MATERIALS CHEMISTRY

View Article Online View Journal | View Issue

REVIEW

Cite this: *Mater. Chem. Front.,* 2020, **4**, 46

Received 29th July 2019, Accepted 27th September 2019

DOI: 10.1039/c9qm00489k

rsc.li/frontiers-materials

1. Introduction

Amphiphiles are molecules that contain both a hydrophobic component and a hydrophilic component connected by covalent bonds.¹ Inspired by nature, synthetic amphiphilic molecules

College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. E-mail: dshguo@nankai.edu.cn

Han-Wen Tian, Yan-Cen Liu and Dong-Sheng Guo 💿 *

Macrocyclic amphiphiles as an emerging family of artificial amphiphiles have gained considerable attention in recent years on account of their fascinating recognition and assembly properties. Benefiting from a preorganized framework, facile modification and host-guest recognition ability, calixarenes have been widely used to fabricate self-assemblies of both amphiphiles and supra-amphiphiles. In this review, we organized hundreds of reported amphiphilic calixarenes based on their structures and systematically summarized assembling features of calixarene-based amphiphiles and supra-amphiphiles. For amphiphilic calixarenes, the size and conformation of skeletons significantly affect their assembly behaviors, such as lower critical aggregation concentration (CAC) and more diverse morphology than conventional amphiphiles. Besides, we also focus on emerging topics like uniformity, compactness, and kinetic properties of calixarene aggregation. For supra-amphiphiles, the binding affinities of calixarenes endow them with the ability to induce guest assembly. In addition, complexation of guests also improves amphiphilic calixarene aggregation. The obtained assemblies not only possess the advantages of low CAC and compact packing, but also respond to various stimuli. Finally, we pointed out several research topics of calixarene-based amphiphiles and supra-amphiphiles to be further developed in the future, such as the relationship between molecular structures and assembly properties, crosslinking, co-assembly, and utilization of cavities. We hope this review could be a guidance for studying amphiphilic assemblies based on calixarenes and other macrocyclic compounds.

> enrich the concept of amphiphiles. Based on the number and properties of polar head(s)/hydrophobic tail(s) as well as their manner of connection, amphiphiles are classified as conventional amphiphiles (single head/single tail), bolaamphiphiles, gemini amphiphiles, double and triple chain amphiphiles, catanionic amphiphiles, amphiphilic polymers, *etc.*² Owing to their unique structures, amphiphiles can assemble into aggregates such as micelles, vesicles, lyotropic liquid crystals, 2D monolayers and 3D multilayers,¹ resulting in important

Han-Wen Tian

Han-Wen Tian obtained his BS degree from Nankai University in 2016. Then he received his MSc degree in 2019 from Nankai University under the guidance of Prof. Dong-Sheng Guo. Currently he is a PhD candidate at Nankai University. His research interest includes the design and synthesis of calixarenebased amphiphiles and recognition and assembly properties of macrocyclic amphiphiles.

Yan-Cen Liu

Yan-Cen Liu obtained her BS and BEng degree from Nankai University and Tianjin University respectively in 2013. She received her MSc degree in 2016 from Nankai University under the guidance of Prof. Dong-Sheng Guo. Currently she is a PhD candidate at Jacobs University Bremen, Germany. Her research interest includes calixarene and cucurbituril based supramolecular chemistry. biological functions and various applications in our daily life and industry. $^{\rm 3}$

As an emerging family of artificial amphiphiles, macrocyclic amphiphiles have gained considerable attention in recent years on account of their fascinating recognition and assembly properties.^{3,4} Just as their name implies, macrocyclic amphiphiles are obtained by introducing hydrophilic groups and lipophilic groups to the preorganized scaffold. They incorporate both bola-type and gemini-type amphiphiles into a single molecule from the viewpoint of structural characteristics. Besides, the unique advantage of macrocyclic amphiphiles is the host-guest recognition. Macrocyclic amphiphiles are deemed as "surfactants with host-guest recognition sites",⁵ whose macrocyclic binding sites are distributed on the surface of the amphiphilic assembly. Up to now, cyclodextrin,⁶ calixarene⁷ and pillararene^{8,9} have been the commonly used compounds to construct macrocyclic amphiphiles.

On the other hand, by combining supramolecular chemistry and amphiphiles, supra-amphiphiles have attracted widespread attention of scientists.¹⁰ In contrast to amphiphiles based on covalent bonds, supra-amphiphiles refer to amphiphiles constructed on the basis of noncovalent interactions or dynamic covalent bonds, which are very useful in the fabrication of nanomaterials with a high degree of structural complexity. Functional groups can be attached to supra-amphiphiles by employing various noncovalent interactions, greatly avoiding tedious covalent syntheses. Moreover, the dynamic and reversible nature of noncovalent interactions endows the resultant supramolecular architectures with excellent stimuli-responsive features. Due to their unique advantages, supra-amphiphiles are being widely and actively investigated in materials and biomedical sciences nowadays.^{11,12}

Calixarenes are the third generation of macrocyclic compounds composed of phenolic units linked by methylene groups at the *o*-positions of phenolic hydroxyl groups. Their history dates back to the late nineteenth century, but they did not receive wide attention for a long time until Gutsche and coworkers studied calixarenes as mimic enzymes.¹³ Calixarenes have several sites for derivation and their sizes can be adjusted.

Dong-Sheng Guo

Dong-Sheng Guo obtained his PhD degree from Nankai University under the guidance of Prof. Yu Liu in 2006. Then he joined Prof. Liu's group as a faculty member at the College of Chemistry, Nankai University. He was promoted as an Associate Professor in 2008, and a full Professor in 2013. Since 2014, he has begun to work indepen-The current research dently. interest of his group is in supramolecular biomedical materials based on calixarenes.

Moreover, chemical modification, especially with water soluble groups, could significantly enhance their binding affinity. Benefiting from these properties, calixarenes have been described as macrocycles which have "(almost) unlimited possibilities"¹⁴ and have been widely used to fabricate amphiphiles and supraamphiphiles. There have been a couple of reviews about calixarene-based amphiphiles and supra-amphiphiles. In 2010, Helttunena and Shahgaldian summarized self-assembly of amphiphilic calixarenes and resorcinarenes in water, and classified aggregates by their morphology.15 Later, Garcia-Rio and coworkers published a review which focuses on a promising series of calixarene, p-sulfonatocalixarene,¹⁶ while Klymchenko and coworkers focused on amphiphilic calixarenes as gene delivery vehicles.¹⁷ Recently, Guo and coworkers discussed assembly behaviors of calixarene-based amphiphiles and supraamphiphiles, and focused on their applications in drug delivery and protein recognition.¹⁸ Up to now, calixarene-based amphiphiles and supra-amphiphiles have been widely used in many fields such as sensing,¹⁹ adsorption and extraction,^{20,21} catalysis,22 inorganic-organic hybrid materials,23 preparation of chiral materials²⁴ and photoluminescent materials,²⁵ and biomedical applications.^{18,26-35}

In this review, we will summarize calixarene-based amphiphiles and supra-amphiphiles reported up to now and focus our special attention on their assembling features in aqueous solution. The structure of this review will be such that we first summarize and comprehensively list chemical structures of amphiphilic calixarenes, including upper-rim hydrophilic amphiphiles, lower-rim hydrophilic amphiphiles and bola-type amphiphiles, followed by their assembling features. Next we summarize the self-assemblies of calixarene-based supra-amphiphiles and their assembling features, focusing on complexation-induced aggregation (guest-induced aggregation of host, host-induced aggregation of guest, and mutual inducement).

2. Calixarene-based amphiphiles

2.1 Fabricating amphiphilic calixarenes by covalent modification

Calixarenes possess several sites which are easily modified, such as an upper rim, lower rim, and methylene bridge. As a result, more than four hundred amphiphilic calixarenes were obtained by simply modifying hydrophilic or hydrophobic groups on scaffolds. Most works focused on amphiphilic calixarenes in the cone conformation,³⁶ in which hydrophilic and hydrophobic groups are decorated on opposite rims, resulting in upper-rim hydrophilic amphiphiles and lower-rim hydrophilic amphiphiles (Scheme 1). Moreover, the adjustable conformation of calixarenes makes it easy to modify them on the basis of an alternate conformation, or stabilize the alternate conformation after modification. The obtained compounds are bola-type amphiphiles. We comprehensively list these three classes of amphiphilic calixarenes reported up to now in Schemes 2-4 and Tables 1-3 in order to facilitate readers for following this field and further studies.

Scheme 1 Schematic illustration of various types of calixarene-based amphiphiles.

As we can see from the schemes, most amphiphilic calixarenes are based on calix[4]arene. Calix[5]arene, calix[6]arene, calix[8]arene, calix[9]arene, and thiacalix[4]arene are also involved. For upper-rim hydrophilic amphiphiles, almost all the common substitutions which are possible for phenols have been carried out at the upper rim. For example, a sulfonate group is widely introduced because of its excellent watersolubility and convenient one-step reaction. A nitro group and a halogen (or benzyl halide) group were also attached to the upper-rim by a one-step reaction. Further derivatization from them results in numerous functional groups such as the phosphate group, guanidinium group, carboxylic group, amino group, azide group and so on. It is noteworthy that carboxylic group and amino group could involve in amide condensation, and the azide group could react with an alkynyl compound. These well-established reactions provide the possibility of decorating calixarene with almost everything, such as cyclodextrin, PEG, saccharide, and cholesterol. On the other hand, the hydrophobic moieties of most upper-rim hydrophilic amphiphiles were introduced by alkyl halides reacting with phenolic hydroxyl at the lower rim. Meanwhile, similar nucleophilic substitution has been applied for PEG chains, resulting in lower-rim hydrophilic amphiphiles. The upper-rim attached hydrophobic chain of most lower-rim hydrophilic amphiphiles were introduced at the cyclic formation step, i.e., using *p*-alkylphenol as a reactant. Among them, the most popular p-alkylphenol is p-tert-butylphenol. In addition, the alkyl chain can be connected to the methylene, being introduced at the cyclic formation step as well. For bola-type amphiphiles, their conformations were usually controlled by template metal ions, for example, calix[4] arene tends to form alternative conformers in the presence of cesium carbonate. Since all these factors (skeleton, hydrophobic chain length, hydrophilic group, and conformation) affect the hydrophilic-hydrophobic balance,

amphiphilic calixarenes with various assembly properties have been obtained by taking advantage of convenient synthesis.

2.2 Assembling features of amphiphilic calixarenes

2.2.1 Low critical aggregation concentration (CAC). When we study the assembly behavior of a specific amphiphile, CAC is a widely used parameter indicating self-assembling ability of amphiphiles. CAC is the concentration at which an amphiphile starts aggregating. Electrical conductivity, surface tension, light scattering and fluorescence intensity are the most commonly used parameters to determine the CAC value. Plots which show the dependence of measured physical properties on concentration of amphiphiles usually show a change of slope around CAC. CAC also relates to temperature and solvent. Under the same conditions, it is generally acknowledged that lower CAC represents stronger assembling ability, because lower CAC means lower monomer concentration in equilibrium between the monomer and assembly.³

Reported CAC values of amphiphilic calixarenes are summarized in Table 4. It is easy to notice that a large proportion of amphiphilic calixarenes have quite low CACs (<1 mM) compared with common surfactants. For example, the CACs of sodium butyl benzene sulfonate, sodium hexyl benzene sulfonate, sodium octyl benzene sulfonate, and sodium dodecyl benzene sulfonate (SDBS) are 100 mM, 30 mM, 14 mM, and 1.5 mM, respectively. The CACs of the corresponding amphiphilic calix[4]arenes 3, 6, 8, and 9 are 3.2 mM, 0.488 mM, 0.085 mM, and 0.02 mM, respectively. As a reference compound, the CAC of the gemini-type SDBS derivate is 0.9 mM. If we consider generalized monomer concentration, the CAC of the gemini-type SDBS derivate is 1.8 mM monomer, which is similar to SDBS, while the CAC of calix[4]arene 9 is 0.08 mM monomer, which is 19 times lower than that of SDBS. The lower CAC of calixarene undoubtedly originates from the cyclic oligomeric structure. From the viewpoint of entropy, amphiphiles in the assemblies have a lower degree of freedom than that in bulky water, so the entropy of amphiphiles (not including water molecules) decreases during the assembly process. The oligomer structure of calixarene leads to much lower entropy loss than the corresponding monomer, resulting in lower CAC as well as a more sensitive response to the structural difference.²⁷⁹

For example, CACs decrease more rapidly with longer alkyl chains of amphiphilic sulfonatocalix[*n*]arenes (SC*n*As) than that of sodium benzene sulfonate surfactants, as Basilio and co-workers proposed. They systematically investigated the relationship between CACs and the hydrophobic chain length of amphiphilic SC*n*As **3**, **6**, and **8** from the viewpoint of thermodynamics by ITC in detail, and obtained their free energy of micellization $(\Delta G_{\rm M}^{\circ})^{.53,54}$ They proposed that the $\Delta G_{\rm M}^{\circ}$ is the sum of contributions of each part of the molecule to the total free energy, such as ionic groups and counterions, aromatic rings, oxygen atoms that connect the aromatic rings to the alkyl chains, methylene group of the bridges, methylene groups of the alkyl chains, and terminal methyl groups of the chains. Among these, the free energy of transferring a methyl group from water to the micellar interior $(\Delta G_{\rm M}^{\circ}(CH_3))$ is equal to that

OR₆ OR₈

R₇O

. OR₅

ΝН

NH₂

NH

้ทห่ว

1: R₁=R₂=R₃=R₄=SO₃, R₅=R₆=R₇=R₈=C₃H₇ 2: R₁=R₂=R₃=R₄=SO₃⁻, R₅=R₆=R₇=R₈= -CH₂-CH=CH₂ 3: R₁=R₂=R₃=R₄=SO₃⁻, R₅=R₆=R₇=R₈=C₄H₉ 4: R₁=R₂=R₃=R₄=SO₃⁻, R₅=R₆=R₇=R₈=C₅H₁₁ 5: R1=R2=R3=R4=SO3, R5=R6=R7=R8=CH2CH(CH3)C2H5 6: R₁=R₂=R₃=R₄=SO₃⁻, R₅=R₆=R₇=R₈=C₆H₁₃ 7: R₁=R₂=R₃=R₄=SO₃⁻, R₅=R₆=R₇=R₈=C₇H₁₅ 8: R₁=R₂=R₃=R₄=SO₃⁻, R₅=R₆=R₇=R₈=C₈H₁₇ 9: R1=R2=R3=R4=SO3, R5=R6=R7=R8=C12H25 10: R₁=R₂=R₃=R₄=PO₃H₂, R₅=R₆=R₇=R₈=C₆H₁₃ 11: R₁=R₂=R₃=R₄=PO₃H₂, R₅=R₆=R₇=R₈=C₈H₁₇ 12: R₁=R₂=R₃=R₄=PO₃H₂, R₅=R₆=R₇=R₈=C₁₀H₂₁ 13: R₁=R₂=R₃=R₄=PO₃H₂, R₅=R₆=R₇=R₈=C₁₂H₂₅ 14: R₁=R₂=R₃=R₄=PO₃H₂, R₅=R₆=R₇=R₈=C₁₄H₂₉ 15: R₁=R₂=R₃=R₄=PO₃H₂, R₅=R₆=R₇=R₈=C₁₈H₃₇ 16: R₁=R₂=R₃=R₄=CH₂PO₃H₂, R₅=R₆=R₇=R₈=C₆H₁₃ 17: R₁=R₂=R₃=R₄=CH₂PO₃H₂, R₅=R₆=R₇=R₈=C₈H₁₇ 18: R₁=R₂=R₃=R₄=CH₂PO₃H₂, R₅=R₆=R₇=R₈=C₁₂H₂₅ 19: R₁=R₂=R₃=R₄=PO(OH)(OC₂H₅), R₅=R₆=R₇=R₈=C₄H₉ 20: R₁=R₂=R₃=CH₂PO₃H₂, R₄=CH₂-N=N=N, R₅=R₆=R₇=R₈=C₆H₁₃ 21: R₁=R₂=R₃=R₄=COOH, R₅=R₆=R₇=R₈=C₃H₇ 22: R1=R2=R3=R4=COOH, R5=R6=R7=R8=C6H13 23: R1=R2=R3=R4=COOH, R5=R6=R7=R8=C8H17 24: R1=R2=R3=R4=COOH, R5=R6=R7=R8=C12H25 25: R₁=R₂=R₃=R₄=CH₂NHCH(CH₃)COOH, R₅=R₆=R₇=R₈=C₁₀H₂₁ 26: R₁=R₂=R₃=R₄=NHCOC₂H₄COOH, R₅=R₆=R₇=R₈=C₃H₇ 27: R₁=R₂=R₃=R₄=NHCOC₂H₄COOH, R₅=R₆=R₇=R₈=C₄H₉ 28: R₁=R₂=R₃=R₄=NHCOC₂H₄COOH, R₅=R₆=R₇=R₈=C₅H₁₁ 29: R₁=R₂=R₃=R₄=NHCOC₂H₄COOH, R₅=R₆=R₇=R₈=C₁₂H₂₅ 30: R₁=R₂=R₃=R₄=NHCOC₃H₆COOH, R₅=R₆=R₇=R₈=C₃H₇ 31: R₁=R₂=R₃=R₄=COOH, R₅=R₇=C₃H₇Ph, R₆=R₈=C₃H₇ 32: R₁=R₂=R₃=COOH, R₄=R₅=R₇=H, R₆=R₈=CH(CH₃)₂ 33: R1=R2=R3=COOH, R4=R5=R7=H, R6=R8=C3H7 34: R1=R2=R3=CH2COOH, R4=R5=R6=R7=H, R8=CH3 35: R1=R2=R3=CH2COOH, R4=R5=R6=R7=H, R8=C2H5 36: R1=R2=R3=CH2COOH, R4=R5=R6=R7=H, R8=C3H7 37: R₁=R₂=R₃=CH₂COOH, R₄=R₅=R₆=R₇=H, R₈=C₄H₉ 38: R1=R2=R3=CH2COOH, R4=R5=R6=R7=H, R8=C5H11 39: R₁=R₂=R₃=CH₂COOH, R₄=R₅=R₆=R₇=H, R₈=C₆H₁₃ 40: R₁=R₂=R₃=CH₂COOH, R₄=R₅=R₆=R₇=H, R₈=C₇H₁₅ 41: R1=R2=R3=CH2COOH, R4=R5=R6=R7=H, R8=C8H17 42: R₁=R₂=R₃=CH₂COOH, R₄=R₅=R₆=R₇=H, R₈=C₉H₁₉ 43: R1=R2=R3=CH2COOH, R4=R5=R6=R7=H, R8=C10H21 44: R₁=R₂=R₃=CH₂COOH, R₄=R₅=R₆=R₇=H, R₈=C₁₂H₂₅ 45: R₁=R₂=R₃=CH₂COOH, R₄=R₅=R₆=R₇=H, R₈=C₁₀H₂₁

- 46: R₁=R₂=R₃=R₄=NHCOPhCONHC(C₂H₄COOH)₃, R₅=R₆=R₇=R₈=C₁₂H₂₅
- 47: $R_1=R_3=NHCOCH_2CONHC(C_2H_4CONHC(C_2H_4COOH)_3)_3$, $R_2=R_4=C(CH_3)_3$, $R_5=R_6=R_7=R_8=C_{12}H_{25}$

