Pillar[5]arene-based tunable luminescent materials via supramolecular assembly-induced Förster resonance energy transfer enhancement

Nan Song, a,b Xin-Yue Lou, a Hao Yu, a Paul S. Weiss, c Ben Zhong Tang d,b and Ying-Wei Yang c

Pillar[5]arene tetramers with tetr phenylethene cores and different lengths of alkyl ether chains (H1-4C4P and H2-2C4P) and a 9,10-distyrylanthrace-bridged neutral guest linker (DSA-G) are synthesized to fabricate tunable solid-state fluorescent materials through supramolecular assemblies of DSA-G- H1-4C4P and DSA-G- H2-2C4P. Their fluorescence emission is strongly enhanced and their colors are changed upon assembly, which can be ascribed to the supramolecular assembly-induced enhanced emission and Förster resonance energy transfer (FRET) processes between H1-4C4P (or H2-2C4P) and DSA-G. Both ensembles of DSA-G- H1-4C4P and DSA-G- H2-2C4P exhibit thermo and solvent dual-responsive features, while DSA-G- H2-2C4P shows higher sensitivity toward external stimuli as compared to DSA-G- H1-4C4P due to the shorter distance between fluorophores. The use of these fluorescent materials as inks confirms their efficiencies in the solid-state, paving the way for new potential applications of smart optical materials based on supramolecular assemblies.

Introduction

Photoluminescent materials, especially solid-state materials with tunable wavelengths, have attracted significant attention due to their great potentials in fluorescent probes and sensors, optoelectronic devices, light-emitting diodes, bioimaging agents, molecular optical devices, data storage, and security printing. However, most of their applications have been impeded because of the intrinsic self-quenching properties of most luminescent dyes. Aggregation-induced emission (AIE)4,5 and aggregation-induced enhanced emission (AIEE)6 have been widely developed since 2001,7 which solved the drawback of aggregation on the luminescent dyes. Aggregation-induced emission (AIE)4,5 and aggregation-induced enhanced emission (AIEE)6 have been successfully used in various fields, including organic light-emitting diodes, bioimaging, sensors,42–48 stimuli-responsive materials,49–55 hybrid absorbents,56–59 and biomedical applications,60–65 including as virus inhibitors and antimicrobials.64,65

Several pillararene-based fluorescent systems combined with tetraphenylethene (TPE)66–68 and/or 9,10-distyrylanthracene (DSA)69–71 AIEGens have also been reported for potential applications as detectors, drug-delivery systems, etc.72–77 On the basis of our previous works,66,69 we envision that the pillararene-based supramolecular solid-state materials with tunable wavelengths can be constructed from host-guest luminophores, new physical properties, optional assembly of entities, and reversible stimuli-responsiveness.13–15 Nevertheless, luminescent materials with tunable properties adjusted via pillar[n]arene-based supramolecular interactions both in solution and the solid state are less reported.

Pillar[n]arenes (pillararenes),16–19 consisting of n hydroquinone units linked by methylene bridges at para positions, have contributed significantly to the development of supramolecular chemistry and materials science since the first report by Ogoshi et al. in 2008.16 As a new class of important synthetic macrocycles,19 pillararenes possess tailorable structures, facile functionality,21–23 and superior host–guest properties.24–29 A variety of pillararene-based supramolecular assemblies have been reported, which have been extensively used across a plethora of fields including molecular switches and molecular machines,30,31 metal–organic frameworks,32 controlled drug-delivery systems,33–38 artificial transmembrane channels,39–41 sensors,42–48 stimuli-responsive materials,49–55 hybrid absorbents,56–59 and biomedical applications,60–65 including as virus inhibitors and antimicrobials.64,65

