitrogen heterocycles, \(\text{Angew. Chem., Int. Ed.}, 2010, 49,
9094–9124.\)
73 A. V. Gulevich, A. G. Zhdkano, R. V. A. Orru and
V. G. Nenajdenko, Isocyanoacetate derivatives: Synthesis,
reactivity, and application, \(\text{Chem. Rev.}, 2010, 110, 5235–
5331.\)
74 B. Eftekhar-Sis, M. Zirak and A. Akbari, Aroyl glyoxals in
synthesis of heterocyclic compounds, \(\text{Chem. Rev.}, 2013,
113, 2958–3043.\)
75 A. Padwa, Rhodium(II) mediated cyclizations of diazo
alkynyl ketones, \(\text{J. Organomet. Chem.}, 2001, 617–618,
3–16.\)
76 Z. Zhang, Recent studies on the reactions of \(\alpha\)-diazocarbo-
nyl compounds, \(\text{Tetrahedron}, 2008, 64, 6577–6605.\)

130 Y.-W. Lin, J.-C. Deng, Y.-Z. Hsieh and S.-C. Chuang, One-pot formation of fluorescent γ-lactams having an α-phosphorus ylide moiety through three-component α(δ)-

184 T. Liu, Q. Ding, G. Qiu and J. Wu, Tandem metal-free oxidative radical 5-exo dearomative spirocyclization and ester migration: Generation of 3-functionalized coumarins from alkynoates, Tetrahedron, 2016, 72, 279–284.

185 S. Ni, J. Cao, H. Mei, J. Han, S. Li and Y. Pan, Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: easy access to 3-iodocoumarins, Green Chem., 2016, 18, 3935–3939.

207 L. Du, P. Cao, J. Xing, Y. Lou, L. Jiang, L. Li and J. Liao, Hydrogen-bond-promoted palladium catalysis: Allylic alkylation of indoles with unsymmetrical 1,3-di-

220 Z. Wang, X. Li, L. Wang and P. Li, Photoinduced cyclization of alkynoates to coumarins with N-iodosuccinimide as a free-radical initiator under ambient and metal-free conditions, Tetrahedron, 2019, 75, 1044–1051.

235 M. Hanédanian, O. Loreau, F. Taran and C. Mioskowski, α-Addition of activated methylenes to alkynoates. A

Published on 22 September 2020. Downloaded on 6/17/2021 6:49:33 PM.