57: R₁=R₂=R₃=R₄=N⁺(CH₃)₃, R₅=R₆=R₇=R₈=C₃H₇ 58: R1=R2=R3=R4=CH2N*(CH3)3, R5=R6=R7=R8=C3H7 59: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₃, R₅=R₆=R₇=R₈=C₆H₁₃ 60: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₃, R₅=R₆=R₇=R₈=C₈H₁₇ 61: R1=R2=R3=R4=CH2N*(CH3)3, R5=R6=R7=R8=C12H25 62: R₁=R₂=R₃=R₄=COOC₂H₄N⁺(CH₃)₃, R₅=R₆=R₇=R₈=C₁₂H₂₅ 63: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂CH₂C=CH, R₅=R₆=R₇=R₈=C₈H₁₇ 64: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄OH, R₅=R₆=R₇=R₈=C₃H₇ 65: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄OH, R₅=R₆=R₇=R₈=C₆H₁₃ 66: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄OH, R₅=R₆=R₇=R₈=C₈H₁₇ 67: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄OH, R₅=R₆=R₇=R₈=C₁₂H₂₅ 68: R1=R2=R3=R4=CH2N+(CH3)2C2H4OH, R5=R6=R7=R8=C16H33 69: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄OH, R₅=R₇=C₃H₇, R₆=R₈=C₁₆H₃ 70: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)(C₂H₄OH)₂, R₅=R₆=R₇=R₈=C₃H₇ 71: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄NH₂, R₅=R₆=R₇=R₈=C₃H₇ 72: R₁=R₂=R₃=R₄=CH₂N⁺(CH₃)₂C₂H₄NH₂, R₅=R₆=R₇=R₈=C₈H₁₇

48: R₁=R₂=R₃=R₄=NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₄H₇ 49: R₁=R₂=R₃=R₄=NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₆H₁₃ 50: R₁=R₂=R₃=R₄=NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₈H₁₇ 51: R₁=R₂=R₃=R₄=NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₁₂H₂₅

52: R₁=R₂=R₃=R₄=CH₂NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₆H₁₃ 53: R₄=R₇=R₃=R₄=NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₇H₄OC₇H₅

55: R1=R2=R3=R4=

R5=R6=R7=R8=C6H13

 $R_2 = R_4 = C(CH_3)_3$

R5=R7=H, R6=R8=

54: R₁=R₂=R₃=R₄=NHCOCH(NH₂)C₃H₆NHC(NH₂)₂⁺, R₅=R₆=R₇=R₈=C₆H₁₃

N

ม่ห2

 $\begin{aligned} &137: R_1 = R_2 = R_3 = R_4 = CH_2 N(C_2 H_4 OH)_2, R_5 = R_6 = R_7 = R_8 = C_{10} H_{21} \\ &138: R_1 = R_2 = R_3 = R_4 = CH_2 N(C_2 H_4 OC_2 H_4 OH)_2, R_5 = R_6 = R_7 = R_8 = C_{10} H_{21} \\ &139: R_1 = R_2 = R_3 = R_4 = CH_2 N(C_2 H_4 OC_2 H_4 OC_2 H_4 OH)_2, R_5 = R_6 = R_7 = R_8 = C_{10} H_{21} \end{aligned}$

 $R_2 = R_4 = R_6 = C(CH_3)_3$

Review

$$N - COOH$$
165: R₁=R₂=R₃=R₄=R₅=R₆= $\begin{cases} -N' \\ -N'$

169: R₁=R₃=R₅=N(CH₃)₃⁺, R₂=R₄=R₆=C(CH₃)₃, R₇=R₉=R₁₁=CH₃, R₈=R₁₀=R₁₂=

170: R₁=R₃=R₅=

R7=R9=R11=C8H17, R8=R10=R12=CH3

171: R₁=R₃=R₅=

R₅

. OR₁₄

OR15

ÓR,

OR₁₆

172: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=SO₃⁻, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=C₃H₇ 173: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=SO₃⁻, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=C₄H₉ 174: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=SO₃⁻, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=CH₂CH(CH₃)C₂H₅ 175: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=SO₃⁻, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=C₆H₁₃ 176: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=SO₃⁻, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=C₁₂H₂₅ 177: R1=R2=R3=R4=R5=R6=R7=R8=NHCOC2H4COOH, R9=R10=R11=R12=R13=R14=R15=R16=C3H7 178: R1=R2=R3=R4=R5=R6=R7=R8=NHCOC4H8COOH, R9=R10=R11=R12=R13=R14=R15=R16=C3H7 179: R₁=R₂=R₂=R₄=R₅=R₅=R₅=Rァ=R8=NHCOCH₂NH₂, R₀=R10=R11=R12=R13=R14=R15=R16=C3H7 180: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=NHCOC₂H₄NH₂, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=C₃H₇ 181: R1=R2=R3=R4=R5=R6=R7=R8=NHCOC3H6NH2, R9=R10=R11=R12=R13=R14=R15=R16=C3H7 182: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=NHCOC₅H₁₀NH₂, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=C₃H₇ 183: R₁=R₂=R₃=R₄=R₅=R₅=R₅=R₅=R₀=NHCOC7H14NH2, R9=R10=R11=R12=R13=R14=R15=R16=C3H7

of methylene groups $(\Delta G_{M}^{\circ}(CH_{2}))$ add a constant (which can be represented by $\Delta G^{\circ}_{M}(CH_3) = \Delta G^{\circ}_{M}(CH_2) + k$, in which k is a constant). Therefore, the overall contribution of alkyl chains equals the free energy change for transferring one CH₂ unit from the aqueous medium to the micellar interior $(\Delta G_{M}^{\circ}(CH_{2}))$ multiplied by the carbon number of the alkyl chain, while other parts remain constant despite the change in carbon number. So the slope of $\Delta G_{\rm M}^{\circ}$ against carbon number is $(\Delta G_{\rm M}^{\circ}({\rm CH}_2))$.^{53,54}

Since ΔG_{M}° is proportional to log CAC, we plotted log 4CAC of four amphiphilic SC4As with 4, 6, 8, 12 carbons and log CAC of the corresponding monomer, versus the number of carbon atoms in the hydrophobic chain (Fig. 1), and the slope of linear fitting is proportional to $(\Delta G_{\rm M}^{\circ}({\rm CH}_2))$. Results show a negative slope which reflects that the hydrophobic interaction contributes more favourably to the micellization process in the presence of longer alkyl chains. More importantly, the slope of calixarenes (-0.27) is lower than the value generally observed for single-chain surfactants (-0.22), which means ΔG_{M}° decreases more rapidly with longer alkyl chains of amphiphilic SCnAs than that of sodium sulfonate surfactants. This may be due to the existence of intramolecular interactions between the alkyl chains of the free monomers.53

Similar to the difference between monomers and oligomers, in general, larger size of the skeleton results in a lower degree of entropic cost,²⁷⁹ thus should lead to lower CAC, which is

Materials Chemistry Frontiers

 $186: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, R_5 = R_6 = R_7 = R_8 = C_3H_6SO_3^ 187: R_1 = R_2 = R_3 = R_4 = H, R_5 = R_6 = R_7 = R_8 = C_3H_6SO_3^-$

194: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=CH₂COOH 195: R₁=R₂=R₃=R₄=C(CH₃)₂CH₂C(CH₃)₃, R₅=R₆=R₇=R₈=CH₂COOH 196: R₁=R₂=R₃=R₄=C₃H₆C₈F₁₇,

$$\begin{split} R_5 = R_6 = R_7 = R_8 = CH_2 CONH(C_2H_4O)_3C_2H_4N(CH_2COOH)_2 \\ 197: R_1 = R_2 = R_3 = R_4 = COC_{11}H_{23}, R_5 = CH_2COOH, R_6 = R_7 = R_8 = H \end{split}$$

198: R₁=R₂=

R₂=R₄=R₅=R₇=H, R₆=R₈=C₃H₆CONHC(C₂H₄COOH)₃

211: $R_1 = R_2 = R_3 = R_4 = H$, $R_5 = R_6 = R_7 = R_8 = C_3 H_6 N H_2$

212: $R_1 = R_2 = R_3 = R_4 = C_3 H_6 C_8 F_{17}$,

 $\label{eq:rs} \begin{array}{l} R_5 = R_6 = R_7 = R_8 = CH_2 CONH(C_2H_4O)_3C_2H_4NH_2 \\ \mbox{213:} R_1 = R_2 = R_3 = R_4 = C_2H_5, \ R_5 = R_6 = R_7 = R_8 = H \end{array}$

214: $R_1=R_2=R_3=R_4=C_4H_9$, $R_5=R_6=R_7=R_8=H$

215: R₁=R₂=R₃=R₄=C₆H₁₃, R₅=R₆=R₇=R₈=H

216: R₁=R₂=R₃=R₄=COC₅H₁₁, R₅=R₆=R₇=R₈=H 217: R₁=R₂=R₃=R₄=COC₇H₁₅, R₅=R₆=R₇=R₈=H 218: R1=R2=R3=R4=COC9H19, R5=R6=R7=R8=H 219: R1=R2=R3=R4=COC11H23, R5=R6=R7=R8=H 220: R₁=R₂=R₃=R₄=COC₁₃H₂₇, R₅=R₆=R₇=R₈=H 221: R1=R2=R3=R4=COC15H31, R5=R6=R7=R8=H 222: R₁=R₂=R₃=R₄=N₂PhCH₃, R₅=R₆=R₇=R₈=H 223: $R_1=R_2=R_3=R_4=C_3H_6C_8F_{17}$, $R_5=R_6=R_7=R_8=H$ 224: R₁=R₂=R₃=R₄=N₂PhCl, R₅=R₆=R₇=R₈=H 225: R1=R3=COC17H35, R2=R4=H, R5=R6=R7=R8=H 226: $R_1=R_2=R_3=R_4=COC_{11}H_{23}$, $R_5=R_7=PO(OC_2H_5)_2$, $R_6=R_8=H$ 227: R₁=R₂=R₃=R₄=COC₁₁H₂₃, R₅=CH₂COOC₂H₅, R₆=R₇=R₈=H 228: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=CH₂COOC₂H₅ 229: R₁=R₂=R₃=R₄=C(CH₃)₂CH₂C(CH₃)₃, R₅=R₆=R₇=R₈=C₂H₄OH 230: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₆H 231: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₁₀H 232: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₁₆H 233: $R_1 = R_2 = R_3 = R_4 = C_4 H_0$, $R_5 = R_6 = R_7 = R_8 = (C_2 H_4 O)_{16} H_1$ 234: R1=R2=R3=R4=C9H19, R5=R6=R7=R8=(C2H4O)8H 235: R1=R2=R3=R4=C9H19, R5=R6=R7=R8=(C2H4O)12H 236: R₁=R₂=R₃=R₄=C₉H₁₉, R₅=R₆=R₇=R₈=(C₂H₄O)₁₆H 237: R₁=R₂=R₃=R₄=C₆H₁₂CH(CH₃)₂, R₅=R₆=R₇=R₈=(C₂H₄O)₄H 239: R₁=R₂=R₃=R₄=C₆H₁₂CH(CH₃)₂, R₅=R₆=R₇=R₈=(C₂H₄O)₉H 241: R1=R2=R3=R4=C6H12CH(CH3)2, R5=R6=R7=R8=(C2H4O)16H 242: R1=R2=R3=R4=C6H12CH(CH3)2, R5=R6=R7=R8=(C2H4O)20H 243: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₁₄H 244: R1=R2=R3=R4=C(CH3)3, R5=R6=R7=R8=(C2H4O)18H 245: $R_1=R_2=R_3=R_4=C(CH_3)_3$, $R_5=R_6=R_7=R_8=(C_2H_4O)_{34}H_5$ 246: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₄₅H 247: R1=R2=R3=R4=C(CH3)3, R5=R6=R7=R8=(C2H4O)56H 248: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₆₇H 249: R1=R2=R3=R4=C(CH3)3, R5=R6=R7=R8=(C2H4O)110H 250: R1=R2=R3=R4=C(CH3)3, R5=R6=R7=R8=(C2H4O)150H 251: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=(C₂H₄O)₂₀₀H 252: R1=R2=R3=R4=C(CH3)3, R5=R6=R7=R8=(C2H4O)250H 253: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=CH₂COO(C₂H₄O)₂₀C₁₆H₃₃ 254: R1=R2=R3=R4=C(CH3)3, R5=R7=C2H4(OC2H4)12OCH3, R6=R8=H

R₆=R₈=C₂H₄O(COC₅H₁₀)₄₀OH

Review

 $R_1 \qquad R_2 \qquad R_4 \qquad R_4 \qquad R_5 \qquad R_6 \qquad R_7 \qquad R_8 \qquad R_7 \qquad R_7$

R₇Ó

όR₈

ÖR₁(

OR₆ OR₈

ÔR-

 $\begin{aligned} & 283: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_3 \\ & 284: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_2 H_5 \\ & 285: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_2 H_5 \\ & 286: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_3 H_6 Pht \\ & 287: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_3 H_6 Pht \\ & 288: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 CH_2 COOC_2 H_5 \\ & 288: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (C_2 H_5)_2 CH_2 CONHC H_2 COOC_2 H_5 \\ & 290: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 CH_2 CONHC H_2 COOC_2 H_5 \\ & 291: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 CH_2 CONHC H_2 COOC_2 H_5 \\ & 292: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_3 H_6 SO_3^- \\ & 292: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_3 H_6 SO_3^- \\ & 292: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_3 H_6 SO_3^- \\ & 292: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_3 H_6 SO_3^- \\ & 293: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_4 H_8 SO_3^- \\ & 293: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_4 H_8 SO_3^- \\ & 293: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_4 H_8 SO_3^- \\ & 293: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6 N^+ (CH_3)_2 C_4 H_8 SO_3^- \\ & 293: R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, \ R_5 = R_6 = R_7 = R_8 = CH_2 CONHC_3 H_6$

294: $R_1=R_2=R_3=R_4=R_5=C(CH_3)_3$, $R_6=R_7=R_8=R_9=R_{10}=C_4H_8SO_3^-$ 295: $R_1=R_2=R_3=R_4=R_5=C(CH_3)_3$, $R_6=R_7=R_8=R_9=R_{10}=(C_2H_4O)_{12}CH_3$ 296: $R_1=R_2=R_3=R_4=R_5=CH_3$, $R_6=R_7=R_8=R_9=R_{10}=(C_2H_4O)_{12}CH_3$

282: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=C₃H₆SO₃⁻

297: $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = H$, $R_7 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = C_3 H_6 SO_3^{-1}$ 298: R₁=R₂=R₃=R₄=R₅=R₆=C₄H₉, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=C₃H₆SO₃⁻ 299: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=C₃H₆SO₃⁻ 300: R1=R2=R3=R4=R5=R6=C6H13, R7=R8=R9=R10=R11=R12=C3H6SO3 301: R1=R2=R3=R4=R5=R6=C12H25, R7=R8=R9=R10=R11=R12=C3H6SO3 302: R₁=R₂=R₃=R₄=R₅=R₆=COC₃H₇, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=C₄H₈SO₃⁻ 303: R₁=R₂=R₃=R₄=R₅=R₆=COC₅H₁₁, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=C₄H₈SO₃⁻ 304: R₁=R₂=R₃=R₄=R₅=R₆=COC₇H₁₅, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=C₄H₈SO₃⁻ 305: R₁=R₂=R₃=R₄=R₅=R₆=H, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=CH₂COOH 306: R1=R2=R3=R4=R5=R6=COC3H7, R7=R8=R9=R10=R11=R12=CH2COOH 307: R1=R2=R3=R4=R5=R6=COC5H11, R7=R8=R9=R10=R11=R12=CH2COOH 308: R1=R2=R3=R4=R5=R6=COC7H15, R7=R8=R9=R10=R11=R12=CH2COOH 309: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=C₃H₆COOH, R₈=R₉=R₁₀=R₁₁=R₁₂=H 310: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₉=R₁₁=C₂H₄NH₂, R₈=R₁₀=R₁₂=CH₃ 311: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₁₀=CH₂CONHC₃H₆NH₂, R₈=R₉=R₁₁=R₁₂=H 312: R₁=R₂=R₃=R₄=R₅=R₆=COC₃H₇, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=CH₂COOC₂H₅ 313: R₁=R₂=R₃=R₄=R₅=R₆=COC₅H₁₁, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=CH₂COOC₂H₅ 314: R₁=R₂=R₃=R₄=R₅=R₆=COC₇H₁₅, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=CH₂COOC₂H₅ 315: R1=R2=R3=R4=R5=R6=COC3H7, R7=R8=R9=R10=R11=R12=(C2H4O)2CH3 316: R₁=R₂=R₃=R₄=R₅=R₆=COC₅H₁₁, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=(C₂H₄O)₂CH₃ 317: R₁=R₂=R₃=R₄=R₅=R₆=COC₇H₁₅, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=(C₂H₄O)₂CH₃ 318: R1=R2=R3=R4=R5=R6=C(CH3)3, R7=R8=R9=R10=R11=R12=COCH3 319: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂=[CH₂CH(CH₃)O]_xH 320: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₈=R₉=R₁₀=R₁₁=R₁₂ =[CH₂CH(CH₃)O]₂[COOCH₂C(CH₃)₂CH₂O]₂H

 $\begin{array}{l} 221: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = H, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3 H_6 SO_3^{-1} \\ 322: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3 H_6 SO_3^{-1} \\ 323: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7 H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_4 H_8 SO_3^{-1} \\ 324: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15} H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_4 H_8 SO_3^{-1} \\ 325: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = H, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_4 H_8 SO_3^{-1} \\ 326: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = L(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_4 H_6 COOH \\ 326: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_4 H_6 COOH \\ 327: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7 H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CH_2 COOH \\ 328: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7 H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CH_2 COOH \\ 329: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7 H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CM_2 COOH \\ 320: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7 H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3 H_6 COOH \\ 330: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_15 H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3 H_6 COOH \\ 331: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15} H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3 H_6 COOH \\ 331: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15} H_{31}, R_9 = R_{10}$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=CH₂COOH

Materials Chemistry Frontiers

338: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=COC_7H_{15}$, $R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=C_3H_6CN$ 339: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=COC_{15}H_{31}$, $R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=C_3H_6CN$ 340: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_2)_2C(CH_2)_3$.

