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Introduction

Engineering of a zero cross-talk fluorescent
polymer nanoprobe for self-referenced ratiometric
imaging of lysosomal hypochlorous acid in living
cells¥

Hongging Wei,? Rongjin Zeng,*® Shenglan Wang,® Chong-Hua Zhang,® Shu Chen,?
Peisheng Zhang ) *®° and Jian Chen () *¢

The rational design of a zero cross-talk self-referenced ratiometric fluorescent probe for accurate
molecular imaging in living cells is still a major challenge. Herein, we report a zero cross-talk fluorescent
polymer nanoprobe (named ZC-FPN) with a self-referenced ratiometric effect for lysosomal hypochlorous
acid (HClO) imaging using single-wavelength excitation. The newly designed polymer nanoprobe (ZC-FPN) is
prepared by using a simple co-precipitation method through self-assembly of two amphiphilic block
copolymers, which are covalently linked with a porphyrin fluorophore (HCIO-responsive unit) and a
naphthalimide fluorophore (reference unit), respectively. Remarkably, the ZC-FPN displays an unprecedented
separation of two emission peaks (~191 nm), which can avoid the spectral cross-talk problem of the
emission-shift type ratiometric probes and is highly favorable for high-resolution bioimaging. In addition, the
as-prepared ZC-FPN also shows good water dispersibility, high selectivity, excellent long-term fluorescence
stability (>10 weeks) and low cytotoxicity. More importantly, the positive charge of the amino moiety
enhances the efficient uptake of the nanoprobe by cancer cells and enables the nanoprobe to selectively
accumulate in lysosomes, achieving endogenous HCIO imaging in living cells through fluorescence
ratiometric imaging.

primarily based on either “one-emission signal” or “dual-emission
signals (ratiometric)”.>**>> Compared to the one-emission signal-

Fluorescent probes integrated with an optical imaging technique
have played vital roles in studying biological events owing to
several unique features.'*® Among the various strategies to
construct fluorescent probes, polymer nanoparticle-based fluores-
cent nanoprobes (named polymer nanoprobes) have aroused great
attention in many fields due to their intrinsic optical properties.”*>°
To date, a series of currently developed polymer nanoprobes are
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based polymer nanoprobes, dual-emission signal-based polymer
nanoprobes can enable more accurate detection and imaging
through self-calibrating dual emission signals, thus providing more
reliable quantitative analysis results.*

Generally, the commonly adopted strategies for designing
ratiometric polymer nanoprobes are mainly dependent on either
Intramolecular Charge Transfer (ICT) or Fluorescence Resonance
Energy Transfer (FRET) mechanisms.?*™** Unfortunately, most of
the ICT or FRET-based ratiometric polymer nanoprobes often
show serious cross-talk between two emission bands, resulting
in a low-contrast resolution performance for bioimaging.**
Therefore, the rational design of novel ratiometric fluorescent
polymer nanoprobes with zero cross-talk of two emission
signals for high-resolution imaging is still urgently demanded.

Porphyrin and its derivatives have been widely utilized for
fluorescent probes due to their excellent features of high
photostability, large Stokes shift (>100 nm), near-infrared
(NIR) emission (>650 nm), etc.*>™” More importantly, our major
new finding is that the NIR fluorescence of 4-(10,15,20-triphenyl-
porphyrin-5-yl)phenol (TPP-OH) derivatives can be sensitively and
selectively quenched when exposed to hypochlorous acid (HCIO) in

This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2020
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an acid (pH 5.0) environment, making TPP-OH suitable for
visualizing HCIO in living cells (especially for lysosomal HCIO).
On the other hand, naphthalimide and its derivatives have also
been demonstrated to be promising probes for bioimaging because
they possess high quantum yield, photostability and so on.**>°
Previously, Li et al. developed a naphthalimide-porphyrin based
ratiometric fluorescence probe for imaging intracellular
Hg”* with a fixed excitation wavelength (415 nm).”" This probe
displays two well-resolved (zero cross-talk) emission spectra
(~125 nm), which is beneficial for intracellular imaging with
high resolution. Inspired by the work of Li and coworkers, we
assume that both porphyrins and naphthalimides can be utilized
to construct a zero cross-talk ratiometric fluorescent probe with
single-wavelength excitation.