* State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. E-mail: ywyang@jlu.edu.cn
b Department of Chemistry, HKUST Jockey Club Institute for Advanced Study Division of Life Science, Institute of Molecular Functional Materials and Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
c California NanoSystems Institute and Departments of Chemistry & Biochemistry, Bioengineering, and Materials Science & Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
d Electronic supplementary information (ESI) available. See DOI: 10.1039/c9qm00741e
In order to develop their applications as supramolecular optical materials, the photophysical properties have been studied in chloroform via fluorescence spectroscopy, in which there is efficient host-guest binding affinity between the pillararene cavity and the triazole-cyano site. Ultraviolet-visible (UV-Vis) absorption spectra of $H1-4C4P$, $DSA-G$, and $DSA-G$ with $H1-4C4P$ are shown in Fig. S17†. The fluorescence emission of $H1-4C4P$ excited at 350 nm overlaps with the absorption spectrum of $DSA-G$, conforming to one of the basic principles of FRET donor-acceptor systems. Similarly, $H2-2C4P$ can also be used to construct an optimal FRET system, upon assembly with $DSA-G$. As in Fig. S18†, the conformational simulation of $DSA-G$, $H1-4C4P$, and $H2-2C4P$ with energy minimization was simply conducted, respectively. The distances from the center of TPE core to the pillar[5]arene terminals of $H1-4C4P$ and $H2-2C4P$ is about 14.851 Å and 10.339 Å, respectively, while the distance from DSA core of $DSA-G$ to the triazole-cyano binding site is about 15.294 Å. The efficient distance for FRET is ca. 1–10 nm, while the distances between host-guest complexes of $DSA-G$ with $H1-4C4P$ and $DSA-G$ with $H2-2C4P$ are ca. 3.0 nm and 2.6 nm. After the formation of supramolecular assemblies, the distance might decrease due to the twisted and interactional components, but still within the efficient distance for FRET.

Their fluorescence has been investigated in chloroform (Fig. 1a). Both $H1-4C4P$ and $H2-2C4P$ exhibited blue fluorescence with emission maxima at 481 nm. After the addition of $DSA-G$, red-shifted fluorescence emission can be detected at 510 nm. Upon continuous addition of $DSA-G$ to the solution, their emission maxima underwent a ~25 nm red-shift and the intensity was enhanced dramatically. In the control systems, $DSA-G$ with $H3-4C1P$, $DSA-G$ with $H4-2C1P$, and individual $DSA-G$ exhibited yellow emission centred at ~530 nm without obvious wavelength shifts.

Furthermore, their detailed fluorescence behaviour along with control experiments have been investigated to test their supramolecular assembly-induced enhancement and FRET. $H1-4C4P$ and $H2-2C4P$ dissolved in chloroform exhibit weak blue fluorescence with emission maxima at 481 nm after excitation at 350 nm. However, the yellow fluorescence at the emission maximum of 535 nm is strongly enhanced upon the gradual addition of $DSA-G$ to the solution with the same excitation, while the emission at 481 nm simultaneously weakens (Fig. S19A and B, ESI†). The fluorescent intensity of $DSA-G$ with $H2-2C4P$ is somewhat stronger than that of $DSA-G$ with $H1-4C4P$. The rapid enhancement in fluorescence can be observed until stoichiometric ratios are 1:2, after which the fluorescence intensity increases slowly. In comparison, the fluorescence spectra of $DSA-G$ with $H3-4C1P$ (Fig. S19C, ESI†), $DSA-G$ with $H4-2C1P$ (Fig. S19D, ESI†), $DSA-G$ with $H5-4CM$ (Fig. S19E, ESI†), $DSA-G$ with $H6-2CM$ (Fig. S19F, ESI†), and individual $DSA-G$ (Fig. S19G, ESI†) have also been measured at the same concentrations as $DSA-G$, and there is no obvious fluorescence enhancement in the above systems except the linear weak increase due to the increased concentration of $DSA-G$. Thus, there are three major features contributing to the remarkable fluorescence enhancement of $DSA-G$ with $H1-4C4P$ and $DSA-G$ with $H2-2C4P$ (Fig. 1b): (i) FRET occurs between the two
AIEgens, i.e., TPE (donor) and DSA (acceptor), which is facilitated by the host–guest interaction; (ii) supramolecular assemblies bring TPE and DSA cores close to each other, resulting in the large restriction of internal rotation of AIE chromophores that populates the decay to the ground state; and (iii) the gradual addition of DSA-G. The increasing fluorescent intensity of DSA-G < H3-4C1P and DSA-G < H4-2C1P is consistent with DSA-G, suggesting that the supramolecular assemblies contribute to the close distance between donors and acceptors.