R9=R10=R11=R12=R13=R14=R15=R16=CH2COOC2H5

 $\begin{aligned} & 341: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CH_2COOC_2H_5 \\ & 342: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CH_2COOC_2H_5 \\ & 343: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_3H_6COOC_2H_5 \\ & 344: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{1$

 $\begin{aligned} & 345: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=H, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_3H \\ & 346: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_3H \\ & 347: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2CH_2C(CH_3)_3, \end{aligned}$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₃H

 $\begin{aligned} & 348: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCH_2Ph, \ R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_3H \\ & 349: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = H, \ R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_6H \\ & 350: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, \ R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_6H \\ & 351: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_2 CH_2 C(CH_3)_3, \end{aligned}$

 $R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_6H$

$$\begin{split} & 352: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_6H \\ & 353: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=H, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_9H \\ & 354: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OH, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_9H \\ & 355: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_9H \\ & 356: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2CH_2C(CH_3)_3, \end{split}$$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₉H

 $357: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCH_2Ph, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_9H \\ 358: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCH_2Ph, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_{12}H \\ 359: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCH_2Ph, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_{12}H \\ 360: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCH_2Ph, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_{18}H \\ 361: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCC_7H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_{18}H \\ 362: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_2H_4OCH_3 \\ 363: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_7H_{15}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_2CH_3 \\ 364: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_2CH_3 \\ 365: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_2CH_3 \\ 366: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = COC_{15}H_{31}, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{16} = (C_2H_4O)_3CH_3 \\ 366: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(C_{13})_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{16} = (C_2H_4O)_3CH_3 \\ 367: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{16} = (C_2H_4O)_3CH_3 \\ 367: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_3CH_3 \\ 367: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₃CH₃

 $\begin{aligned} & 368: \ R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = OCH_2 Ph, \ R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2 H_4 O)_3 CH_3 \\ & 369: \ R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, \end{aligned}$

 $R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CH_2COO(C_2H_4O)_{20}C_{16}H_{33}$

370: $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3$,

 $R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = CH_2COO(C_2H_4O)_{22}C_{16}H_{33}$

 $371: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3,$

 $R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = C_{10}H_{21}COO(OC_2H_4)_{21}OCH_3$

372: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=H$, $R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_3$ THP 373: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3$, $R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_3$ THP 374: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2CH_2C(CH_3)_3$,

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₃THP

375: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=OCH₂Ph, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₃THP

 $376: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = H, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2 H_4 O)_6 THP$

377: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3$, $R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_6$ THP 378: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2$ CH₂C(CH₃)₃,

 $R_0 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2 H_4 O)_6 THP$

379: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=OCH₂Ph, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₆THP

380: R₁=R₂=R₃=R₄=R₅=R₆=R₇=R₈=OCH₂Ph, R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₆PMB

 $381: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = H, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_9 PMB$

 $382: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_3, R_9 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = (C_2H_4O)_9 PMB$

 $383: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = C(CH_3)_2 CH_2 C(CH_3)_3,$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₉PMB

 $\begin{aligned} &384: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_9PMB\\ &385: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{12}PMB\\ &386: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{12}PMB\\ &387: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{18}PMB\\ &388: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{6}CH_2Ph\\ &389: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{6}CH_2Ph\\ &390: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{9}CH_2Ph\\ &390: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{9}CH_2Ph\\ &391: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{9}CH_2Ph\\ &391: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{12}CH_2Ph\\ &391: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3, R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{12}CH_2Ph\\ &392: R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2CH_2C(CH_3)_3, \end{aligned}$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₁₂CH₂Ph

$$\begin{split} & 393: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{12}CH_2Ph \\ & 394: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=H, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{18}CH_2Ph \\ & 395: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{18}CH_2Ph \\ & 396: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2CH_2C(CH_3)_3, \end{split}$$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₁₈CH₂Ph

$$\begin{split} & 397: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{18}CH_2Ph \\ & 398: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=H, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{24}CH_2Ph \\ & 399: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_3, \ R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{24}CH_2Ph \\ & 400: \ R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=C(CH_3)_2CH_2C(CH_3)_3, \end{split}$$

R₉=R₁₀=R₁₁=R₁₂=R₁₃=R₁₄=R₁₅=R₁₆=(C₂H₄O)₂₄CH₂Ph

401: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=OCH_2Ph$, $R_9=R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=(C_2H_4O)_{24}CH_2Ph$ 402: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=R_9=COC_5H_{11}$, $R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=R_{17}=R_{18}=H$ 403: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=R_9=COC_7H_{15}$, $R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=R_{17}=R_{18}=H$ 404: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=R_9=COC_9H_{19}$, $R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=R_{17}=R_{18}=H$ 405: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=R_9=COC_{11}H_{23}$, $R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=R_{17}=R_{18}=H$ 406: $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=R_9=COC_{13}H_{27}$, $R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=R_{15}=R_{16}=R_{17}=R_{18}=H$

407: R₁=R₂=R₃=R₄=C₆H₁₂CH(CH₃)₂, R₅=R₆=R₇=R₈=O(C₂H₄O)₁₆H

indeed supported by some reported values. For example, Shinkai and co-workers reported that in amphiphilic SC*n*As **3**, **160**, **173**, which have 4, 6, and 8 repeat units respectively, the

CAC values decrease from 2.5 mM to 1.0 mM and then to 0.7 mM with increasing ring size.⁴⁹ Zhao and co-workers synthesized amphiphilic calix[6]arene **305** and calix[8]arene **325** by

OR₅ OR7

OR.

OR₆

 R_2

R₁ R₃

> 408: R₁=R₃=R₆=R₈=H, R₂=R₄=COOH, R₅=R₇=COPh 409: R₁=R₃=R₆=R₇=H, R₂=R₄=COOH, R₅=R₈=COPh 410: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=C₃H₆NHC(NH₂)₂⁺

> 411: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₆=R₇=R₈=C₃H₆NHC(NH₂)₂⁺

412: R₁=R₂=R₃=R₄=COOH, R₅=R₆=R₇=R₈=C₃H₇ 413: R₁=R₂=R₃=R₄=COOH, R₅=R₆=R₇=R₈=CH(CH₃)₂

414: R₁=R₂=R₃=COOH, R₄=H, R₅=R₆=R₇=R₈=CH(CH₃)₂

Review

435: R1=R2=R3=R4=C(CH3)3, R5=R7=C4H9,

436: R1=R2=R3=R4=C(CH3)3, R5=R7=C4H

437: R1=R2=R3=R4=C(CH3)3, R5=R7=C4H9

438: R1=R2=R3=R4=C(CH3)3, R5=R7=C4H

439: R1=R2=R3=R4=C(CH3)3, R5=R7=C4H9

440: R1=R2=R3=R4=C(CH3)3, R5=R7=C14H29

441: R1=R2=R3=R4=C(CH3)3, R5=R7=C14H29

 $R_6 = R_8 =$

 $R_6 = R_8 =$

442. ₄H₂₉,

$$R_1 = R_2 = R_3 = R_4 = C(CH_3)_3, R_5 = R_7 = C_1, C_1 = C_2$$

443: R1=R2=R3=R4=C(CH3)3, R5=R7=C4H9,

444: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₇=C₈H₁₇,

445: R1=R2=R3=R4=C(CH3)3, R5=R7=C14H29

446: R₁=R₂=R₃=R₄=C(CH₃)₃, R₅=R₇=C₁₄H₂₉

447: R1=R2=R3=R4=C(CH3)3, R5=R7=C14H29

- 448: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₁₀=C₅H₁₀COOH, R₈=C₂H₄OC₂H₄OC₂H₄OC₂H₄, $R_9 = C_2 H_4 O C_2 H_4 O C_2 H_4$
- 449: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₁₀=C₅H₁₀NH₂, R₈=C₂H₄OC₂H₄OC₂H₄, R₉=C₂H₄OC₂H₄OC₂H₄
- 450: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₁₀=CONHC₃H₆NH₂, R₈=C₂H₄OC₂H₄OC₂H₄, $R_9 = C_2 H_4 O C_2 H_4 O C_2 H_4$
- $451: R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = C(CH_3)_3, R_7 = R_{10} = CONHC_6H_{12}NH_2, R_8 = C_2H_4OC_2H_4OC_2H_4, C_2H_4, C_3H_4, C_$ $R_9 = C_2 H_4 O C_2 H_4 O C_2 H_4$
- 452: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₁₀=CH₂CONHC₃H₆NH₂, R₈=C₂H₄OC₂H₄OC₂H₄, R₀=C₂H₄OC₂H₄OC₂H₄
- 453: R₁=R₂=R₃=R₄=R₅=R₆=C(CH₃)₃, R₇=R₁₀=CONHC₂H₅, R₈=C₂H₄OC₂H₄OC₂H₄OC₂H₄,

 $R_9 = C_2 H_4 O C_2 H_4 O C_2 H_4$

Scheme 4 Structures of bola-type amphiphilic calixarenes.

introducing acetoxyls into the hydroxyls of calixarenes.²⁵⁹ They interpreted the decrease in CAC (5.79-3.05 µM) with increasing phenyl groups (6–8) as strengthening of the hydrophobic interactions. However, other examples didn't show any significant trend. For instance, Xu and coworkers found the CAC of choline-modified calix [5] arene 158 (5.5 μ M) is slightly higher than that of the corresponding calix [4] arene, 62 (5.2 μ M).⁴⁶ Shinkai and coworkers reported that the CACs of lower-rim sulfonic group modified 186, 299 and 322 are 0.55 mM, 0.58 mM and 0.40 mM by conductivity at 30 °C, respectively.49 These unexpected phenomena may be explained by the shape of the skeleton and the conformation in bulk solution. As an example of conformation influencing CAC, Basilio and co-workers studied amphiphilic SCnAs 6, 162 and 175. The CAC values increase (from 0.488 to 0.750 mM) with increasing number of monomeric units (from 4 to 8).⁵⁴ The calix[4]arene derivative, which is preorganized into the cone conformation, is favourable for the formation of globular aggregates. The calix[6]arene and calix[8]arene derivatives do not adopt cone conformations in bulk solution. Further thermodynamic studies show that changing these conformations to the more favourable cone conformer in the aggregates implied an energetic cost that contributed to making the micellization Gibbs free energy $(\Delta G_{\rm M}^{\circ})$ less efficient. The other example related to conformations was reported by Arimori and coworkers.132 CAC of amphiphilic calix[4]arene 412 in a cone conformation is 10 µM whereas in a 1,3-alternate conformation, 412 could not aggregate at a concentration of even up to 10 mM. This difference implies that the conformation of calixarene is a critical factor of CAC.

Table 1 References of upper-rim hydrophilic amphiphilic calixarenes in Scheme 2

Compound	Ref.	Compound	Ref.	Compound	Ref.	Compound	Ref.
1	37	48	107	94	122 and 124	140	142 and 143
2	44	49	45, 112 and 113	95	124	141	142 and 143
3	49-59	50	45, 112 and 113	96	124	142	142, 143 and 146
4	62-66	51	117-121	97	122	143	63 and 150
5	79	52	45	98	136	144	63 and 150
6	52–54, 58, 64 and 82–89	53	108	99	136	145	150
7	64 and 95	54	108 and 128	100	139	146	63
8	53, 54, 64 and 106	55	108	101	63 and 140	147	63
9	56, 62, 82, 86, 109 and 110	56	131	102	63	148	168
10	114	57	127 and 132	103	94	149	170
11	114 and 116	58	74, 75, 127, 134 and 135	104	94	150	170
12	114 and 126	59	138	105	136	151	170
13	114 and 126	60	42 and 116	106	136	152	176
14	114	61	42 and 43	107	161 and 162	153	177
15	129	62	46 and 47	108	167	154	25 and 179
16	130	63	60	109	167	155	180 and 181
17	116	64	71–77	110	172	156	180
18	43	65	77	111	174	157	107
19	61, 104, 105 and 137	66	72 and 74–77	112	174	158	46
20	130	67	77 and 100–103	113	172	159	37
21	38-40	68	77	114	172	160	49, 59, 82, 106,
							148 and 186
22	45	69	77	115	141	161	79
23	45	70	115	116	141 and 182–184	162	5, 49, 53, 54, 82,
							86. 147 and 148
24	42, 45, 67-70	71	76	117	145 and 182	163	5, 37, 86, 106.
							147 and 151–154
25	23	72	76 and 77	118	141	164	155
26	90	73	76 and 127	119	183	165	158
27	90	74	72 and 76	120	141	166	49 and 160
28	90	75	63	120	141	167	165 and 166
29	111	76	63	121	145	168	73
30	90	77	133	123	149	169	171
31	38	78	63	120	123	170	173
32	40	79	66 and 95	125	157	170	173
33	40	80	43	126	159	172	37
34	41	81	43	120	163 and 164	173	49
35	41	82	48	128	163 and 164	174	79
36	41	83	61	129	169	175	53 and 54
37	41	84	78	120	160	175	37 and 153
38	41	85	90 81	130	105	170	1/1/
39	41	86	93 and 94	132	175	178	144
39 40	41	87	61 104 and 105	122	175	170	144
40		88	109 109 and 103	133	178	180	111
41		80	100	134	178	191	144
42	41	07	100	133	170	101	144
40	41 /1	50 01	100	127	105	102	144
44	41 90	91 02	122-123	137	105	103	144
40	00 01 and 02	74 02	124	130	105	104	150
40	91 and 92 02 and 06 00	30	124	198	100	100	130
41/	92 and 90-99						

On the other hand, similar to conventional surfactants, CACs of amphiphilic calixarenes are directly related to their hydrophobic/hydrophilic groups and affected by environments (temperature, pH, ionic strength and solvent).

For example, Rodik and co-workers synthesized a series of choline modified amphiphilic calixarenes **64–66** and **69** bearing various lengths of alkyl chains at the lower rim.⁷⁷ They found that CACs decreased (390–0.75 μ M) with the increase in the chain length (3–16 CH₂ units). And we have already discussed before that CACs decrease more rapidly with longer alkyl chains.

Introducing extra interactions such as hydrogen bonds is an efficient way to enhance assembly, decreasing the CAC. Consoli and co-workers synthesized two amphiphilic calix[4]arenes **261** and **262** decorated with nucleotides at the lower rim.²²⁹

The CAC of **262** bearing adenine nucleotides (0.22 mM) is lower than that of **261** bearing thymine nucleotides (0.51 mM), which is consistent with the capacity of adenine to establish stronger stacking interactions with respect to thymine nucleobase.

High salt concentration could reduce electrostatic repulsion of like charges at the hydrophilic head group, resulting in a lower CAC value. Rodik and co-workers synthesized amphiphilic calix[4]arenes **64** and **66** bearing cationic choline groups at the upper rim and alkyl chains at the lower rim.⁷² Their CACs were found to be decreased from pure water (0.37 mM for **64** and 0.048 mM for **66**) to 20 mM Tris buffer (0.067 mM for **64** and 0.0062 mM for **66**). Mchedlov-Petrossyan and co-workers found that the CAC of **64** decreased (4–0.12 mM) with increasing concentration of NaCl as well.⁷³

 Table 2
 References of lower-rim hydrophilic amphiphilic calixarenes in Scheme 3

Compound	Ref.	Compound	Ref.	Compound	Ref.	Compound	Ref.	Compound	Ref.
186	49, 187 and 188	236	208	286	235 and 236	336	243	386	245
187	37 and 49	237	200	287	235 and 236	337	243 and 244	387	245
188	194	238	200, 204 and 223	288	237	338	244	388	245
189	197	239	204 and 227	289	247	339	244	389	245
190	197	240	200	290	247	340	248	390	245
191	197	241	200 and 223	291	249	341	244	391	245
192	190, 197 and 201	242	200	292	232 and 250	342	244	392	245
193	203	243	191	293	250	343	244	393	245
194	210	244	191	294	251 - 254	344	244	394	245
195	199 and 212	245	191	295	257	345	245	395	245
196	203	246	191	296	257	346	245	396	245
197	193	247	191	297	49	347	245	397	245
198	92	248	191	298	49	348	245	398	245
199	113 and 198	249	191	299	49	349	245	399	245
200	198	250	191	300	49	350	245	400	245
201	113	251	191	301	49	351	245	401	245
202	45, 198 and 230	252	191	302	246	352	245	402	262
203	45	253	209	303	246	353	245	403	262
204	113 and 198	254	211	304	246	354	245	404	262
205	238	255	213	305	259	355	245	405	262
206	189	256	213	306	246	356	245	406	262
207	189	257	213	307	246	357	245	407	22
208	189	258	213	308	246	358	245		
209	198	259	213	309	263	359	245		
210	102	260	213	310	264	360	245		
211	198	261	194 and 229	311	242	361	244		
212	202 and 203	262	194 and 229	312	246	362	244		
213	207	263	234	313	246	363	244		
214	207	264	234	314	246	364	244		
215	207	265	234 and 241	315	246	365	245		
216	190, 207 and 215–220	266	192	316	246	366	245		
217	190, 207, 215, 216, 219, 221 and 222	267	192	317	246	367	245		
218	190, 207 and 215–219	268	196	318	195	368	245		
219	190, 193, 201, 207, 215, 216, 225 and 226	269	196	319	255	369	256		
220	207 and 216	270	196	320	255	370	258		
221	207 and 216	271	196	321	49	371	258		
222	231	272	206	322	49	372	245		
223	233	273	206	323	244	373	245		
224	231	274	206	324	244	374	245		
225	239 and 240	275	214	325	259	375	245		
226	190	276	214	326	260 and 261	376	245		
227	193	277	214	327	244	377	245		
228	195	278	224	328	244	378	245		
229	199	279	224	329	244	379	245		
230	200	280	228	330	244	380	245		
231	200	281	228	331	248	381	245		
232	200, 204 and 205	282	188 and 232	332	198	382	245		
233	208	283	235-237	333	243 and 244	383	245		
234	208	284	235-237	334	243	384	245		
235	208	285	235 and 236	335	243	385	245		

Similarly, the pH value could change the protonation states of hydrophilic heads, influencing charge interactions, resulting in a CAC change. Fujii and co-workers synthesized a new amphiphilic calix[4]arene **91** with hydrophilic amino end groups.¹²² With pH increasing from 3 (below the p K_a of amino group) to 8 (above the p K_a of amino group), the CAC decreased (from 0.11 to 0.042 mM). Further, they prepared a new calix[4]arene-based lipid **101** containing glutamic acid as the hydrophilic group.^{63,140} The α -amine and the γ -carboxylic acid groups of the glutamic acid moiety allowed a continuous change in the state of the head group from cationic to zwitterionic and then to anionic with increasing pH. The CAC at pH 7.5 (1.0 μ M) was lower than that obtained under other pH conditions (4.4 μ M at pH 3.2 and 1.8 μ M at pH 10) because the intermolecular electrostatic repulsions are cancelled by the zwitterionic nature.

2.2.2 Diverse morphology. Besides CAC, morphology is another important property of amphiphilic assembly. It is not only an interesting topic in fundamental research, but also related to potential applications. NMR, DOSY, small-angle X-ray scattering (SAXS), and photo correlation spectroscopy (PCS) are methods that could be used to measure the size and shape of aggregates, while transmission electron microscopy (TEM), scanning electron microscopy (SEM), and AFM could provide us with more intuitional pictures. We summarize self-assembling

Table 3 References of bola-type amphiphilic calixarenes in Scheme 4

Compound	Ref.	Compound	Ref.	Compound	Ref.	Compound	Ref.
408	40	420	265	432	266	444	267
409	40	421	265	433	266	445	267
410	230	422	268	434	266	446	269
411	230	423	270	435	271	447	269
412	40	424	272	436	271	448	273
413	40	425	272	437	271	449	273
414	40	426	269	438	271	450	273
			and				
			272				
415	230	427	268	439	271	451	273
416	274	428	232	440	271	452	242
							and
							275-
							277
417	228	429	120	441	271	453	273
418	228	430	247	442	271	_	_
419	228	431	247	443	267	_	_

morphologies of all reported amphiphilic calixarenes in aqueous solution in Table 5, which does not include Langmuir–Blodgett films formed at the air–water interface.

Compared with corresponding conventional surfactants, selfassemblies of amphiphilic calixarenes show diverse morphologies. For example, sodium dodecyl sulphate (SDS) forms spherical micelles with an average radius of 2.09 nm.²⁸⁰ Its corresponding calixarene, amphiphilic sulfonatocalix[4]arene 9, forms micelles with an average radius of 6.9 nm¹⁰⁹ and the hexameric derivative 163 forms aggregates with various sizes (radii from about 70 nm to 195 nm) depending on the concentration.¹⁵⁴ For positively charged surfactants, dodecylguanidine hydrochloride forms micelles as well,²⁸¹ while the amphiphilic guanidiniummodified calix[4]arene 51 is able to form SLN with an average radius of 73 nm.¹¹⁷ Such great differences mainly come from their unique skeletons. It is well known that the critical packing parameter (CPP) proposed by Israelachivili and coworkers is a parameter to estimate the morphology of an amphiphilic assembly.²⁸² Definition of the CPP value is $P = V_{\rm H}/(a_0 l_{\rm c})$, where $V_{\rm H}$ is the volume occupied by hydrophobic groups in the assembly core, a_0 is cross-sectional area occupied by the hydrophilic group at the assembly-solution interface, and l_c is the chain length of the hydrophobic group in the assembly core. However, the CPP is hard to precisely apply in the case of macrocyclic amphiphiles. Various sizes and conformations of skeletons result in complicated, unpredictable, and diverse morphologies.