Polymeric micelles self-assembled by amphiphilic diblock
copolymers have gained popularity as carriers for the fabrication of
multifunctional fluorescent nanoprobes because of their unique
advantages including tunable structure design, good water dis-
persibility, high photostability and excellent biocompatibility,
etc.>® In particular, the covalent incorporation of large m-n
conjugate chromophores (eg. porphyrins and naphthalimides)
into the micelle core can not only effectively avoid the leakage
problem of small dyes physically encapsulated in the micelle
core, but also largely improve their brightness.**

In view of the good performance of TPP-OH for sensitive and
selective HCIO detection, we herein design a zero cross-talk
fluorescent polymer nanoprobe (named ZC-FPN) with a self-
referenced ratiometric detection effect, obtained by self-assembling
two fluorophore-contained amphiphilic block copolymers through a
simple co-precipitation method (Scheme 1). The as-prepared
ZC-FPN displays a single excitation wavelength (405 nm) and
two well-resolved emission properties (~191 nm), one from the
HCIO-responsive fluorophore (TPP-OH) and the other from
the reference fluorophore (naphthalimide). Furthermore, the
nanoprobe with a positive charge can especially stain lysosomes
and further be used to detect endogenous HCIO in living cells
through fluorescence ratiometric imaging.
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Scheme 1 Schematic illustration of ZC-FPN for self-referenced ratio-
metric detection of HCLO (a) and ratiometric monitoring of endogenous
HCILO in lysosomes of living cells (b).
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Experimental section
Materials and instruments

The relevant chemical reagents were obtained from commercial
companies. The detailed synthesis, characterization, instruments,
cytotoxicity and living cell imaging are given in the ESL}

Results and discussion
Synthesis and characterization of ZC-FPN

The selection of dyes was the key point for the fabrication of a
zero cross-talk ratiometric fluorescent nanoprobe. The NIR dye
(TPP-OH) served as the response unit for HCIO recognition as
HCIO can induce the quenched fluorescence of TPP-OH, while
naphthalimide was utilized as the internal reference unit based
on its good stability when exposed to HCIO. Significantly, the
two dyes displayed a single-wavelength excitation (405 nm) and
two well-resolved emission peaks at 464 and 655 nm, thereby
enhancing the detection accuracy.

Next, two amphiphilic diblock copolymers (TPP-b-PSgg-b-
PEGMA;(, and PEO;3-b-P(AEMHjg-co-EANI,-co-PS3)) containing
TPP-OH and naphthalimide were synthesized by Reversible
Addition-Fragmentation Chain Transfer Polymerization
(Schemes S1 and S2, ESIt). The relative intermediate and target
compounds were identified by "H NMR, "*C NMR, Mass spectrum,
Infrared (IR) spectrum and Gel Permeation Chromatograph
(Fig. S1-S9 and Tables S1, S2, ESIT).

Finally, by using a simple co-precipitation method, the
above two amphiphilic diblock copolymers can be easily self-
assembled together into a stable polymeric micelle (ZC-FPN) with
an average particle size of about 22 nm, which was measured by
Dynamic Light Scattering (DLS, Fig. 1A). In addition, the spherical
morphology of ZC-FPN with the corresponding average diameter
was further analysed by Transmission Electron Microscopy (TEM,
Fig. 1B). Remarkably, no obvious changes of diameter of ZC-FPN
were visualized even after being stored at 25 °C for more than
30 days (Fig. 1C), and clear and stable aqueous dispersions of
ZC-FPN can also be observed (Fig. 1D). The above results
confirmed the excellent colloidal stability of ZC-FPN.

Spectral response of ZC-FPN towards HCIO

With the ZC-FPN in hand, the HCIO response of ZC-FPN
(48 pg mL™") was firstly investigated in a pH = 5.0 simulated
physiological environment (PBS). The addition of HCIO can
result in an obvious decrease in absorption at 418 nm of ZC-FPN,
indicating an efficient reaction between the TPP molecules and
HCIO (Fig. S10, ESIt). Different from TPP molecules, naphtha-
limide molecules (EANI) were inert to HCIO, and thus the
absorbance at 380 nm of ZC-FPN displayed no distinct change.
As can be seen from the normalized excitation spectra of EANI
and TPP-OH (Fig. S11, ESI}), they share a common excitation
wavelength at 405 nm. Upon excitation at 405 nm, a significantly
decreased fluorescence (at 655 nm) of TPP-OH can be observed in
the presence of HCIO, while the fluorescence (at 464 nm) of EANI
exhibited no appreciable distinct change when exposed to HCIO
(Fig. S12, ESIt). Significantly, the two well-resolved emission peaks
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Fig. 1 (A) Average diameter of ZC-FPN; (B) TEM of ZC-FPN; (C) average
particle sizes and (D) images of ZC-FPN (1.44 mg mL™Y) with increasing
time.

(~191 nm) with a zero cross-talk property suggested an improved
resolution for intracellular ratiometric imaging.