Fluorescence quantum yields and fluorescence lifetimes have been measured using an integrating sphere and time-resolved fluorescence, respectively. The rate constants for radiative deactivation (k_r) and for non-radiative deactivation (k_{nr}) were elucidated. Compared with the control systems [DSA-G < H3-4C1P, DSA-G < H4-2C1P, individual H1-4C4P, H2-2C4P and DSA-G], the ensembles of DSA-G < H1-4C4P and DSA-G < H2-2C4P have higher quantum yields and k_r, indicating that the supramolecular assembly and FRET contribute to the enhanced fluorescence synergistically (Table S1 and Fig. S20, S21, ESI†). We calculated the energy transfer efficiency of DSA-G < H1-4C4P and DSA-G < H2-2C4P both to be 88.6% through the eqn (1), in which I_D stands for the fluorescence intensity of the donor without the acceptor while I_{DA} represents the intensity of the mixture of donor and acceptor.

$$\phi_{ET} = 1 - \frac{I_D}{I_{DA}} \tag{1}$$

In the process of supramolecular assembly, the stabilities of host–guest interactions were always influenced by temperature changes because entropy governs their free energies of complexation. The fluorescence intensity of DSA-G < H1-4C4P and DSA-G < H2-2C4P was decreased upon gradually elevating the temperature from 0 to 45 °C (Fig. 2A, chloroform b.p.: 61.2 °C), while both increased upon lowering the temperature back to 0 °C (Fig. 2B and Fig. S23, ESI†), indicating their thermo-responsive properties. In control experiments, individual H1-4C4P, H2-2C4P, and DSA-G at the same concentrations exhibited no obvious variations in fluorescence intensity upon changing the temperature (Fig. S22, ESI†).

Considering the key roles of solvent composition in supramolecular assembly/disassembly, we also explored the influence of mixed solvents to the assemblies of DSA-G < H1-4C4P and DSA-G < H2-2C4P through changes in fluorescence emission intensity (Fig. 2C and D). Chloroform was chosen as the basic solvent to prepare the solutions of DSA-G < H1-4C4P and DSA-G < H2-2C4P (Fig. S24, ESI†). As shown in Fig. 2D, the fluorescence intensities of DSA-G < H2-2C4P in the mixed solvents of hexane, toluene, THF, and ethyl acetate with chloroform (v/v = 1:1) were enhanced compared with that in pure chloroform, while the fluorescent intensities of DSA-G < H1-4C4P were enhanced in mixed solvents.
of hexane/chloroform and toluene/chloroform. We ascribed their solvent-responsiveness to the cooperative impact of the polarities, viscosities, and solvent solubility, since the solubility of DSA-G\(\text{c} H1-4\text{C}4\text{P}\) and DSA-G\(\text{c} H2-2\text{C}4\text{P}\) and the polarities have significant influence on their molecular recognition events. On the basis of the above data, we conclude that the assembly of DSA-G\(\text{c} H2-2\text{C}4\text{P}\) exhibits relatively higher sensitivity toward both temperature and solvent composition as compared to that of DSA-G\(\text{c} H1-4\text{C}4\text{P}\), suggesting that the assembly of DSA-G\(\text{c} H2-2\text{C}4\text{P}\) has been affected more by the greater degree of restriction and relaxation of phenyl units in TPE cores led by the shorter lengths of carbon chains. Additional data including UV-Vis absorption spectra, quantum yields, and time-resolved fluorescence decay curves have also been obtained (Fig. S25–S28 and Tables S2, S3, ESIf).

Photographs of solutions under natural light and 365 UV lamp showed color changes with different stoichiometric ratios of guest and host, which are consistent with the results of the fluorescence spectra in Fig. 1. The color changes of the fluorescence can be attributed to the extent of energy transfer between the donor-acceptor pairs at different stoichiometries. As in Fig. 3, individual DSA-G molecules without donor molecules exhibit yellow fluorescence but are apparently dimmer than when the molecular ratio of DSA-G\(\text{c} H1-4\text{C}4\text{P}\) is 2:1, which means the energy transfer from H1-4C4P plays a significant role. Yet when the stoichiometry is 0.2:1, part of the energy of the excited donor molecules has been released through emission, instead of being transferred to DSA-G. Partial energy transfer also manifests as shifts in the fluorescence emission spectra (Fig. 1).