For example, Zhao and coworkers reported fully carboxylic acid modified amphiphilic calix[6]arene **305** and calix[8]arene **325**.²⁵⁹ The mean radius of aggregates of **305** (111.2 \pm 17.4 nm) is larger than that of **325** (89.8 \pm 14.8 nm). Similarly, Xu and coworkers investigated choline modified amphiphilic calix[4]arene **62** and calix[5]arene **158**.⁴⁶ Despite their similar CAC values, the average radius of vesicles of **62** (75 nm) is almost two fold that of **158** (40 nm) (Fig. 2). The explanation of decreasing diameter with a larger skeleton is controversial; it may be related to an enhanced hydrophobic effect, different symmetry, or lower entropy loss. Exceptionally, Basilio and coworkers reported that an ellipsoidal micelle of amphiphilic sulfonatocalix[8]arene **175** has a longer main semiaxis (7.3 nm) than that of calix[6]arene **162** (6.6 nm), which is the result of a more flexible conformation of calix[8]arene.⁵⁴

Conformation is also an important factor. Stoikov's group reported a series of quaternary ammonium-modified amphiphilic calix[4]arenes which have the same decoration and different conformations (**283**, **289** and **290** in cone conformation and **428**, **430** and **431** in 1,3-alternate conformation).^{232,247} At a concentration of 0.3 mM, the radius of assembly of **283** (227 nm) is larger than that of **428** (71 nm). At a concentration of 1 mM, the radius of assembly of **289** (70.8 nm) is larger than that of **430** (49.9 nm) while the radius of assembly of **290** (37.7 nm) is smaller than that of **431** (46.4 nm). We assume that conformations of skeletons in assemblies affect the curvature and sizes of assemblies due to different aggregation modes.

Certainly, the length of hydrophobic chains and the structure of hydrophilic head groups could affect the morphologies of aggregates. For instance, increasing the hydrophobic chain from 6 carbons to 9 carbons causes different morphologies of amphiphilic aminocalix[4]arenes 94 and 97 assemblies, which are micelle and cylinder respectively (Fig. 2).¹²² For a series of amphiphilic calixarenes that show similar aggregation morphologies, some of them present a trend in size. Jebors and coworkers reported several SLNs assembled by acylcalix[9]arenes with different lengths of the carbon chain (402-406). The sizes of their aggregates decrease with increasing carbon atoms (radii decrease from 108 nm to 41 nm).²⁶² Similarly, Burilov and coworkers studied two kinds of amine modified amphiphilic calixarenes with 4 carbons (98 and 105) and 8 carbons (99 and 106) as the hydrophobic chain, respectively.¹³⁶ 98 and 99 are completely modified whereas 105 and 106 are partially modified. Aggregates of 98 and 105 show larger radii (88 nm and 97 nm, respectively) than those of 99 and 106 (70 nm and 77 nm, respectively), respectively. In principle, more and longer hydrophobic chains lead to a stronger hydrophobic effect, resulting in more compact packing, which leads to smaller aggregates. However, there are contrary examples such as a series of cyclodextrin modified amphiphilic calixarenes 127 and 128, whose aggregate size increases with increasing carbon chain (radii increase from 65 nm to 95 nm).^{163,164} This phenomenon may be related to the large volume of cyclodextrin. Besides, the aggregates of bola-type amphiphilic calixarenes 432-434 are of the same size, although they bear 4-carbon chains, 8-carbon chains, and 14-carbon chains, respectively.²⁶⁶ In brief, we just find limited examples of hydrophobic chains affecting the morphology with a certain trend, while in many cases, morphologies vary irregularly with chain length.

Hydrophilic head affecting the aggregation morphology is an even more complicated topic. Factors such as volume, hydration energy, and interactions between hydrophilic head groups may give us a clue, but it is still difficult to predict aggregate morphologies from their structure. Here we just name several examples that may provide some ideas. Stoikov and coworkers^{235–237,247} synthesized several amphiphilic butylthiacalix[4]arenes with quaternary ammonium, as well as amide (**289, 290**), ester (**287**), benzene (**284**), or phthalimide

 Table 4
 CACs of amphiphilic calixarenes

Compound	CAC (mM)	Condition ^a	Method ^b	Ref.
3	2.5	30 °C	Conductivity	49
3	3.05	15 °C	ITC	53
3	3.20	27.00	ITC	53
3	3.40	35 ℃ 45 °C		53
3	3./3	45 U 55 °C		53
3	4.10	55 C	Conductivity	55
3 A	$(8.98 \pm 2.69) \times 10^{-2}$	10 mM NaCl	Fluorescence	54 65
4	$(5.84 \pm 4.49) \times 10^{-2}$	15 mM NaCl	Fluorescence	65
4	0.566	50 mM NaCl	Fluorescence	66
6	0.54		Fluorescence	84
6	0.32	D_2O	DOSY	84
6	0.450	15 °C	ITC	53
6	0.488		ITC	53
6	0.520	35 °C	ITC	53
6	0.600	45 °C	ITC	53
6	0.689	55 °C	ITC	53
6	0.491		Conductivity	54
6	0.040	10 mM NaCl	Fluorescence	64
/	0.020	10 mm NaCl	Fluorescence	64
8	0.0700	15 U		53
8 0	0.0850	25 °C		53
0 0	0.0940	55 C		53
8	0.112	43 C 55 °C	ITC	53
8	0.0911	33 0	Conductivity	54
9	0.02		Fluorescence	109
15	0.0285		AFM	129
21	0.65	pH 10 NaHCO ₃ , <i>I</i> = 0.123 M	UV-vis	38
31	0.045	pH 10 NaHCO ₃ , $I = 0.123$ M	UV-vis	38
31	0.035	pH 10 NaHCO ₃ , $I = 0.123$ M	UV-vis	38
34	1	pH 6, 20 °C	Surface tension	41
34	1.3	рН 8, 20 °С	Surface tension	41
35	1.6	рН 6, 20 °С	Surface tension	41
35	1.3	рН 8, 20 °С	Surface tension	41
36	1.3	pH 6, 20 °C	Surface tension	41
36	1	pH 8, 20 °C	Surface tension	41
37	1.2	pH 6, 20 °C	Surface tension	41
37	1.1	pH 8, 20 °C	Surface tension	41
38	1.3	pH 6, 20 °C	Surface tension	41
38 20	1.2	pH 8, 20 °C	Surface tension	41
20	1.2	pH 0, 20 °C	Surface tension	41
40	1 2	pH 6, 20°C	Surface tension	41
40	1.2	pH 8, 20 °C	Surface tension	41
41	1.2	pH 6, 20 °C	Surface tension	41
41	0.2	pH 8, 20 °C	Surface tension	41
42	0.1	pH 6, 20 °C	Surface tension	41
42	0.4	pH 8, 20 °C	Surface tension	41
43	0.5	pH 6, 20 °C	Surface tension	41
43	0.1	рН 8, 20 °С	Surface tension	41
44	0.1	рН 6, 20 °С	Surface tension	41
44	0.1	рН 8, 20 °С	Surface tension	41
46	0.023		Conductivity	91
46	0.056	pH 7 Na ⁺ /K ⁺ PB	Fluorescence	91
46	0.037	pH 9 Na borate	Fluorescence	91
46	0.041	pH 7 Na ⁺ /K ⁺ PB	Fluorescence	91
46	0.0021	pH 9 Na borate	Fluorescence	91
46	0.073	pH / Na /K PB	Fluorescence	91
40	0.032	pH 7 Na ⁺ / K ⁺ PP	Fluorescence	91
46	0.04	$p_{II} / Na / K PD$ nH 9 Na ⁺ horate	Fluorescence	91 Q1
47	< 0.04	I = 0.07 M	Fluorescence	91
49	0.2	$D_{2}O$	¹ H NMR	112
57	0.01	17 °C	Surface tension	132
57	0.01	30 °C	Fluorescence	132
57	3.8		¹ H NMR	127
58 (I ⁻)	8.7		¹ H NMR	127
58 (Cl ⁻)	0.00879	22–23 °C	Surface tension	75
58 (Cl)	9.8	22–23 °C; 30 °C	UV-vis, osmolality, surface tension	134
		-	•	

Compound	CAC (mM)	Condition ^{<i>a</i>}	Method ^b	Ref.
62	0.0052		Fluorescence	46
64	0.37	_	Fluorescence	72
64	0.067	20 mM Tris, pH 7.4	Fluorescence	72
64	0.081	20 mM Tris, pH 7.4, 150 mM NaCl	Fluorescence	72
64 64	4	0.05 mM NaCl	UV-VIS	/3
64	0.12	22–23 °C	Surface tension	75
64	0.39	22 23 0	Fluorescence	73
64	0.068	20 mM PB, pH 7.4	Fluorescence	77
64	0.064	20 mM PB, pH 7.4, 150 mM NaCl	Fluorescence	77
65	0.026		Fluorescence	77
65	0.0098	20 mM PB, pH 7.4	Fluorescence	77
65	0.0044	20 mM PB, pH 7.4, 150 mM NaCl	Fluorescence	77
66	0.048		Fluorescence	72
66	0.0062	20 mM Tris, pH 7.4	Fluorescence	72
66	0.003	20 mM Tris, pH 7.4, 150 mM NaCl	Fluorescence	72
66	0.019		Fluorescence	77
66	0.0044	20 mM PB, pH 7.4	Fluorescence	77
66	0.0027	20 mM PB, pH 7.4, 150 mM NaCl	Fluorescence	//
60 67	0.04/8	22-23 C	Surface tension	/5
69	0.008		Fluorescence	77
69	0.001	20 mM PB nH 7 4	Fluorescence	77
72	0.017	20 mm 10, pm 7.4	Fluorescence	77
72	0.0036	20 mM PB, pH 7.4	Fluorescence	77
72	0.0030	20 mM PB, pH 7.4, 150 mM NaCl	Fluorescence	77
72	0.014	20 mM acetate, pH 5	Fluorescence	77
73	1.4		¹ H NMR	127
74	0.01		Fluorescence	72
74	0.0029	20 mM Tris, pH 7.4	Fluorescence	72
74	0.0018	20 mM Tris, pH 7.4, 150 mM NaCl	Fluorescence	72
82	0.33	_	Fluorescence	48
91	0.11	50 mM NaCl, pH 3.0	Fluorescence	122
91	0.042	50 mM NaCl, pH 8.0	Fluorescence	122
91	0.11	pH 8.0 Tris-HCl, 50 mM NaCl	Fluorescence	123
91	0.11	pH 3.0, 50 mm NaCl	UV-VIS	124
94	0.0040	50 mM NaCl, pH 3.0	Fluorescence	122
97	0.0029	MFS pH 6.5	Fluorescence	122
98	0.0043	MES pH 6.5	Fluorescence	130
99	0.0028	MES pH 6.5	Fluorescence	136
99	0.0050	MES pH 6.5	Fluorescence	136
101	$(4.4 \pm 0.2) imes 10^{-3}$	50 mM NaCl, pH 3.0	Fluorescence	140
101	$(1.0 \pm 0.1) imes 10^{-3}$	50 mM NaCl, pH 8.3	Fluorescence	140
101	$(1.8 \pm 0.2) imes 10^{-3}$	pH 10, 50 mM NaCl	Fluorescence	140
101	0.0044	рН 3.2	—	63
101	0.0010	рН 7.5	_	63
101	0.0018	pH 10	_	63
105	0.0064	MES pH 6.5	Fluorescence	136
105	0.79	MES pH 6.5	Fluorescence	136
106	0.0048	MES pH 6.5	Fluorescence	136
106	0.16	MES pH 6.5	Fluorescence	136
108	$(1.8 \pm 0.2) \times 10^{-4}$	150 mM NaCl	Fluorescence	167
109 124 (D)	$(5.0 \pm 1.0) \times 10$	150 IIIM NaCl	Fluorescence	107
124 (D) 124 (L)	0.15	pH 8.0 Tris-HCl, 50 mM NaCl	Fluorescence	123
124 (L) 125	0.00154	50 mM NaCl	Fluorescence	123
125	0.025		Fluorescence, surface tension	159
131	0.21	37 °C	Relaxivity	278
132	2.3	·· ·	Relaxivity	175
133	0.12		Relaxivity	175
140	0.019		Fluorescence	142
141	0.015		Fluorescence	142
142	0.013		Fluorescence	146
142	0.013		Fluorescence	142
143	0.00014	50 mM NaCl	Fluorescence	150
144	0.00027	50 mM NaCl	Fluorescence	150
145	0.0045	50 mM NaCl	Fluorescence	150
158	0.0055		Fluorescence	46
160	1	30 °C	Conductivity	49

Compound	CAC (mM)	Condition ^a	Method ^b	Ref.
162	0.5	30 °C	Surface tension	5
162	0.67	30 °C	Conductivity	5
162	0.5	30 °C	Fluorescence	5
162	0.636	15 °C	ITC	53
162	0.751	25 °C		53
162	0.850	35 C 45 °C	ITC	53
162	0.904	43 C 55 °C	ITC	53
162	0.734	33 6	Conductivity	54
162 (micelle)	0.6		DLS	154
163 (domain)	$1 imes 10^{-4}$		DLS	154
163 (nanoassociate)	$1 imes 10^{-6}$		DLS	154
164	0.1		UV-vis	155
166	0.1	30 °C	Surface tension	49
166	0.16	30 °C	Conductivity	49
170	$(7.9 \pm 0.5) \times 10^{-3}$		Fluorescence	173
171	$(8.0\pm 0.2) imes 10^{-3}$		Fluorescence	173
173	0.5	30 °C	Surface tension	49
173	0.7	30 °C	Conductivity	49
175	0.700	15 °C	HC ITC	53
1/5	0.750	25 °C	IIC	53
175	0.810	35 C 45 °C		53
175	0.094	45 °C	ITC	53
175	0.729	33 6	Conductivity	54
186	0.56	30 °C	Surface tension	49
186	0.55	30 °C	Conductivity	49
223	0.0005		UV-vis	257
230	0.4	10% DMF aqueous	Surface tension	200
231	CAC_1 : 0.95; CAC_2 : 5.0 ^c	10% DMF aqueous	Surface tension	200
232	CAC_2 : 2.2; CAC_3 : 80 ^c	-	Surface tension	200
232	2			205
233	2.2			208
234	2.1			208
236	2.1			208
237	0.1	10% DMF aqueous	Surface tension	200
238	$CAC_1: 0.6; CAC_2: 3.8; CAC_3: 75^{\circ}$		Surface tension	200
238	6.5	100/ DME agreens	Viscosity	200
238 228	CAC_1 : 0.95; CAC_2 : 0.0; CAC_3 : 00	10% DMF aqueous	Viscosity	200
230	27	10% DMF aqueous	VISCOSITY	200
239	2.1			204
239	CAC_{4} : 0.2: CAC_{2} : 2.0: CAC_{2} : 16 ^c		Surface tension	2.00
240	78		Viscosity	200
240	CAC_1 : 0.95: CAC_2 : 7.6: CAC_2 : 60 ^c	10% DMF aqueous	Surface tension	200
240	CAC_2 : 36; CAC_3 : 65 ^c	10% DMF aqueous	Viscosity	200
241	CAC_1 : 0.18; CAC_2 : 4.5 ^c	1	Surface tension	200
241	5.5		Viscosity	200
242	CAC_1 : 0.13; CAC_2 : 0.9 ^c		Surface tension	200
242	2.5		Viscosity	200
261	0.51		Fluorescence	229
262	0.22		Fluorescence	229
294	0.64	D_2O	DOSY	252
294	1.15	D_2O	DOSY	254
296	0.0045	22.00	UV-vis	257
298	0.43	30 °C	Conductivity	49
299	0.61	30 °C	Surface tension	49
299	0.58	30°C	Surface tension	49
300	0.21	30 °C	Conductivity	49
305	0.00579	50 0	Fluorescence	49
322	0.15	30 °C	Surface tension	239 49
322	0.40	30 °C	Conductivity	49
325	0.00305		Fluorescence	259
407	CAC_1 : 0.19; CAC_2 : 6.9 ^c		Surface tension	22
416	0.016		Fluorescence	274
432	$(91 \pm 5) imes 10^{-3}$	pH 7.4 Tris, pyrene	Fluorescence	266
432	$(2.0\pm 0.1) imes 10^{-3}$	pH 7.4 Tris, EY	Fluorescence	266
433	$(59 \pm 3) imes 10^{-3}$	pH 7.4 Tris, pyrene	Fluorescence	266

Review

Table 4 (continued)

Compound	CAC (mM)	Condition ^a	Method ^b	Ref.
433	$(2.6\pm 0.2) imes 10^{-3}$	pH 7.4 Tris, EY	Fluorescence	266
434	$(33 \pm 2) \times 10^{-3}$	pH 7.4 Tris, pyrene	Fluorescence	266
434	$(2.0 \pm 0.1) \times 10^{-3}$	pH 7.4 Tris, EY	Fluorescence	266
443	0.024	1	Fluorescence	267
444	0.025		Fluorescence	267
445	0.009		Fluorescence	267

^{*a*} The condition is 25 $^{\circ}$ C in pure water if no label. *I* is the ionic strength. EY is Eosin Y. ^{*b*} ITC: isothermal titration microcalorimetry, DOSY: diffusion-ordered spectroscopy, AFM: atomic force microscopy, NMR: nuclear magnetic resonance. ^{*c*} The nomenclature and values of CAC₁, CAC₂, and CAC₃ were taken from the original literature without any change.

Fig. 1 Variation of the CAC with the number of carbons (nC) per alkyl chain for amphiphilic SC4As and alkyl benzene sulfonates.

(286) as hydrophilic groups. The 287 assembly has a significantly smaller radius (1.9 nm) than those of 284 (30.7 nm), 286 (7.3 nm), 289 (>70.8 nm, Tris buffer) and 290 (>37.7 nm, Tris buffer), owing to the small size of the ester. Similar results were reported by Shahgaldian and coworkers on diethylphosphate and phosphate modified calixarene, 192 (130 nm) and 226 (163 nm), respectively.¹⁹⁰ On the other hand, Li and coworkers reported cyclodextrin modified calixarene 279 and 278, which possess one and two β-cyclodextrins respectively.²²⁴ In pure water, 279 forms small linear or dot like assemblies, whereas 278 shows large sheet like aggregations (Fig. 2). This phenomenon could be explained by hydrogen bonds between cyclodextrins. Besides, Klymchenko's group synthesized amphiphilic calixarenes modified by choline (66) and a N-(2-aminoethyl)-N,N-dimethylammonium group (72).^{76,77} DLS results showed the micelles of 72 (3.04 nm) are little larger than those of 66 (2.82 nm), probably due to the larger hydration shell of amino groups as compared to hydroxyls. However, there are some examples showing that the morphology is not significantly influenced by different hydrophilic head groups. For example, Burilov and coworkers compared assembly behavior of amphiphilic thiacalix[4]arenes bearing carboxyl (427) and sulfonic (422) groups, respectively; these two compounds show similar shape and size.²⁶⁸ Compounds 212, 196, and 193, reported by Martin and coworkers, which possess amine, aminodiacetate, and phosphate groups, respectively, present similar results.^{202,203}

The morphologies of assemblies are largely related to experimental conditions²⁸³ such as concentration. For example, Padnya and coworkers reported a series of quaternary ammonium based thiacalix[4]arenes **289** and **290**, whose aggregate sizes increase with decreasing concentration (radii increase from 70.8 nm to 244.4 nm and from 37.7 nm to 226.9 nm, respectively, with concentration decrease from 1 mM to 1 μ M).²⁴⁷ The authors assume that this phenomenon can be explained by the existence of two kinds of aggregates, spherical aggregates and elongated self-associates.