Subsequently, the capability of ZC-FPN for self-referenced
ratiometric detection of HCIO was carried out, as shown in
Fig. 2A. When incubated with different concentrations of HCIO,
the ZC-FPN displayed gradually quenched fluorescence at
655 nm, while the reference blue band at 464 nm remained
almost unchanged. Notably, the quenched fluorescence of
ZC-FPN at 655 nm may be ascribed to the intramolecular heavy
atom effect of a chlorinated porphyrin structure (Scheme S3,
ESI).>*"° Both the "H NMR (Fig. S13, ESIt) and mass spectrum
(Fig. S14, ESIT) also confirmed this response mechanism. In
addition, the fluorescence intensity ratios (I,64/s55) of ZC-FPN
illustrated a good linear relationship with increasing HCIO
concentration (Fig. 2B), and the detection limit was determined
to be 1.99 uM. The time response of ZC-FPN towards HCIO was
also investigated (Fig. S15, ESIt). When exposed to HCIO, the
I 64/1655 ratio of ZC-FPN increased remarkably and then reached
a plateau in 7 min. Therefore, 7 min was selected as a suitable
time for sensing HCIO.

Additionally, the selectivity experiments of ZC-FPN were
carried out in the presence of various analytes commonly
existing in biological matrices, and the results are given in
Fig. 2C. Fortunately, only HCIO could trigger a remarkable
fluorescence intensity ratio change, while other potential inter-
fering substances exhibited no perceptible effect, suggesting a
good selectivity of ZC-FPN to HCIO. Moreover, the pH influence
of the fluorescence intensity ratio (I64/Iss5) of ZC-FPN treated
with and without HCIO was also visualized. As shown in
Fig. 2D, the I,e4/Isss ratio of ZC-FPN itself was low and
unchanged obviously from pH 3.0 to 9.0, while a remarkably
enhanced I,e4/l¢s5 ratio of ZC-FPN treated with HCIO can be
visualized from pH 3.0 to 8.0, suggesting the good capability of
ZC-FPN for the ratiometric detection of HCIO in complex biosystems.
Moreover, the preferable photostability and excellent long-term
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Fig. 2 (A) Ratiometric emission spectra of ZC-FPN (48 pg mL™Y in the
presence of HCLO (0-160 uM) in pH 5.0 PBS buffer solution (1ex = 405 nm);
(B) working curve of ZC-FPN to HCIO (30-120 pM); (C) the fluorescence
intensity ratio (I464/lgss) of ZC-FPN (48 ng mL™?) in the presence of various
analytes (100 pM for HCLO and 1 mM for others): (0) blank, (1) Na™, (2) Mg®*,
(3) Ni?*, (4) Ca®*, (5) K*, (6) Zn®**, (7) Cu®*, (8) PO4**, (9) HPO,*",
(10) H,PO,~, (11) SO42*, (12) NOs~, (13) SOs**, (14) Cl, (15) HS~,
(16) H,0,, (17) Cys, (18) GSH, (19) Hcy, (20) 0,, (21) Bu-OOH, (22) *OH,
(23) t-BuO*, (24) ONOO, (25) HCIO; (D) effects of pH on the fluorescence
intensity ratio (464//gss) for ZC-FPN (48 pg mL™) without (black curve) and
with (red curve) HCLO (100 uM). Values are mean + s.d. forn = 5.

fluorescence stability can make ZC-FPN more suitable for further
intracellular imaging applications (Fig. S16 and S17, ESIt).

Ratiometric imaging in living cells

In view of the above good results, we further intend to evaluate
the performance of ZC-FPN for exogenous/endogenous HCIO
imaging in lysosomes. Before imaging, the degree of toxicity of
ZC-FPN toward the representative HeLa cells was evaluated. As
can be seen from Fig. S18 (ESIf), minimal cytotoxicity was
visualized even at high concentrations (100 pg mL™"), indicating
the excellent biocompatibility of ZC-FPN.

Some references suggested that nanoprobes with a positive
charge can selectively localize to the lysosomes (Fig. S19, ESI).>*
The co-localization experiments were carried out by using ZC-FPN
and a lysosomal marker (Lyso-Tracker Green) to confirm the
location of ZC-FPN in lysosomes. As shown in Fig. 3, the blue
fluorescence image of ZC-FPN merged well with that of Lyso-
Tracker Green, and the high Pearson’s coefficient and overlap
coefficient were 0.9727 and 0.9748, suggesting that ZC-FPN
mainly stained lysosomes.