Variable-temperature NMR analysis of DSA-G\(\text{c} H1-4\text{C}4\text{P}\) and DSA-G\(\text{c} H2-2\text{C}4\text{P}\) was performed (Fig. S29 and S30, ESIf). The split peaks changed into broad peak, indicating the formation of supramolecular architectures. The concentration-dependent DOSY spectra (Fig. S31 and S32, ESIf of DSA-G\(\text{c} H1-4\text{C}4\text{P}\) and DSA-G\(\text{c} H2-2\text{C}4\text{P}\) indicated the changes of their diffusion coefficients. Compared with individual DSA-G with the diffusion coefficient of \((2.87 \pm 0.08) \times 10^{-9}\) m\(^2\) s\(^{-1}\), the diffusion coefficient decreased upon addition of H1-4C4P or H2-2C4P, suggesting that they gradually assembled into large polymeric architectures.

Similar color changes can also be observed in fluorescence microscopy images, which indicate their solid-state fluorescent properties (Fig. S33–S36, ESIf). CIE coordinates showed in Fig. S37 (ESIf) also confirmed the color changes as blue, green, and yellow of the supramolecular ensembles (i.e., DSA-G\(\text{c} H1-4\text{C}4\text{P}\), DSA-G\(\text{c} H2-2\text{C}4\text{P}\), and individual DSA-G, respectively).

In order to determine the solid-state fluorescence emission, measurements of fluorescent inks have also been performed (Fig. 4). Considering that chloroform can make plastics swell, the solutions were loaded into glass pens and written on filter paper (Fig. 4E). Similarly, the colours of the characters also changed from blue to green, and then to yellow upon the gradual addition of DSA-G. The handwriting on the coated papers lasted for at least 24 h, indicating that the tunable fluorescence of DSA-G\(\text{c} H1-4\text{C}4\text{P}\) and DSA-G\(\text{c} H2-2\text{C}4\text{P}\) were the same and efficient both in solution and the solid state.

Conclusions

In summary, tunable solid-state fluorescent materials were fabricated through supramolecular assembly of DSA-G\(\text{c} H1-4\text{C}4\text{P}\) and DSA-G\(\text{c} H2-2\text{C}4\text{P}\), accompanied by supramolecular assembly-induced emission enhancement and FRET facilitated by molecular recognition. The remarkable fluorescence emission enhancement and the tunable fluorescence, ranges from blue to green to yellow, resulting from different stoichiometric ratios of DSA-G. Both of
the ensembles of DSA-G\(_{<}\)H1-4C4P and DSA-G\(_{<}\)H2-2C4P exhibited thermo- and solvent-responsive properties, showing great potential for smart optical switches. DSA-G\(_{<}\)H2-2C4P possesses relative higher sensitivity to external stimuli compared with DSA-G\(_{<}\)H1-4C4P. Furthermore, fluorescence microscopy images and experiments on fluorescent inks of these assemblies confirmed that their tunable fluorescence emission was efficient, even in the solid state. These tunable solid fluorescent materials possess great potential in smart optical devices. Efforts are ongoing in our laboratory to develop tunable solid-state fluorescent materials with extended wavelengths, taking advantage of supramolecular assembly and molecular machinery, to endow them with reversible stimuli-responsiveness.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673084), the Jilin Province University Cooperative Construction Project – Special Funds for New Materials [SNGJSF2017-3], and the Jilin University Talents Cultivation Program. N. S. thanks the support by the scholarship from China Scholarship Council (CSC).

Notes and references

33 Z. Li, N. Song and Y.-W. Yang, Stimuli-responsive drug delivery systems based on supramolecular nanowafers, Matter, 2019, 1, 345–368.

N. Song, X.-Y. Lou, L. Ma, H. Gao and Y.-W. Yang, Supramolecular nanotheranostics based on pillararenes, Theranostics, 2019, 9, 3075–3093.