On the other hand, properties of solvents may modulate the morphology of amphiphilic calixarene assemblies, mainly by influencing the interactions of hydrophilic head groups. For instance, the polarity of solvent affects hydrogen bonds, resulting in a change in the packing mode of some amphiphiles. Liang and coworkers synthesized amphiphilic calix[6]biscrowns 450 and 451 possessing amide groups, interacting with each other via hydrogen bonds, at the hydrophilic part.273 Their morphologies underwent a clear transition from spherical to tubular aggregates when the solvent polarity, *i.e.* content of water in water/ethanol solution, is increased (Fig. 2), whereas analogues 448 and 449, without any amide linkage, only showed a size decrease upon the same change in solvent polarity. Similarly, two cyclodextrin modified amphiphilic calix[4]arenes 278 and 279,²²⁴ which we have already mentioned before, also present different assembly patterns in different solvents. With decreasing polarity, the morphology of 279 transferred from dots to linear aggregates and then to vesicles; meanwhile, 278 changed from sheet-like to bundle-like aggregations. All these examples show that lower solvent polarity enhances hydrogen bonds between head groups, resulting in larger aggregates.

pH of the solution is a common factor to modulate assembly morphology, by influencing electrostatic interactions and hydrophobicity. For groups whose pK_a values are in a regular range, such as amine, carboxyl acid, and pyridine, adjusting the pH could change the number of charges they possess. More like charges at the hydrophilic head cause stronger repulsion, resulting in a larger curvature. For example, Martin and coworkers reported a phosphate modified amphiphilic calix[4]arene **196**, whose major assembly morphology is bilayer at pH 4.1 while small micelles at pH 12.²⁰³ On the other hand, Houmadi and coworkers reported a sulfonatocalix[6]arene **164** with imidazolyl groups at the upper rim.¹⁵⁵ At pH 6.5, the average radius of its assembly is 25 nm, which is much smaller than those at pH 7.8 (25–125 nm) and

Compound	Morphology ^a	Radius ^{b} (nm)	Condition ^c	Method ^d	Ref.
3	Ellipsoidal micelle	Minor: 1.15, major: 6.6 (prolate); 3.5 (oblate)	D ₂ O	DOSY	54
4	Spherical micelle	$R_{\rm s}$: 2.13; $R_{\rm g}$: 1.64 ± 0.02	10 mM NaCl	SAXS	65
l	Spherical micelle	$R_{\rm s}: 2.19; R_{\rm s}: 1.73 \pm 0.03$	15 mM NaCl	SAXS	65
5	Ellipsoidal micelle	Major: 4.6	D_2O	DOSY	84
	Ellipsoidal micelle	Minor: 1.40, major: 8.9 (prolate); 4.6 (oblate)	D_2O	DOSY	54
	Spherical micelle	$R_{\rm s}: 2.40; R_{\rm g}: 1.97$	10 mM NaCl	SAXS	64
	Spherical micelle	$R_{\rm s}$: 2.65; $R_{\rm g}$: 2.15	10 mM NaCl	SAXS	64
	Ellipsoidal micelle	Minor: 1.65, major: 7.8 (prolate); 4.3 (oblate)	D_2O	DOSY	54
	Spherical micelle	$R_{\rm s}: 2.10$	10 mM NaCl	SAXS	64
	Micelle	6.9		DLS, AFM	109
1	Micelle	2.1-2.8	Various pH	DLS	114
2	SLN	85		DLS, AFM	126
2	SLN	78 ± 1	0.1 mM NaCl	DLS, AFM	126
2	SLN	81 ± 2	1 mM NaCl	DLS, AFM	126
2	SLN	81 ± 1	15 mM NaCl	DLS, AFM	126
2	SLN	80 ± 1	145 mM NaCl	DLS, AFM	126
2	SLN	66 ± 1	0.1 mM KCl	DLS, AFM	126
2	SLN	76 ± 3	1 mM KCl	DLS, AFM	126
2	SLN	86 ± 1	5 mM KCl	DLS, AFM	126
2	SLN	83 ± 2	140 mM KCl	DLS, AFM	126
2	SLN	85 ± 1	145 mM KCl	DLS, AFM	126
2	SLN	64 ± 1	0.1 mM CaCl_2	DLS, AFM	126
2	SLN	60 ± 1	0.5 mM CaCl_2	DLS, AFM	126
2	SLN	59 ± 1	1 mM CaCl ₂	DLS, AFM	126
2	SLN	105 ± 1	2 mM CaCl_2	DLS, AFM	126
2	SLN	371 ± 13	2.5 mM CaCl_2	DLS, AFM	126
2	SLN	1206 ± 1179	3 mM CaCl_2	DLS, AFM	126
2	SLN	1429 ± 433	4 mM CaCl_2	DLS, AFM	126
2	SLN	1560 ± 485	5 mM CaCl ₂	DLS, AFM	126
2	SLN	815 ± 1393	145 mM CaCl ₂	DLS, AFM	126
2	SLN	74 ± 2	0.1 mM MgCl_2	DLS, AFM	126
2	SLN	64 ± 1	0.5 mM MgCl_2	DLS, AFM	126
2	SLN	62 ± 1	1 mM MgCl_2	DLS, AFM	126
2	SLN	104 ± 1	2 mM MgCl_2	DLS, AFM	126
2	SLN	141 ± 6	2.5 mM MgCl_2	DLS, AFM	126
2	SLN	507 ± 25	3 mM MgCl_2	DLS, AFM	126
2	SLN	1048 ± 497	5 mM MgCl_2	DLS, AFM	126
2	SLN	1247 ± 435	10 mM MgCl_2	DLS, AFM	126
2	SLN	1141 ± 647	20 mM MgCl_2	DLS, AFM	126
2	SLN	962 ± 1314	30 mM MgCl_2	DLS, AFM	126
2	SLN	757 ± 493	145 mM $MgCl_2$	DLS, AFM	126
3	SLN	69	0 -	DLS, AFM	126
3	SLN	69 ± 1	0.1 mM NaCl	DLS, AFM	126
3	SLN	69 ± 1	1 mM NaCl	DLS, AFM	126
3	SLN	68 ± 2	15 mM NaCl	DLS, AFM	126
3	SLN	66 ± 2	145 mM NaCl	DLS, AFM	126
3	SLN	70 ± 1	0.1 mM KCl	DLS, AFM	126
3	SLN	68 ± 1	1 mM KCl	DLS, AFM	126
3	SLN	65 ± 1	5 mM KCl	DLS, AFM	126
3	SLN	66 ± 1	140 mM KCl	DLS, AFM	126
3	SLN	66 ± 2	145 mM KCl	DLS, AFM	126
3	SLN	69 ± 3	0.1 mM CaCl ₂	DLS, AFM	126
3	SLN	58 ± 2	0.5 mM CaCl_2	DLS, AFM	126
3	SLN	52 ± 1	1 mM CaCl ₂	DLS, AFM	126
3	SLN	191 ± 6	2 mM CaCl_2	DLS, AFM	126
;	SLN	525 ± 22	2.5 mM CaCl_2	DLS, AFM	126
;	SLN	1117 ± 467	3 mM CaCl ₂	DLS, AFM	126
\$	SLN	1345 ± 860	4 mM CaCl_2	DLS, AFM	126
3	SLN	1239 ± 1172	$CaCl_2 5 mM$	DLS, AFM	126
3	SLN	1567 ± 3019	145 $\overline{\text{mM}}$ CaCl ₂	DLS, AFM	126
3	SLN	95 ± 65	0.1 mM MgCl_2	DLS, AFM	126
3	SLN	64 ± 1	0.5 mM MgCl ₂	DLS, AFM	126
3	SLN	60 ± 2	1 mM MgCl_2	DLS, AFM	126
3	SLN	136 ± 2	2 mM MgCl_2	DLS. AFM	126
3	SLN	229 ± 20	2.5 mM MgCl ₂	DLS. AFM	126
3	SLN	$\frac{1}{837 \pm 30}$	3 mM MgCl ₂	DLS, AFM	126
3	SLN	1365 ± 399	5 mM MgCl	DLS AFM	126
~	~~~····	1000 - 000	5 11111 115012	DD0, 11.111	140

Compound	Morphology ^a	Radius ^b (nm)	Condition ^c	Method ^d	Ref.
13	SLN	650 ± 650	10 mM MgCl ₂	DLS, AFM	126
13	SLN	1425 ± 256	20 mM MgCl ₂	DLS, AFM	126
13	SLN	848 ± 1237	30 mM MgCl ₂	DLS, AFM	126
13	SLN	1242 ± 625	145 mM MgCl ₂	DLS, AFM	126
18	Vesicle	54 ± 3	10 mM PB 7.2, 154 mM NaCl	DLS	43
24	Mixture of large or small vesicles,	<i>R</i> _h : 43; <i>R</i> _g : 58	0.1 M NH_3 aqueous	SLS, DLS, cryo-TEM	42
24	like micelles			ODM	12
24 24	Mixture of SLNs and lipid layers	 100 (SLN)	5 N NH ₃ aqueous	PCS, AFM	42 67
25	Spherical aggregate	100-125	pH 3	FE-SEM, EF-TEM	23
25	Necklace-like aggregate	250	pH 7	FE-SEM, EF-TEM	23
26	Nanofiber	/50	H_2O -EtOH 9:1	DLS, FE-SEM, TEM	90
29	Multilamellar vesicle	84 ± 24		DLS, FE-SEM, TEM	111
34	Micelle	—	pH 6	—	41
34	Micelle	—	pH 8	—	41
35 25	Micelle	_	рнь	—	41
35	Micelle	_	рн х	—	41
30	Micelle		рнь		41
30 27	Micelle	_	рЦ о рГ о	_	41 41
37	Micelle	_	рн о nH 8	_	41
38	Micelle	_	pH 6	_	41 /1
38	Micelle	_	nH 8		41 41
30	Micelle	_	pH 6	_	41
30	Micelle	_	pH 8	_	41
39 40	Micelle	_	pH 6	_	41
40	Micelle		nH 8	_	41
40	Micelle		pH 6	_	41
41	Micelle	_	pH 8	_	41
42	Micelle	_	pH 6	_	41
42	Micelle	_	pH 8	_	41
43	Micelle	_	pH 6	_	41
43	Micelle	_	pH 8	_	41
44	Micelle	_	pH 6	_	41
44	Micelle	_	pH 8	_	41
46	Mixture of rod-like and spherical micelles	3.6 (rod-like); 4.2 (spherical)	Na^+ and K^+ PB, pH 7	Cryo-TEM	91
46	Spherical micelle	3.2	Na ⁺ borate, pH 9	Cryo-TEM	91
46	Membrane with a uniform pattern of pores	—	pH 4	Cryo-TEM	91
47	_	3	pH 7.2	PGSE NMR	97
47	Hollow spherical cage	3.8	27 mM Na ⁺ and K ⁺	Cryo-TEM	97
47	Micelle	4.0-4.5	27 mM K ⁺ , pH 7.0	Cryo-TEM	99
47	Micelle	3.2-3.7	27 mM Na^+ and K ⁺ , pH 7.0	Cryo-TEM	99
49	_	3.27	D_2O	DOSY	112
51	SLN	$/3 \pm 3$	20. ⁹ C	DLS	11/
5/ 50	Micellar aggregate	1-2	30 °C	DLS	132
58	Vesicle	40-650		DLS, TEM	134
0U 61	Liquid crystal	-	10 mM DD -II 7 0 454 - MAX CI	OPM	42
61	Micelle	2.7 ± 0.3	10 mm pb, ph 7.2, 154 mm NaCl	DLS	43
02 62	Vesicle	/ 0	75 mM No. 90	DIS	40
03 64	Micelle	2.0	$/5$ IIIM $Na_2 SO_4$	DIS	6U 71
04 64		~ 2		DIS TEM	/1
04 64	Micelle	1 47	20 mM Tris pH 7 4	DIS	73 77
04 65	Micelle	2.74	20 mM Tris pH 7.4	DIS	77
66	Micelle	3.2	20 mm 1115, p11 7.4	DLS	72
66	Micelle	3. <u>2</u> 2.82	20 mM Tris pH 7 4	DIS	77
67	Micelle	2.02	20 mm 1115, p11 7.4	DIS	101
67	Micelle	3.69	20 mM Tris pH 7 4	DIS	77
68		150-200	20 mM Tris pH 7.4	DIS	77
69	Micelle	4 14	20 mM Tris pH 7.4	DLS	77
72	Micelle	3.04	20 mM Tris nH 7 4	DLS	77
72	Micelle	3.28	20 mM acetate, pH 5.0	DLS	77
74	Micelle	3.2	20 mil accarce, pri oto	DLS	72
75	Spherical micelle	_	50 mM NaCl	SAXS	63
76	Spherical micelle	_	50 mM NaCl	SAXS	63

Compound	Morphology ^a	Radius ^b (nm)	Condition ^c	Method ^d	Ref.
77	Spherical micelle	_	50 mM NaCl	SAXS	63
77	Spherical micelle	_	100 mM NaCl	SAXS	63
77	Spherical micelle	_	200–300 mM NaCl	SAXS	63
77	Mixture of various micellar	_	>400 mM NaCl	SAXS	63
78	snapes Spherical micelle	_	50 mM NaCl	SAYS	63
79	Spherical micelle	_	50 mM NaCl	SAXS	63
82	Micelle	14	0.33 mM	DLS	48
32	Vesicle or aggregate of	70	1 mM	DLS	48
-	micelles			210	10
36	SLN	95		PCS	93
91	Spherical micelle	_	pH $< 6, 50$ mM NaCl	AFM	122
91	Mixture of rod-like and spherical micelles	—	3 < pH < 8, 50 mM NaCl	AFM	122
1	Connected network	_	pH = 10, 50 mM NaCl	AFM	122
)1	Cylindrical micelle	_	pH 8.0, 50 mM NaCl	AFM	122
1	Spherical micelle	2.05	pH 4.2, 50 mM NaCl	SAXS	122
1	Cylindrical micelle	1.68	pH 7.5, 50 mM NaCl	SAXS	122
11	Micelle	<i>R</i> _g : 1.67	—	SAXS	125
1	Spherical micelle	$R_{ m h}$: 2.05; $R_{ m g}$: 1.47 \pm 0.11	50 mM NaCl, pH 3.0	SAXS	124
12	Spherical micelle	$R_{\rm h}$: 2.10; $R_{\rm g}$: 1.58 \pm 0.15	50 mM NaCl, pH 3.0	SAXS	124
3	Spherical micelle	$R_{\rm h}$: 2.25; $R_{\rm g}$: 1.94 \pm 0.17	50 mM NaCl, pH 3.0	SAXS	124
94 A	Spherical micelle	—	pH < 6,50 mM NaCl	AFM	122
/4	vesicular micelle	—	pH = 8,50 mM NaCl	AFM	122
94	spherical micelles	_	рн = 6, 50 mм NaCl	AfM	122
94	Cylindrical micelle	—	pH 6.3, 50 mM NaCl	AFM	122
94	Spherical micelle	2.75	pH 4.3, 50 mM NaCl	SAXS	122
4	Cylindrical micelle	2.0	pH 6.3, 50 mM NaCl	SAXS	122
4	Plate micelle	1.91	pH 7.8, 50 mM NaCl	SAXS	122
4	Spherical micelle	$R_{\rm h}$: 2.75; $R_{\rm g}$: 2.52 \pm 0.19	50 mM NaCl, pH 3.0	SAXS	124
5	Cylindrical micelle	$R_{\rm h}$: 2.20; $R_{\rm g}$: 1.70 \pm 0.10	50 mM NaCl, pH 3.0	SAXS	124
96	Cylindrical micelle	$R_{\rm h}$: 2.35; $R_{\rm g}$: 1.87 \pm 0.13	50 mM NaCl, pH 3.0	SAXS	124
7	Rod-like micelle	_	pH < 6,50 mM NaCl	AFM	122
07	Cylindrical micelle	2.40	pH 4.7, 50 mM NaCl	SAXS	122
18	—	88 ± 6	50 mM MES, pH 6.5	DLS, SLS	136
79 100	— Dot lika miaalla	70 ± 27	50 mM NaCl pH 2.0	DLS, SLS SAVS AEM	130
.00	Spharical micella	2.23	50 mM NaCl, pH 3.0	SAAS, AFM	139
.01	Spherical micelle	2.13	50 mM NaCl, pH 5.0	SAAS	140
101	Finite cylindrical micelle	1 90	50 mM NaCl. pH 5.4	SAXS	140
01	Infinite cylindrical micelle	1.50	50 mM NaCl pH 7.4	SAXS	140
01	Infinite cylindrical micelle	1.80	50 mM NaCl pH 8 3	SAXS	140
01	Finite cylindrical micelle	1.98	50 mM NaCl. pH 9.2	SAXS	140
01	Spherical micelle	2.38	50 mM NaCl, pH 10	SAXS	140
02	Spherical micelle		50 mM NaCl	SAXS	63
05		97 ± 2	50 mM MES, pH 6.5	DLS, SLS	136
.06	_	77 ± 9	50 mM MES, pH 6.5	DLS, SLS	136
08	Micelle	<i>R</i> _g : 1.76	150 mM NaCl	DLS, SAXS, AFM	167
.09	Micelle	$R_{g}: 2.46$	150 mM NaCl	DSL, SAXS, AFM	167
.23	_	$1\check{0}.1\pm0.8$	PBS	DLS	149
.24	Vesicle	10-30	50 mM NaCl/Tris–HCl, pH 7–8	DLS, TEM	123
25	Cylindrical micelle	<i>R</i> _h : 2.50	50 mM NaCl, pH 7.0, 25 $^\circ \mathrm{C}$	SAXS	157
.25	Spherical micelle	<i>R</i> _h : 2.85; <i>R</i> _g : 2.81	50 mM NaCl, pH 7.0, 40 $^\circ \mathrm{C}$	SAXS	157
.25	Spherical micelle	<i>R</i> _h : 2.72; <i>R</i> _g : 2.73	50 mM NaCl, pH 12, 25 $^\circ \mathrm{C}$	SAXS	157
.25	Spherical micelle	$R_{\rm h}$: 2.58; $R_{\rm g}$: 1.80	50 mM NaCl, pH 12, 40 $^\circ \mathrm{C}$	SAXS	157
.26	Globular micelle	$R_{\rm h}$: 3; $R_{\rm g}$: 2.43		DLS, SAXS	159
27	SLN	65		DLS, AFM	163
.27	Nanosphere	65 ± 1		DLS, cryo-TEM	164
27	Nanocapsule	60 ± 1		DLS, CTYO-TEM	164
28	SLN Nama and and	95		DLS, AFM	163
.28	Nanosphere	95 ± 1		DLS, cryo-TEM	164
28	Nanocapsule	76 ± 1		DLS, CIYO-TEM	164
129	vesicie Fiber	25-50		DLS, IEM	169
.30	FIDE	25 (radius), several micro- meters long		DL5, IEM	109
.31	Micelle	2.2		DLS	278
.37	Vesicle	100		DLS, TEM, FE-SEM	185
138	Vesicle	18		DLS, TEM, FE-SEM	185
138	Micelle	3	pH 5	DLS, TEM	185