Next, ZC-FPN was utilized to ratiometrically detect exogenous
HCIO in lysosomes of HeLa cells by using NaClO as the HCIO
donor (Fig. 4). The red fluorescence intensities gradually decreased
with increasing HCIO concentrations, while no obvious changes
can be visualized from the blue channel. Correspondingly, the
ratio images (Fpe/Frea) also supported this variation tendency
(Fig. 4M-P). In view of the good ability of ZC-FPN for exogenous
HCIO imaging, we then evaluated its performance for endogenous
HCIO detection in Raw264.7 macrophage cells by stimulating cells

This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2020
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Fig. 3 Co-localization experiments of (A) ZC-FPN (48 pg mL™Y) and
(B) Lyso-Tracker Green (500 nM) in Hela cells. (C) Overlay of (A) and (B);
(D) intensity correlation plot of ROI from (A) and (B); (E) the correlation plot
of (A) and (B). Blue channel: Aex = 405 nm and Aem1 = 440-500 nm; green
channel: Zex = 504 nm and J¢m = 520-540 nm scale bar: 20 um.

with Lipopolysaccharide (LPS) and Phorbol Myristate Acetate
(PMA).>”® As can be seen from Fig. 5D and G, there were strong
fluorescence signals in both the blue and red channels, indicating
the efficient uptake of ZC-FPN by RAW264.7 macrophage cells. In
contrast, when the RAW264.7 cells were co-treated with LPS, PMA
and ZC-FPN, the blue channel still displayed a bright fluorescence
signal (Fig. 5E), while an obvious weak fluorescence signal in the
red channel was noted (Fig. 5H). To verify that the endogenously
generated HCIO were responsible for the intracellular fluorescence
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= | g pis
% \\ : ” 1 . ’:32\ ™
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Fig. 4 Confocal fluorescence microscopy images of Hela cells treated
with ZC-FPN (48 pg mL™Y) followed by incubation with O (A, E and 1),
50 (B, F and J), 100 (C, G and K) and 150 uM (D, H and L) HCIO. (M, N, O
and P) The ratio images (Foe/Fred): Zex = 405 NM, Jem1 = 440-500 nm
(blue channel), and Aemz = 640-670 nm (red channel) scale bar: 20 pm.
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Fig. 5 Confocal fluorescence microscopy images of RAW264.7 macrophage
cells. (A, D and G) Cells incubated with ZC-FPN (48 pg mL™%); (B, E, and H)
cells incubated with LPS (1 mg mL™Y), followed by co-incubation with PMA
(1 mg mL™) and ZC-FPN (48 ug mL™Y); (C, F, and I) cells incubated with LPS
(1 mg mL™) and NAC (2 mM), followed by co-incubation with PMA
(1 mg mL™Y and ZC-FPN (48 pg mL™Y; (J, K and L) the ratio images
(Fowe/Fred); Zex = 405 nM, Jepy = 440-500 nm (blue channel), and Zemp =
640-670 nm (red channel) scale bar: 20 pm.

signal changes, a control experiment was performed by treating
the LPS/PMA stimulated RAW264.7 cells with N-acetylcysteine
(NAC, an effective ROS scavenger).>® Because NAC can efficiently
remove the endogenously generated HCIO, and thus result in a
very low HCIO level in RAW264.7 cells. As expected, both the blue
and red channels exhibited bright fluorescence signals (Fig. 5F and
I), indicating that the quenched fluorescence signals of the red
channels indeed originated from the endogenously produced
HCIO. Additionally, when the RAW264.7 cells were treated with
NAC and ZC-FPN, both the blue and red channels exhibited strong
fluorescence signals (Fig. S20, ESIt), indicating that NAC cannot
induce the fluorescence signal change of the red channel. These
results revealed the good ability of ZC-FPN for exogenous/
endogenous HCIO imaging in living cells.

Conclusion

To sum up, we have successfully developed a zero cross-talk
fluorescent polymer nanoprobe (ZC-FPN) for HCIO imaging in
lysosomes with a ratiometric effect. The rationally designed
ZC-FPN possesses some prominent advantages over the pre-
viously described HCIO fluorescent probes with a dual-emission

Mater. Chem. Front., 2020, 4, 862-868 | 865
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property (Table S1, ESIf): First, the synthesized ZC-FPN can
operate in a 100% aqueous solution, whereas the previously
described HCIO fluorescent probes operated in mixed organic-
aqueous solvent systems; second, the ZC-FPN illustrates an ideal
single excitation wavelength and well-resolved dual emissions
(~191 nm), which can avoid the spectral cross-talk issue of the
emission-shift type or the FRET-based ratiometric probes and is
highly beneficial for high-resolution bioimaging; third, benefit-
ing from the positive charge of the amino moiety modified
nanoparticles, the ZC-FPN with good cell-membrane permeability
can selectively locate at lysosomes, and further be utilized to
detect exogenous and endogenous HCIO in the lysosomes of
living cells by using fluorescence ratiometric imaging.
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