Compound	Morphology ^a	Radius ^b (nm)	Condition ^c	Method ^d	Ref.
139	Micelle	3		DLS, TEM	185
40	Micelle	2.9		DLS	142
40	Micelle	2.8		TEM	142
40	Irregular NP	7–16		TEM	142
41	Micelle	3.5		DLS	142
41	Micelle	3.6		TEM	142
41	Sole like NP	13-43		TEM	142
41	Solid micelle	3.6		TEM	143
12	Irregular NP	8=50		TEM	146
12	Mixture of micelles and NPs	3 (micelle); 40 (NP)		HR TEM	146
42	Mixture of micelles and NPs	3 (micelle); 25 (NP)		Cryo-TEM	146
12	Micelle	1.8		DLS	146
2	Micelle	1.8		DLS	142
12	Micelle	2.5		TEM HR TEM crvo-TEM	142
12	Irregular ND	8-50		TEM, HR TEM, CIVO TEM	142
12	Solid micelle	2.5		TEM, TIK TEM, CIYO TEM	142
12	Missille	2.5	F0 mM NoCl	CANC	143
1J	Micelle	$\pi_{\rm h}$. 2.90; $\pi_{\rm g}$: 2.20 \pm 0.14	50 mM NaCl	SAAD CAVC	150
24 1	Micelle	$\kappa_{\rm h}$: 3.60; $\kappa_{\rm g}$: 2.63 ± 0.12	50 IIIM NACI	SAXS	150
15	Micelle	$K_{\rm h}$: 4.10; $R_{\rm g}$: 3.75 \pm 0.34	50 mM NaCl	SAXS	150
ł/	spherical micelle	—	50 mm NaCl	SAXS	63
18	—	118		PCS	168
54	—	88	10 mM HEPES, pH 8.0	DLS	179
58	Vesicle	40		DLS	46
62	Ellipsoidal micelle	Minor: 2.10, major: 3.45		SAXS	147
52	Ellipsoidal micelle	Minor: 1.40, major: 6.6 (prolate); 3.7 (oblate)	D_2O	DOSY	54
53	Micelle	Minor: 3.25, major: 10.675		SAXS	147
63	Micelle $(>0.6 \text{ mM})$	~123-190		DLS. NTA	154
53	Domain $(100-0.1 \text{ \mu}\text{M})$	$\sim 70 - 190$		DLS NTA	154
53	Nanoassociate $(10-1 \text{ nM})$	~160-195		DLS, NTA	154
54	Vesicle	25_125	nH 7 9	TEM AEM DIS	155
04	Vesicle	23-123		IEM, AFM, DLS	155
64	vesicie	≤ 50	pH 7.8, sonicate 1 n	AFM	155
54	Vesicle	25	рН 6.5	TEM	155
54	Vesicle	225	pH 8.5	TEM, DLS	155
54	Micelle	1.3	1 mM AgClO ₄	TEM	155
58	—	30-100	0.1 mM	DLS, TEM	73
58	_	33-250	0.2 mM	DLS, TEM	73
58	_	40-150: 250-350	0.6 mM	DLS. TEM	73
58	_	50-350	0.8 mM	DLS. TEM	73
58		55-400	1.0 mM	DLS TEM	73
50		25-55, 80-200	4.0 mM	DIS TEM	72
00		55-55; 80-200 CF 250	4.0 mM	DLS, TEM	73
08	—	65-350		DLS, TEM	73
00 60	_	/ 5-400	8.0 mM	DLS, IEM	/3
68	<u> </u>	35-60; 150-250	10.0 mM	DLS, TEM	/3
70	Vesicle	60 ± 15	8 μΜ	Cryo-TEM, DLS	173
70	Vesicle	50, 230	20 μM	Cryo-TEM, DLS	173
71	Flattened bilayer	108	7.4 μ M	Cryo-TEM, DLS	173
71	Flattened bilayer	150	15 μ M	Cryo-TEM, DLS	173
75	Ellipsoidal micelle	Minor: 1.40, major: 7.3 (prolate): 4.0 (oblate)	$\dot{D_2O}$	DOSY	54
34	Vesicle	150 ± 50	рН 4.5-12	SLS, DLS	156
34	Micelle	5	рН 3	SLS, DLS	156
35	Vesicle	150 ± 50	pH 4.5-12	SLS. DLS	156
85	Micelle	5	nH 3	SLS DLS	156
20 20	SIN	130	PRS	PCS	100
, <u>,</u>)2	Mixture of missiles and	10, 40, 122	Acetate pH 4.1	DIS TEM	190
73 N2	large aggregates	12; 49; 133	Acciaic pri 4.1	DLO, I EM	203
<i>1</i> 3	large aggregates	8-10	Bolate pH 8.6	DLS, TEM	203
90	mixture of spherical micelles and large aggregates	9-10	HUI pH 1.2; phthalate pH 3; acetate pH 4.1	DL5, TEM	203
96	Mixture of spherical micelles and large	20-30	Borate pH 8.6	DLS, TEM	203
.96	Mixture of spherical micelles, bilayers and cylindrical micelles	_	РВ рН 12	DLS, TEM	203

Compound	Morphology ^a	$\operatorname{Radius}^{b}(\operatorname{nm})$	Condition ^c	Method ^d	Ref.
197	SLN	97		PCS	193
198	Mixture of tubular and ribbon-like aggregates	4–10 (radius), 8–100 (length)	1 mM	Cryo-TEM	92
198	Fiber	Liquid crystalline lamellar	30% THF aqueous	Cryo-TEM	92
199	_			AFM	198
200	_	_		AFM	198
205	Vesicle	100-250	EtOH	TEM, AFM	238
212	Vesicle	34, 125		DLS, TEM	202
212	Fiber	109	MeOH	DLS, TEM	202
216	SLN	170	PBS	PCS	190
217	SLN	177	PBS	PCS	190
218	SLN	175	PBS	PCS	190
219	SLN	74	Produced using THF	PCS, AFM	225 and 226
219	SLN	74	Produced using EtOH	PCS	226
219	SLN	98	Produced using acetone	PCS	226
219	SLN	107	Produced using MeOH	PCS	226
219	SLN	114	0.2 g L^{-1}	PCS	226
219	SLN	132	0.3 g L^{-1}	PCS	226
219	SLN	136	0.4 g L^{-1}	PCS	226
219	SLN	130	0.5 g L^{-1}	PCS	226
219	SLN	81	3% THF in production	PCS	226
219	SLN	86	4% THF in production	PCS	226
219	SLN	108	5% THF in production	PCS	226
219	SLN	103	6% THF in production	PCS	226
219	SLN	103	8% THF in production	PCS	226
219	SLN	110	10% THF in production	PCS	226
219	SLN	75	0.1 M NaCl	PCS	226
219	SLN	80	0.1 M NaI	PCS	226
219	SLN	83	$0.1 \text{ M} \text{ CH}_2\text{CO}_2\text{Na}$	PCS	226
219	SLN	75	0.1 M NaHCO_2	PCS	226
219	SLN	73	0.1 M KNO_{2}	PCS	226
219	SLN	93	$0.1 \text{ M KH}_{2} \text{PO}_{4}$	PCS	226
219	SLN	65	0.1 10 10121 04	PCS	215
219	SLN	175	PBS	PCS	190
219	SLN	75	1 10	PCS AFM	193
219	SLN	69		PCS	225
219	SLN	70	Carbonol 980 aqueous	PCS	225
219	SLN	70	Carbopol 2020 aqueous	PCS	225
219	SLN	73 02	Hypluropic acid aqueous	PCS	225
219	SLN	85	Yanthane aqueous	PCS	225
219	Vesicle	25-25 100	Xanthane aqueous	TEM	223
223	I amellar-like vesiele	25-50	MaOH	TEM	233
223	Fiber	25-500	CHC	TEM	233
223	Inverted micelle	13	Derfluorohevane	TEM	233
223	Circular assembly	50 (radius) 25-30 (beight)	Territoronexane	AEM	255
223	SI N	⁷⁴	0.1 M NoH DO	DCS	237
224	SLN	72	0.1 M KC	PCS	220
224	SLN	163	PRS	PCS	190
220	SLN	92	1 00	PCS	102
221		140-200	0.8-7 mM 10% DME aqueous	DLS	200
231	Micelle	$R \cdot 25.6$	0.1 mM	SAXS	200
232	Micelle	P · 30 5	0.5 mM	SAXS	205
232	Micelle	D • 35 0	1.0 mM	SAXS	205
232	Micelle	лд. 33.2 9_6	0.1 - 10 mM	DIS	203 205
232	Micelle	62-120	0.1-10 mm 10% DME squeous	DIS	203
237		14 9	0.09-3 mm, 10% DMF aqueous	DLS	200
230	— Mixtura of migalla lika	14-0	0.23-10 11101	DLS	200
239	aggregates and layers	4			227
240	—	8-4	0.15–16 mM	DLS	200
241	—	9–5	0.15–16 mM	DLS	200
242	—	15-5	0.25–20 mM	DLS	200
247	Spherical particle	<i>R</i> _h : 107.1; <i>R</i> _g : 120.4		DLS, SLS, AFM	191
248	Spherical particle	<i>R</i> _h : 108.0; <i>R</i> _g : 120.3		DLS, SLS, AFM	191
249	Spherical particle	<i>R</i> _h : 98.6; <i>R</i> _g : 122.0		DLS, SLS, AFM	191
250	Spherical particle	$R_{\rm h}$: 121.7; $R_{\rm g}$: 135.0		DLS, SLS, AFM	191
251	Spherical particle	$R_{\rm h}$: 106.8; $R_{\rm g}$: 131.0		DLS, SLS, AFM	191
252	Spherical particle	$R_{\rm h}$: 77.7; $R_{\rm g}$: 91.0		DLS, SLS, AFM	191
255	_	14.3		DLS, TEM	213
256		5.5		DLS, TEM	213

Compound	Morphology ^a	Radius ^b (nm)	Condition ^c	Method ^d	Ref.
257		79.5		DLS, TEM	213
258	_	10.3		DLS, TEM	213
259	_	34.7		DLS, TEM	213
260	_	17.7		DLS, TEM	213
261	Mixture of grape-like superstructures and non- linear chains	60–85, 600–900 (length)		SEM, TEM	229
262	Mixture of micelles and large spherical aggregates	100–130; 350		DLS, SEM, TEM	229
278	Sheet-like monolayer	1.3		AFM, TEM	224
78	Bundles of sticks	1.4–16.6 (radius), 500–3500 (length)	DMSO-H ₂ O 1:9	AFM, TEM	224
278	Vesicle	25	Acetone– H_2O 1:9	AFM, TEM	224
79	Linear or dot-like aggregate	—		AFM, TEM	224
79	Vesicle	25	DMSO- H_2O 1:9	AFM, TEM	224
82	—	241 ± 30	3 mM	DLS	232
82	—	240 ± 37	0.3 mM	DLS	232
82	—	84 ± 4	30 µM	DLS	232
82	—	131 ± 13	3 μM	DLS	232
83	—	87 ± 11	3 mM	DLS	232
83		227 ± 47	0.3 mM	DLS	232
83	—	203 ± 15	30 µM	DLS	232
83	— —	415 ± 33	3 μM	DLS	232
284 (Br ⁻)	Particle	90.5 ± 11.5		DLS	237
84 (NO_3^{-})	Particle	30.7 ± 8.4		DLS	235
84 (NO_3^{-})	Particle	24 ± 3		DLS	236
86	Particle	7.3 ± 1.3		DLS	235
86	Particle	8 ± 1		DLS	236
87	Particle	1.9 ± 0.4		DLS	235
89	Spherical particle	70.8	5 mM Tris-HCl, pH 7.5, 1 mM (CA)	DLS	247
89	Spherical particle	80.8	5 mM Tris-HCl, pH 7.5, 0.8 mM (CA)	DLS	247
289	Spherical particle	104.5	5 mM Tris-HCl, pH 7.5, 0.1 mM (CA)	DLS	247
289	Spherical particle	194.8	5 mM Tris-HCl, pH 7.5, 10 μM (CA)	DLS	247
289	Spherical particle	244.4	5 mM Tris–HCl, pH 7.5, 1 μM (CA)	DLS	247
90	Spherical particle	37.7	5 mM Tris-HCl, pH 7.5, 1 mM (CA)	DLS	247
90	Spherical particle	72.8	5 mM Tris-HCl, pH 7.5, 0.8 mM (CA)	DLS	247
290	Spherical particle	100.6	5 mM Tris-HCl, pH 7.5, 0.1 mM (CA)	DLS	247
290	Spherical particle	122.4	5 mM Tris-HCl, pH 7.5, 10 μM (CA)	DLS, TEM	247
:90	Spherical particle	226.9	5 mM Tris–HCl, pH 7.5, 1 μM (CA)	DLS	247
.92	—	211 ± 37	0.3 mM	DLS	250
92	—	168 ± 24	30 µM	DLS	250
92	—	159 ± 102	$3 \mu M$	DLS	250
92	—	99 ± 3	0.3 mM (CA), 0.3 mM Ag	DLS	250
292	—	174 ± 61	30 μM (CA), 30 μM Ag	DLS	250
292	—	218 ± 77	$3 \mu M$ (CA), $3 \mu M$ Ag	DLS	250
292	—	166 ± 12	0.3 mM (CA), 0.3 mM Ag	DLS	250
92	—	265 ± 135	3 mM	DLS	232
.92	_	211 ± 37	0.3 mM	DLS	232
92	—	168 ± 24	30 µM	DLS	232
92	—	159 ± 102	3 μM	DLS	232
93	—	$3/8 \pm 4/$	0.3 mM	DLS	250
93	—	265 ± 135	30 μM	DLS	250
93	—	118 ± 103	$3 \mu M$	DLS	250
93	—	195 ± 42	$30 \ \mu M$ (CA), $30 \ \mu M$ Ag	DLS	250
93		189 ± 31	3 μM (CA), 3 μM Ag	DLS	250
94	Micelle	$(1/.0 \pm 1.3) - (24.4 \pm 1.4)$	$2-10 \text{ mM}, D_2O$	DOSY, AFM	252
:94	large aggregates	100; 300	0.5 IIIM	DOSY, DLS	254
294	Mixture of aggregate	50-100; 25		AFM	254
96	Homogeneous assembly	30–40 (radius), 3–5 (height)		AFM	257
305	Spherical particle	$111.2 \pm 1/.4.$	PBS pH /.4	DLS, TEM	259
311	Vesicle	—	$H_2O-EtOH 1:3$	TEM	242

Compound	Morphology ^a	Radius ^b (nm)	Condition ^c	Method ^d	Ref.
325	Spherical particle	89.8 ± 14.8	PBS pH 7.4	DIS TEM	259
370		100-110	$0.33-10 \text{ gr J}^{-1}$	DIS, TEM	259
370		$R_1 \cdot 100 - 300 \cdot R \cdot 70 - 140$	0.8 mg L^{-1} -1 2 g L ⁻¹	DIS	258
402	SUN	108	0.0 mg L 1.2 g L	DIS	262
402	SLN	74	Produced using acetone	DLS	262
402	SLN	215	Produced using EtOH	DLS	262
402	SLN	106	$0.2 \mathrm{gL^{-1}}$	DLS	262
402	SLN	125	0.2 g L^{-1}	DIS	262
402	SLN	123	0.4 g L^{-1}	DIS	262
402	SLN	139	$0.5 \circ L^{-1}$	DLS	262
402	SLN	117	5% glycerol	DIS	262
402	SLN	99	10% glycerol	DIS	262
402	SLN	114	15% glycerol	DIS	262
402	SLN	102	20% glycerol	DIS	262
402	SLN	104	25% glycerol	DIS	262
403	SLN	72	2070 gijeeror	DIS	262
404	SLN	70		DIS	262
405	SLN	50		DIS	262
406	SLN	41		DIS	262
407		$R_1: 4 242: R_2: 3 288 \pm 0.044$	0.5 mM	DLS SAXS	22
407		$R_{\rm h}$: 3 296; $R_{\rm s}$: 2 555 \pm 0 128	1 mM	DLS, SAXS	22
407		$R_{\rm h}: 34.06; R: 2.640 \pm 0.014$	5 mM	DLS, SAXS	22
407		$R_{\rm h}: 4.074; R: 3.158 \pm 0.002$	10 mM	DLS, SAXS	22
407		5.100		DIS	22
415	Particle	$3 + 02 \cdot 10 + 1$		DIS	236
420	Tube	15 (radius) 70-300 (length)		SEM	265
421	Tube	10^6 (radius) 10^8 (length)		SEM AFM	265
422	Vesicle	370 ± 28	10 mM Tris pH 7 4	DLS	268
422	Vesicle	158 ± 3	10 mM Tris, pH 7.4 65 $^{\circ}$ C	DIS	268
422	Vesicle	268 ± 13	10 mM Tris. pH 7.4, irradiated	DLS	268
422	Vesicle	133 ± 5	10 mM Tris. pH 7.4, 65 $^{\circ}$ C.	DLS	268
122	veblele	100 ± 0	irradiated	DED	200
427	Vesicle	440 ± 40	10 mM Tris. pH 7.4	DLS	268
427	Vesicle	130 ± 10 130 ± 10	10 mM Tris. pH 7.4. 65 °C	DIS	268
427	Vesicle	245 ± 40	10 mM Tris, pH 7.4, irradiated	DLS	268
427	Vesicle	$\frac{110}{120} \pm 1$	10 mM Tris, pH 7.4, 65 °C, irradiated	DLS	268
428	_	150 ± 13	3 mM	DLS	232
428	_	71 ± 16	0.3 mM	DLS	232
428	_	136 ± 38	30 μM	DLS	232
428	_	100 ± 19	3 μ M	DLS	232
429	SLN	66	•	DLS, SEM	120
430	Spherical particle	49.9	5 mM Tris-HCl, pH 7.5, 1 mM	DLS	247
430	Spherical particle	52.2	(CA) 5 mM Tris-HCl, pH 7.5, 0.8 mM	DLS	247
			(CA)		
430	Spherical particle	103.7	5 mM Tris-HCl, pH 7.5, 0.1 mM (CA)	DLS	247
430	Spherical particle	119.8	5 mM Tris-HCl, pH 7.5, 10 μM (CA)	DLS	247
430	Spherical particle	448.0	5 mM Tris-HCl, pH 7.5, 1 μM (CA)	DLS	247
431	Spherical particle	46.4	5 mM Tris-HCl, pH 7.5, 1 mM	DLS	247
431	Spherical particle	69.9	(CA) 5 mM Tris-HCl pH 7 5 0.8 mM	DIS	247
431	Spherical particle	212.0	(CA) 5 mM Tris-HCl pH 7 5 0.1 mM	DIS	247
431	Spherical particle	412.3	(CA)	DIS	247
431		412.3	(CA)		247
431	Spherical particle	502.0	5 mM Tris–HCl, pH 7.5, 1 μM (CA)	DLS	247
432	_	62 ± 9	50 mM Tris, pH 7.4	DLS	266
433	_	66 ± 2	50 mM Tris, pH 7.4	DLS	266
434	— ••• • • •	62 ± 1	50 mM Tris, pH 7.4	DLS	266
443	Vesicle	42 ± 2	0.025 mM	DLS	267
443	Vesicle	47 ± 1	0.05 mM	DLS	267
443	Vesicle	53 ± 1	0.1 mM	DLS	267
443	vesicle	50 ± 2	0.25 mM	DLS	267
443	vesicle	42 ± 1	0.5 mM	DLS	26/
443	Vesicle	64 ± 2	0./5 mM	DLS	267
443	Vesicle	62 ± 2	1.0 mM	DLS	267

Compound	Morphology ^a	Radius ^b (nm)	Condition ^c	Method ^d	Ref.
444	Vesicle	31 ± 1	0.01 mM	DLS	267
444	Vesicle	24 ± 1	0.025 mM	DLS	267
444	Vesicle	26 ± 1	0.05 mM	DLS	267
444	Vesicle	25 ± 1	0.1 mM	DLS	267
444	Vesicle	24 ± 1	0.25 mM	DLS	267
444	Vesicle	25 ± 1	0.5 mM	DLS	267
444	Vesicle	31 ± 1	0.75 mM	DLS	267
444	Vesicle	31 ± 1	1.0 mM	DLS	267
448	Vesicle	40	H ₂ O-EtOH 1:2	TEM, SEM, AFM, DLS	273
449	Vesicle	70	H ₂ O-EtOH 1:1	TEM, SEM, AFM, DLS	273
449	Vesicle	46	H ₂ O-EtOH 3:1	TEM, SEM, AFM, DLS	273
450	Spherical aggregate	60-90	H ₂ O-EtOH 1:1	TEM, SEM, AFM, DLS	273
450	Tubular aggregate	28 (radius)	H ₂ O-EtOH 3:1	TEM, SEM, AFM, DLS	273
451	Spherical aggregate	60-90	H ₂ O-EtOH 1:1	TEM, SEM, AFM, DLS	273
451	Tubular aggregate	28 (radius)	H ₂ O-EtOH 3:1	TEM, SEM, AFM, DLS	273
452	Vesicle	145	H ₂ O-EtOH 1:3	TEM, AFM, DLS	242
452	Mixture of vesicles and	_	H ₂ O-EtOH 2:3	SEM, TEM	242
	fibers				
452	Fiber	50–100 (radius), 10 ⁴ (length)	H ₂ O-EtOH 1:1	TEM, SEM, AFM	242
452	Nanotube	30-40	0.5 g L^{-1} HAuCl ₄ , H ₂ O-EtOH 2:1	TEM	275
452	Nanotube	—	$0.5 \text{ g L}^{-1} \text{ AgNO}_3, \text{ H}_2\text{O}\text{-EtOH } 2:1$	TEM	275
453	Tubular aggregate	_	H ₂ O-EtOH 3:1	TEM, SEM, AFM, DLS	273

^{*a*} NP: nanoparticle, SLN: solid lipid nanoparticle. ^{*b*} Radii are obtained from papers directly or calculated from diameters. Part of data which is not shown in papers clearly is read from figures which contain these data. R_s is the radius of the shell. R_g is the gyration radius. R_h is the hydrodynamic radius. ^{*c*} The condition is 25 °C in pure water if no label. CA is the corresponding amphiphilic calixarene. ^{*d*} SLS: static light scattering, cryo-TEM: cryogenic transmission electron microscopy, HR TEM: high resolution transmission electron microscopy, NTA: nanoparticle tracking analysis method, PGSE: pulse gradient spin echo, FE-SEM: field-emission scanning electron microscopy, EF-TEM: energy-filtered transmission electron microscopy, OPM: optical polarization microscopy, FFF-MALS: field flow fractionation combined with multi-angle light scattering.

pH 8.5 (225 nm). This phenomenon could be explained by protonation of imidazolyl group affecting the hydrophilic and hydrophobic balance.

Salt concentration influencing assembly is another interesting topic, and it is also related to further application in biological systems. Houel and coworkers did a systematic study on salt concentration affecting assembly using phosphonate-modified calix[4]arenes **12** and **13**.¹²⁶ In the presence of monovalent cations (Na⁺, K⁺), no apparent change in size was observed over a concentration range from 0.1 mM to 145 mM. In contrast, divalent cations could cause a significant size increase as the concentration is increased from 2 mM. The authors assumed that divalent cations have the ability to crosslink the assemblies.

2.2.3 Uniform assembly. Constructing precisely defined aggregates not only represents an enormous interest and challenge for fundamental research, but also has been widely used in fields such as pharmaceuticals, catalysts, sensors, film precursors, and information storage. As reported by Cui and coworkers, monodisperse nanoparticles with a size variation of less than 5% show unique properties and higher performances as compared with the corresponding polydisperse nanoparticles.²⁸⁴ The major advantage of monodisperse particles may be attributed to the uniform properties of individual particles, which makes the property of whole particles strictly controllable.²⁸⁵ However, most of the common surfactants self-assemble into polydisperse assemblies. Thus, lots of effort has been dedicated to developing reliable preparation methods such as freeze-thaw and extrusion; however, a tedious operating procedure is needed. An alternative is appropriate design of amphiphilic building blocks,

since the information determining their specific supramolecular assembly architecture must be encoded in their molecular structure. Fortunately, amphiphilic calixarenes are promising candidates due to their unique assembly properties. Many aggregations based on calixarenes presented fantastic monodispersed^{92,93,111,142,191,202,226,252,259,262,277} and unique aggregation numbers (N_{agg} s). The reported N_{agg} s are listed in Table 6.

In 2004, Kellermann and coworkers reported the first completely uniform and structurally precise micelle, whose structure was determined by cryo-TEM and 3D reconstruction techniques.⁹⁷ The micelle is formed spontaneously by exactly seven 47 molecules (Fig. 3), which is a T-shaped compound and with third generation dendritic heads. Later, they reported another uniform micelle formed by twelve **46** molecules, which is with second generation dendritic heads.⁹¹ Compared with molecule **47**, the smaller space required by **46** allows denser packing, resulting in a larger N_{agg} value.

The Sakurai group systematically studied assembly behavior of a series of calixarene micelles, whose head groups, including sulfonate group,^{64,65} primary amine group,^{63,122,124} quaternary amine group,⁶³ cysteine,¹³⁹ glutamic acid,¹⁴⁰ polyamidoamine,⁶³ mono/disaccharides,^{63,157} PEG,^{63,150} and so on, were conjugated with calixarene at the upper rim by a click reaction. Using methods including SAXS, AUC, AF4-MALS and LS, the morphologies and N_{agg} values of these micelles were determined. They found that these N_{agg} values coincide with the vertex numbers of regular polyhedral structures when N_{agg} are less than 30, so they named these small micelles as platonic micelles since the regular polyhedral structures are called platonic solids. They proposed

Fig. 2 AFM images of (a) **278** and (b) **279** in pure water. Reprinted with permission from ref. 224. Copyright 2012 from Science China Press and Springer-Verlag Berlin Heidelberg. AFM images of (c) **94** and (d) **97** in 50 mM NaCl, pH 3. Reprinted with permission from ref. 122. Copyright 2012 from American Chemical Society. DLS data of (e) **62** and (f) **158** in water. Reprinted with permission from ref. 46. Copyright 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (g) Schematic representation for morphology transitions in self-assembly of **449** and **451** with changes in medium polarity. Reprinted with permission from ref. 273. Copyright 2011 from Royal Society of Chemistry.

that the formation of platonic micelles is a result of the maximal coverage ratio, which means the ratio of the total area of the caps to the surface area of the sphere (Fig. 4).

It is clear that the equilibrium interfacial area between the hydrophilic and hydrophobic domains (a_0) has a significant effect on the N_{agg} , which was proved by studying a series of amphiphilic calixarenes bearing PEGs with different molecular weights as hygrophilic head groups.¹⁵⁰ Experiment results showed that amphiphile containing PEG of 550 g mol⁻¹ forms a dodecamer while that of 1000 g mol⁻¹ forms an octamer, since the former one has smaller a_0 . Both of the micelles are monodispersed; meanwhile, high molecular weight PEG (2000 g mol⁻¹) leads to polydisperse micelles, because PEG 2000 exhibits a greater affinity for water and higher mobility than PEG 550 and 1000, resulting in a too large a_0 to form stable monodisperse micelles.

The a_0 value could be easily influenced by the solvent environment. As an example, high salt concentration decreases repulsion among head groups, resulting in smaller a_0 , thus leading to larger N_{agg} .^{63,65} Also, for head groups containing an amine or carboxyl group, pH variation may protonate or deprotonate them, resulting in a change in repulsion interaction among these head groups. Consequently, the a_0 value increases with larger repulsion and *vice versa*, leading to different N_{agg} , or even a transition of morphology. For instance, amino-modified compounds **87** and **88** form spheres at pH 3.0 while form cylinders at higher pH.¹²²

A more complicated example is the glutamic acid containing **100**,¹⁴⁰ since it allows a continuous change in the state of its head groups from cationic to zwitterionic and then to anionic with increasing pH, resulting in a morphological transformation from spherical to cylindrical and again to spherical. Their N_{agg} s at pH 3.0 and 10 were determined as 6 and 12 respectively. The molecular modeling results showed that the glutamic acid moieties exhibited folded-back structures with deprotonated carboxylic acid, resulting in a smaller hydrophilic volume than that with the protonated amino groups, causing increased N_{agg} from pH 3.0 to pH 10. It is also noteworthy that its l_c could also change during pH variation, because anions at pH 10 are more far away from the center of the molecule than cations at pH 3.0.

The ionized state change induced by pH change could also influence the hydrogen bond formation. Disaccharides containing **120** provides an interesting example.¹⁵⁷ The micellar morphologies are cylindrical at pH 7.0 and micelles with N_{agg} of 20 at pH 12 (25 °C), due to the cleavage of the hydrogen bonds by deprotonation of the hydroxyl groups in the sugar molecules. Similarly, temperature also affects hydrogen bonds. As a result, compound **120** forms micelles with N_{agg} of 24 at 40 °C (pH 7), and forms micelles with N_{agg} of 12 at 40 °C (pH 12).

As we mentioned before, l_c is also important to the N_{agg} of aggregates. According to packing parameter theory, N_{agg} is proportional to l_c^2 , whose trend is consistent with experimental results of a series of quaternary amine group bearing calixarenes.⁶³ As the number of carbons in the alkyl chain increases from 3 to 7, N_{agg} increases discretely from 8 to 12, and then to 20. However, a series of amine group bearing calixarenes show a different behavior.¹²⁴ Their platonic micelles bearing butyl, heptyl, and hexyl chains remain at 12-mer. This phenomenon and discrete N_{agg} may indicate that the coverage ratio defined by the Tammes problem is more suitable than packing parameter theory in the case of investigating small micelles.

To test the universality of the platonic micelles, Sakurai's group also studied assembly behavior of a series of amphiphilic SC4As 4, 6-8.^{64,65} N_{agg} s of these micelles increase from 4 to 17 to 24 and then to cylindrical structures with increasing alkyl chain length from pentyl to hexyl to heptyl and then to octyl, respectively. Although the values of 17 and 24 do not agree with the vertex numbers of regular polyhedra, but they match the local maxima in the Thomson problem considering the Coulomb potential for the calculation of the best packing on a sphere with multiple identical spherical caps.

2.2.4 Compact packing. Compactness of assemblies is another crucial factor for the performances of various applications, for example, construction of a reliable drug delivery system¹⁸⁰ or an efficient light harvesting material.⁴⁶ However, compared with CAC and morphology, such a significant assembly property did not attract much attention, and there is no unified definition of compactness up to now. In general, the microviscosity of assemblies presents their compactness, which could be measured by fluorescence polarization (*P*). The shape of the IR or NMR peak reflects the environment surrounding a bond or nucleus, and is also used as a measure of compactness.

Table 6 N_{agg} s of amphiphilic calixarene assemblies

Compound	$N_{ m agg}$	Condition ^a	Method ^b	Ref.
4	4	10 mM NaCl	SAXS, AF4-MALS, AUC	64 and 65
4	6	15 mM NaCl	SAXS, AF4-MALS, AUC	65
6	17	10 mM NaCl	SAXS, AF4-MALS, AUC	64
7	24	10 mM NaCl	SAXS, AF4-MALS, AUC	64
46	12	pH 7	Cryo-TEM	91
47	7	27 mM Na^+ and K^+	Cryo-TEM	97
75	8	50 mM NaCl	SAXS, AF4-MALS, AUC	63
76	8	50 mM NaCl	SAXS, AF4-MALS, AUC	63
77	12	50 mM NaCl	SAXS, AF4-MALS, AUC	63
77	12	100 mM NaCl	SAXS	63
77	20	200–300 mM NaCl	SAXS	63
78	12	50 mM NaCl	SAXS, AF4-MALS, AUC	63
79	20	50 mM NaCl	SAXS, AF4-MALS, AUC	63
91	6	50 mM NaCl, pH 3.0	SAXS, AF4-MALS, AUC	122 and 124
92	12	50 mM NaCl, pH 3.0	SAXS, AF4-MALS, AUC	124
93	12	50 mM NaCl, pH 3.0	SAXS, AF4-MALS, AUC	124
94	12	50 mM NaCl, pH 3.0	SAXS, AF4-MALS, AUC	122 and 124
100	12	50 mM NaCl, pH 3.0	SAXS, AFM, DLS	139
101	6	pH 3.2	SAXS, AF4-MALS	63
101	12	pH 10	SAXS, AF4-MALS	63
101	6	50 mM NaCl, pH 3.0	SAXS, FFF-MALS	140
101	12	50 mM NaCl, pH 10	SAXS, FFF-MALS	140
102	8	50 mM NaCl	SAXS, AF4-MALS	63
125	24	50 mM NaCl, pH 7.0, 40 $^\circ \mathrm{C}$	SAXS, AF4-MALS, AUC	157
125	20	50 mM NaCl, pH 12	SAXS, AF4-MALS, AUC	157
125	21	50 mM NaCl, pH 12, 40 $^\circ C$	SAXS, AF4-MALS, AUC	157
143	20	50 mM NaCl	SAXS, AF4-MALS	63
143	12	50 mM NaCl	SAXS, FFF-MALS	150
144	8	50 mM NaCl	SAXS, FFF-MALS	150
145	3-4	50 mM NaCl	SAXS, FFF-MALS	150
146	12	50 mM NaCl	SAXS, AF4-MALS	63
147	3.6	50 mM NaCl	AF4-MALS	63

^a The condition is 25 °C in pure water if no label. ^b AUC: analytical ultracentrifugation. AF4-MALS: multiangle light scattering coupled with asymmetric field flow fractionation.

Fig. 3 A structurally precise micelle formed by exactly seven 47 molecules is determined by 3D reconstruction techniques. Reprinted with permission from ref. 97. Copyright 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Due to their preorganized structures, amphiphilic calixarene assemblies show different compactness from that of the corresponding monomers. Shinkai and co-workers investigated the microviscosity of a series of amphiphilic calixarenes above their CACs by measuring P.⁴⁹ P values of a series of sulfonic group modified amphiphilic calixarenes **162**, **299**, **300**, and **322** (0.033–0.106) are higher than those of SDS (0.020) and hexadecyltrimethylammonium chloride (0.016), which means

more compact packing of calixarene micelles than conventional surfactant micelles.

Cho and co-workers reported that alanine-modified calix[4]arene 25 self-assembles into a hollow necklace-like structure at neutral pH.²³ IR spectra showed strong hydrogen bonding between the carbonyl groups and the highly organized, closely packed hydrocarbon chains exhibiting sharp IR bands.

As an assembly property, compactness is also influenced by pH and salt concentration, which modulate head group interactions. For example, Becherer and co-workers reported that carboxylic group modified calix[4]arene **46** micelles are clearly smaller at pH 9 than those at neutral pH, which can be concluded that denser packing of the micelles occurs under basic conditions in comparison with the aggregates obtained at neutral pH.⁹¹ The required smaller space of head groups allows denser packing.

Xu and co-workers demonstrated choline-modified calixarene (62 and 158) based molecular light-harvesting platforms, whose spectrum tunability is affected by assembly compactness.⁴⁶ When they increased the ionic strength of solvent, the ionic heads packed closer resulted in more compact aggregation, which led to higher energy-transfer efficiency and acceptor emission.

Although there have been only limited examples related to the compactness until now, we believe more and more systematic investigations will come up soon, since it is necessary for developing materials with better performance and reliability.

2.2.5 Slow kinetics. All four properties we mentioned above are related to thermodynamics, while kinetics, which is an interesting fundamental research topic as well as important basis of material preparation, is also essential. Due to the development of instruments and characterization methods, such as 2D exchange spectroscopy (2D EXSY), stop-flow, and time-resolved spectroscopy, kinetics of amphiphilic aggregation was investigated in detail. Originating from their multivalent feature, some amphiphilic calixarenes meet the higher energy barrier of assembly-bulky water exchange compared to conventional amphiphiles, resulting in slower kinetics.

As Basilio and co-workers reported, in contrast to conventional surfactants, the exchange rate of amphiphilic SC4A **6** between solution and micelle is slow on the NMR time scale.⁸⁴ The rate constants were determined by 2D EXSY experiments and these constants were found to be several orders of magnitude lower than those of conventional surfactants and comparable to those of other amphiphilic calixarenes and gemini surfactants. The explanation for this result presumably lies in the fact that the sole barrier felt by the amphiphile entering the micelle arises from long-range electrostatic repulsions due to the micellar charge. As **6** is a preorganized surfactant with four negative charges at the upper rim, this could increase the activation barrier and consequently slow down the rate constant for the association.

Takahashi and co-workers observed that quaternary ammonium modified 77 micelles transit from a dodecamer to an icosamer induced by a rapid increase in the NaCl concentration (c_{NaCl}) , using a stopped-flow device and time-resolved SAXS.¹³³ The N_{agg} remained at 12 during the first 60 s after the increase in c_{NaCl} , and then abruptly increased to 20 (Fig. 5). They speculated that the following kinetic process might take place: (1) the micelles with $N_{\text{agg}} = 12$ become metastable after the c_{NaCl} increases to 290 mM. (2) Within the micelles, fluctuation of 77 takes place, providing sufficient space for the insertion of other 77 molecules in a process that might be very slow. (3) Once one 77 has been inserted into the metastable micelle, N_{agg} rapidly increases to 20.

Similar examples of amphiphilic calixarenes forming metastable "kinetic trap" states were reported, with more diverse morphologies.²⁸⁶ For example, Strobel and co-workers reported that carboxylatocalix[4]arene **24** self-assembles into vesicles and long thin features that could possibly be rod-like micelles in dilute solution according to light scattering and cryo-TEM

Fig. 5 Time evolution of N_{agg} (blue circles) and the radius of gyration $\langle S^2 \rangle_z^{-1/2}$ (red triangles). The solid curve for N_{agg} represents the fitted model curve. Reprinted with permission from ref. 133. Copyright 2017 from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

experiments.⁴² Houmadi and co-workers reported that **164** selfassembles into vesicles in freshly prepared solution.¹⁵⁵ Vesicles of similar size and shape but with larger membrane shells were observed by TEM in 1 day old solutions, whereas giant vesicles appear after 1 week.

Despite scant examples, we have enough reason to predict a prosperous development of amphiphilic calixarene assembly kinetics. In general, highly kinetic systems at or close to equilibrium show uniform aggregate shapes and sizes, whereas systems with slow kinetics exhibit rather broad shape and size distributions.⁴² Consequently, kinetics is critical for preparation procedures of amphiphilic calixarene assemblies. The tailored preparation process is needed for fabricating well-designed assemblies according to their kinetics features. Moreover, the slow assembling kinetics of amphiphilic calixarenes can be applied in extensive fields, such as controlled release in drug delivery systems and dissipative self-assembly systems.

3. Calixarene-based supraamphiphiles

Amphiphilic macrocycles possess cavities, which endow them with binding affinity to various guests. Taking this advantage, guests could modulate the aggregation behavior of amphiphilic macrocycles. By host-guest interactions as well, non-amphiphilic macrocycles own the ability to influence the aggregate properties of some surfactants. The concept of "supra-amphiphiles" proposed by Zhang and co-workers covers those behaviors, describing amphiphiles constructed on the basis of non-covalent interactions or dynamic covalent bonds.^{10,287–292}

Specific to water soluble calixarenes, they interact with guests including dyes, drugs, and biomacromolecules by hydrophobic interactions, π - π interactions, electrostatic interactions and so on. Furthermore, their unique skeletons provide multivalent interaction sites. As a result, these guests efficiently affect the aggregation of amphiphilic calixarenes, and the aggregation behavior of these guests could be modulated by calixarenes conveniently. Based on the amphiphilicity of the host and guest

Scheme 5 Schematic illustration of various types of calixarene-based supra-amphiphiles.

molecules, the assembling features of calixarene-based supraamphiphiles can be divided into guest-induced aggregation of host, host-induced aggregation of guest and mutual inducement (Scheme 5). Chemical structures of host and guest molecules which have been used to construct supra-amphiphiles are summarized in Schemes 6, 7 and Tables 7, 8.

3.1 Guest-induced aggregation of host

3.1.1 Guest-decreased CAC. A series of typical host molecules whose aggregation could be induced by guests is amphiphilic SCnAs owing to their good water solubility and binding affinity (Table 9). The interaction with cationic guests reduces electrostatic repulsion between their sulfonic groups, resulting in a smaller CAC. For instance, Hu and coworkers reported the aggregation of amphiphilic calix[4]arene 3 induced by diquat (**G31**).⁵⁵ In the absence of **G31**, the CAC value of **3** is 3.18 mM, while it decreases about 12 times (0.25 mM) in the presence of **G31**. Later, Fernandez-Abad and coworkers reported that DSMI (**G7**) could also decrease the CAC of **3** to 1.4 mM.⁵⁷ Moreover, it is also reported that the CAC of analogue **6** decreases in the presence of **G45**.⁸⁸

Aggregation of calixarenes bearing sulfonic groups at the lower rim could also be induced by cationic guests. Gattuso and coworkers synthesized an amphiphilic calix[5]arene **294**, and DOSY results showed that its CAC was 0.64 mM.²⁵² In the presence of **G40**, its CAC decreases to 0.35 mM.^{251,252} The inclusion of guests into the cavity of **294** is clearly proved by DOSY results, while some guests involved in the assembly are located outside the cavity. It is noteworthy that the CAC values of guests also decrease upon addition of **294**.

Scheme 6 Structures of hydrophilic host molecules which have been used to construct supra-amphiphiles.

Review

Scheme 7 Structures of guest molecules which have been used to construct supra-amphiphiles.

 Table 7
 References of host molecules which have been used to construct supra-amphiphiles in Scheme 6

Compound	Ref.	Compound	Ref.	Compound	Ref.
454	293-308	457	293, 296 and 307	460	309
455	298, 309 and 310	458	311-315	461	316
456	293, 296 and 317–319	459	303 and 320	462	321

Following the same principle, anionic guest induced cationic calixarene aggregation was also reported by Wang and coworkers.¹³⁸ The CAC value of a quaternary ammonium-modified calix[4]arene **59** decreases by 45 times in the presence of ATP (**G6**). Similarly, Burilov and coworkers synthesized several ammonium modified amphiphilic thiacalix[4]arenes (**432–434**) and studied their

aggregation behavior in the absence and presence of Eosin Y (G50).²⁶⁶ CAC values of all these thiacalix[4]arenes, no matter the length of the hydrophobic chain, showed a significant decrease (at least 15 folds) with addition of G50.

3.1.2 Guest-regulated morphology. Besides decreasing CAC, guest promoted amphiphilic calixarene assembly also presents a transfer of morphology. Since the electrostatic repulsion is reduced by guests, the amphiphilic calixarenes tend to form larger aggregates.

For example, **6** forms small micelles in the absence of a guest, while forms aggregates with 81 nm average radius in the presence of **G45**, which was proved by DLS, TEM, and significant Tyndall effect.⁸⁸ Similar results were reported in the study of **59** in the presence of **G6** (Fig. 6).¹³⁸

Moreover, guest induced larger aggregates could further form hydrogels. Liu's group reported several hydrogels constructed by

 Table 8
 References of guest molecules which have been used to construct supra-amphiphiles in Scheme 7

Compound	l Ref.	Compound	Ref.	Compound	Ref.	Compound	Ref.
G1	322	G14	305	G27	306	G40	252
G2	322	G15	302	G28	293	G41	317
G3	322	G16	320	G29	295	G42	307
							and
							317-
							319
G4	322	G17	300	G30	296	G43	317
G5	316	G18	300	G31	55	G44	310
G6	138	G19	300	G32	162	G45	88
G7	57	G20	304	G33	162	G46	161
G8	311	G21	298	G34	173	G47	161
G9	312	G22	303	G35	297	G48	301
G10	311-	G23	308	G36	162	G49	161
	315						
G11	294	G24	319	G37	162	G50	266
	and						
	319						
G12	311	G25	319	G38	309	G51	211
G13	299	G26	319	G39	309	_	—

proline modified calix[4]arene 107, in the presence of different guests.^{161,162} 107 itself forms spherical aggregates with a wide size dispersion. However, upon mixing with G32, G33, G36, G37, G46, G47, and G49, the morphology of 107 changed to fibers, resulting in a binary hydrogel. AFM, SEM, and TEM results showed that the fiber shapes differed with guests. For example, the fibers of the 107–G46 are composed of long and branched fibers, while 107–G49 are shorter and twisted. And a denser network with stacks of rod-like nanofibers was observed in 107–G47 (Fig. 6).

3.2 Host-induced aggregation of guests

As we mentioned before, when a cationic surfactant G45 is used to promote aggregation of an anionic amphiphilic calixarene 6. the CAC value of G45 decreases as well. This mutually inducing phenomenon further provides us the idea that hydrophilic calixarenes should also have the ability to enhance aggregation of amphiphiles. In fact, calixarene-induced aggregation (CIA) was first reported in 2001,³²¹ and has become more popular since 2009. The most typical hosts are SCnAs, which are capable of binding hundreds of guests with impressive affinity and promoting self-assembly of about 30 molecules in aqueous media. The concept of CIA was proposed in 2012, which means an appropriate concentration of SCnAs could lower some amphiphilic molecules' CAC, enhance aggregate stability and compactness, and regulate the degree of order in the aggregates. This strategy could be applied to aromatic fluorescent dyes, surfactants, drugs, and biomacromolecules. Some of them have been summarized in previous reviews by García-Río¹⁶ and our group.^{3,323} Herein, instead of listing all the results in this field, we focus on the properties of CIA assembly with assistance of some typical works.

From the viewpoint of intermolecular interactions, the hydrophobic interaction is the main driving force of conventional surfactant micelle formation, while electrostatic repulsion of its head group is unfavorable for assembly. SCnAs possessing multivalent negative charges could lower the potential energy of electrostatic repulsion efficiently. As a result, in the presence of SCnAs, surfactants tend to show lower CAC, more regular arrangement, and more compact packing (Table 10).

3.2.1 Host-decreased CAC. A representative example of CIA is SC4A (454) inducing myristoylcholine (G13) aggregation. In this work, the CAC value of G13 decreased significantly by a factor of ca. 100 with addition of an appropriate amount of 454. Similar results were reported on various guests such as gemini surfactants G17-G19,³⁰⁰ 1-pyrenemethylaminium (G44),³¹⁰ 1-methyl-3-tetradecylimidazolium (G41),317 cationic serine-based surfactant G14³⁰⁵ and so on. In general, the CAC value depends on the ratio of guest and SCnA, and the appropriate ratio was often determined by transmittance measurements. If the SCnA concentration is much less than that of the surfactant, there is no enough opposite charges to reduce electrostatic repulsion efficiently. On the other hand, too much SCnA concentration provides excess cavities to include surfactants, resulting in disassembling. However, García-Río and coworkers reported that sulfonatocalix[6]arene hexamethyl ether (458) concentration hardly effected the CAC value of the mixed system, while micelle concentration was highly dependent on 458 concentration. This phenomenon may be explained as the weak binding affinity of 458, which has a flexible conformation without hydrogen bonds at the lower rim since methylation of lower-rim hydroxyls results in loss of hydrogen bonds, leading to a flexible conformation of 458.

3.2.2 Host-regulated morphology. Following the same principle as guest induced amphiphilic calixarene aggregation, SCnAs reduced electrostatic repulsion of surfactants also leads to a larger size aggregation with a smaller curvature. Many examples of arrangement transfer from small micelles to vesicles were reported, with a significant Tyndall effect. For instance, the aggregation of 454 and an asymmetric viologen G35 was studied by DLS, TEM, and SEM.²⁹⁷ The DLS result showed that the average diameter of the aggregates was 362 nm, with a narrow size distribution. TEM and SEM images showed the hollow spherical morphology, indicating convincingly the vesicular structure. Moreover, the thickness of the bilayer membrane obtained was about 7 nm, which was almost equal to the total height of lengths of two G35 and two 454.

Harangozo and coworkers reported a nanoparticle consisting of G42 and SC6A (456).³⁰⁷ Small angle neutron scattering (SANS) and cryo-TEM results indicated that the diameter of the multilayered nanoparticles was around 160 nm. Interestingly, they found that the nanoparticles have a tendency to transform into supramolecular micelles (around 6 nm diameter) in the presence of NaCl (Fig. 7c), which may be due to additional ions interfering the hydrate structure around the hydrophobic chains and the cross-sectional area of this supra-amphiphile.

Besides the size of assemblies, SC*n*A could also modulate their shape. Guo and coworkers studied the morphology of the SC5A **455** and **G21** aggregates.²⁹⁸ The TEM image of free **G21** showed some irregular arrangement without a specific topological structure, while nano-rod structures with an average length of 220 nm appeared in the presence of **455**. These rods are considered to be composed of bundles of fibers, resulting from the hierarchical assembly of calixarenes (Fig. 7).

Table 9 Morphologies of guest-induced host assemblies and CACs of corresponding hosts

Host	Guest	Morphology	Radius (nm)	CAC	Quantity (host : guest)	Condition ^{<i>a</i>}	Method	Ref.
3	_	_	_	3.18 mM	_		_	55
3	G31	_	_	0.25 mM	1:1		Fluorescence	55
3	G7	_	_	1.4 mM	3 mM (guest)		Conductivity	57
6		Micelle	_	330 µM	_ 0 ,		Fluorescence	88
6	G45	Mult-lamellar sphere	81	35 μM	50 µM (guest)		DLS, TEM	88
62	_	Micelle	2.7	0.9 mM	,		ITC, DLS	138
62	G6	Vesicle	247	0.02 mM	1:1		UV-vis, DLS, SEM,	138
							TEM, AFM	
111	_	Micelle	20-100	1.2 mM		pH 3.0	CD, DLS, AFM, TEM, SEM	161
111	G46	Branched fiber	10^{3} – 10^{4} (length)	_	1:4	pH 3.0	AFM, TEM, SEM	161
111	G49	Twisted fiber	10^3 –3 × 10^3 (length)	_	1:4	pH 3.0	AFM, TEM, SEM	161
111	G47	Network	-	—	1:4	pH 3.0	AFM, TEM, SEM	161
111	G32	Rod-like fiber	_	—	1:1	pH 3.0	AFM, SEM	162
111	G33	Rod-like fiber		—	1:1	pH 3.0	AFM, SEM	162
111	G36	Network	2×10^3 - 5×10^3 (length)	—	1:1	рН 3.0	AFM, SEM	162
111	G37	Network		_	1:1	pH 3.0	AFM, SEM	162
142	_	Mixture of micelles and NPs	2.5; 40	13 μM	_		DLS, HR TEM	322
142	G4	Mixture of hollow micelles and hollow rod-like micelles	6	_	1:1		DLS, HR TEM, cryo-TEM	322
142	G3	Mixture of micelles and NPs	5	_	1:1		DLS, HR TEM, cryo-TEM	322
143	G1	Hollow micelle	5-10	_	1:1		DLS, HR TEM, cryo-TEM	322
143	G2	Linear micelle	3.8 (radius), 50–400 (length)	—	1:1		DLS, HR TEM, cryo-TEM	322
170	_	Vesicle	60 ± 15	$7.9 \pm 0.5 \; \mu M$			Fluorescence, DLS	173
170	G34	Mixture of micelles, vesicles	<10;>25;	$7.2 \pm 0.3 \ \mu M$	1:1		Fluorescence, DLS,	173
		and super-aggregates	50-100				cryo-TEM, TEM	
254	G51	Vesicle	40-155		10:1	Dioxane:water 5:1	TEM, DLS	211
254	G51	Vesicle	85		5:1	Dioxane:water 5:1	TEM, DLS	211
254	G51	Spherical micelle	65		1:1	Dioxane:water 5:1	TEM, DLS	211
254	G51	Micelle	~ 150		1:5	Dioxane:water 5:1	TEM, DLS	211
254	G51	Mixture of network aggregates and spherical micelles	~200		1:10	Dioxane:water 5:1	TEM, DLS	211
432	—		62 ± 9	$91\pm5~\mu M$	—	50 mM Tris pH 7.4	Fluorescence	266
432	G50	_	45 ± 3	$2.0\pm0.1\;\mu M$	10:1	50 mM Tris pH 7.4	Fluorescence, DLS	266
433	_	_	66 ± 2	$59 \pm 3 \ \mu M$		50 mM Tris pH 7.4	Fluorescence	266
433	G50	_	53 ± 2	$2.6\pm0.2~\mu M$	10:1	50 mM Tris pH 7.4	Fluorescence, DLS	266
434	G50	_	58 ± 4	$2.0\pm0.1\;\mu M$	10:1	50 mM Tris pH 7.4	Fluorescence, DLS	266
434	—	_	62 ± 1	$33\pm2~\mu M$	_	50 mM Tris pH 7.4	Fluorescence	266
294	—	Micelle	2.44	0.64 mM	_	D_2O	DOSY, AFM	252
294	G40	Micelle	_	0.35 mM	1:1	D_2O	DOSY	252
^a Th	e condi	ition is 25 °C in pure water if n	o label.					

3.2.3 Host-enhanced packing compactness. Direct evidence of enhancing the packing compactness is the XRD results of **G21**. As reported by Guo and coworkers, free **G21** shows a π - π stacking distance of 3.54 Å, while the results are 3.42 and 3.39 Å in the presence of **454** and **455**, respectively (Fig. 7a).²⁹⁸

However, measuring XRD is not suitable for every assembly. So the García-Río group and the Biczok group took hydrophobicity of assembly as a parameter for compactness comparison. They assumed that a more hydrophobic assembly means more compactness.

Basilio and coworkers measured the hydrophobicity of dodecyltrimethylammonium bromide (G10) assembly by measuring the hydrolysis rate of two kinetic probes.³¹⁴ Hydrolysis rates at different surfactant concentrations were plotted and fitted, from which the binding constant of the kinetic probe between the micelles and the bulk water (K_m^S) was obtained. The K_m^S value of G10 in the absence of 458 is smaller than that in the presence of 458, which means the addition of 458 leads to stronger hydrophobicity of aggregates. Biczok and coworkers investigated the polarity of interfacial layers by using a fluorescent probe, from whose maximum fluorescence emission wavelength, the local polarity around the probe can be determined.³⁰⁷ The polarity results were in the order **456–G42** supramolecular micelle <**457–G42** supramolecular micelle <**G42** micelle, which indicated more compact stacking of micelles.

3.3 Mutual inducement

In addition to the aforementioned two complexation-induced aggregation strategies, mutual inducement involves a larger range of host and guest molecules to fabricate supra-amphiphiles. For example, amphiphilic hosts and amphiphilic guests generate new supra-amphiphiles with different CACs and morphologies.^{251,304,324} Hydrophilic hosts and hydrophobic drugs form supra-amphiphiles which can be applied in medical diagnosis and treatment.^{325,326} Hydrophilic hosts and polymers, especially biomacromolecules like protein, DNA, and chitosan, are able to mutually induce aggregation.^{77,205,227,304,327-330} Supra-amphiphiles consisting of

Fig. 6 (a) Schematic illustration of gel generation from gelator **107** induced by basic amino acids. Reprinted with permission from ref. 161. Copyright 2011 from Royal Society of Chemistry. (b) Schematic illustration of the selfassembly of **59** with ATP (**G6**) and its phosphatase-response. Reprinted with permission from ref. 138. Copyright 2013 from Royal Society of Chemistry.

various kinds of host and guest molecules not only enrich the supra-amphiphile concept but also promise potential applications such as drug delivery and gene transfection.

4. Conclusion and outlook

In this review, we systematically summarized the assembling features of calixarene-based amphiphiles and supra-amphiphiles. Hundreds of amphiphilic calixarenes were fabricated by facile covalent modification, including upper-rim hydrophilic amphiphiles, lower-rim hydrophilic amphiphiles and bola-type amphiphiles. Compared with conventional amphiphiles, amphiphilic calixarenes usually show lower CACs and more diverse morphologies. Moreover, amphiphilic calixarenes are able to form uniform assemblies with precise $N_{agg}s$. The assemblies of amphiphilic calixarenes pack more compactly than those of common surfactants and their assembling kinetics is much slower. The preorganized framework of calixarenes is the most important factor to influence these unique assembly properties. In general, a larger number of repeat units lead to higher assembling tendency when the conformation is fixed, and the cone conformation is more beneficial to aggregation than the alternative conformation.

On the other hand, benefiting from their cavities, aggregation of amphiphilic calixarenes could be induced by various guests. Similarly, hydrophilic calixarenes possess the ability to enhance the assembly of amphiphilic guests. These induced aggregation phenomena are due to additional attractive interactions decreasing the repulsion of head groups of amphiphiles. Construction of such supra-amphiphiles avoids tedious synthesis, and the obtained assemblies also bear the properties of low CAC, regular morphology, and compact packing.

With prosperous development, there are still some promising objectives and challenges for the development of this area. First, the fundamental studies of assembly behaviors, such as the relationship between molecular structures and assembly properties, compactness and kinetics, need to be systematical investigated urgently. Up to now, hundreds of amphiphilic calixarenes as well as their CACs and morphologies have been reported, but there is no appropriate rule to describe how these properties depend on structures, which is extremely important to rational design of amphiphilic calixarenes with superior performance. On the other hand, compactness and kinetics behavior are featured properties of amphiphilic calixarenes, but only demonstrated in limited works. More attention is needed in the future because they are not only the important fundamental topics, but also related to further applications. For example, compact vesicles provide reliable platforms for capsuling cargo and constructing fluorescence materials with high efficiency,46,180 while the kinetics feature is critical for preparation procedures of these materials.

Second, crosslinking represents a convenient avenue to obtain assemblies with better stability. For instance, Shulov and coworkers proposed a new platform for bioimaging by cyanine 3 and cyanine 5 corona crosslinked calixarene micelles.⁶⁰ The obtained proteinsized nanoparticles present excellent stability in various environments, showing a high fluorescence signal to noise ratio without dye leakage. Crosslinking can also be employed on the basis of supra-amphiphiles. Peng and coworkers constructed a novel supramolecular crosslinked vesicle by post-modification of a dynamic SC4A-(dodecyloxybenzyl)tripropargylammonium vesicle with the "click" reaction.³³¹ The obtained vesicle is stable enough in diverse and complex surroundings and can be disrupted with specific chemical stimuli to realize controlled release. These pioneering works demonstrate the advantages of the crosslinking strategy, which may inspire more fascinating applications in the future.

Third, by combining amphiphilic calixarenes with various kinds of other amphiphiles, such as conventional surfactants, phospholipids or macrocyclic amphiphiles, the obtained coassemblies exhibit different assembly behaviors. Co-assembled amphiphiles may introduce attractive interactions between hydrophilic head groups of amphiphilic calixarenes, leading to lower CACs and various morphologies.⁶⁶ Moreover, calixarene conformations may be regulated by co-assembling, resulting in better binding affinity.⁸⁶ Besides, co-assembly of different amphiphilic macrocycles enables heteromultivalent recognition.¹⁷⁹

Last but not least, although the cavities of calixarenes are well utilized in supra-amphiphiles, they have not attracted much attention in calixarene amphiphilic assemblies up to now.

		Radius (nm) 150–300	CAC 74 uM	Quantity (host:guest) 1:3	Condition ^a pH 6.8	Method Surface tension, DLS, TEM	Ref. 316
220-310	220-310			1:3	pH 4-11	DLS	316
I			340 µM	Ι		Surface tension	311
			23 μM 310 mM	1 mM (host)		Surface tension	311
I	Ι		25 mM	1 mM (host)		Surface tension	311
0.0 0.0	0.0		14 mM	, , ,		Surface tension, fluorescence, DLS	311
0.0 3 3	3.3		0.20 mM	1.5		Surface tension, fluorescence, DLS	311
3.5	3.5		0.20 mM	1:1		Surface tension, fluorescence, DLS	311
6.1	6.1		0.20 mM	1:10		Surface tension, fluorescence, DLS	311
0.0 1.6	3.0 1.6		0.20 mM	1:40		Surface tension, fluorescence, DLS	311
1.1	1.1		0.20 mM	1:80		Surface tension, fluorescence, DLS	311
NP 250–2500	250-2500			50 mM, 1:2.5		Nomarski light microscopy	292
57.2 ± 0.4	57.2 ± 0.4			2 mM, 1:2.5 $1 \cdot 6_{-7}$		DLS, TEM DI S	29
The mission of 3.4 ± 0.3	3.4 ± 0.3			1:4	$15~\mathrm{mM}$ NaCl. $10~^\circ\mathrm{C}$	STO	5 2
ur micelle —	Ι		20 µM	1:2, 3	50 mM NaCl	Fluorescence	č
Ι	Ι		14 mM			Surface tension, conductivity	ŝ
			0.16 mM	0.1 mM (host)		Surface tension, conductivity	ς, ή
			0.3 mM	0.5 uM (host)		Surface tension, conductivity Surface tension	οò
Ι	I		0.4 mM	1 µM (host)		Surface tension	က
1	I		20 mM	$0.2 \ \mu M \ (host)$		Fluorescence	З
I			0.3 mM	2 μM (host)		Fluorescence	က
	I		0.2 mM	0.5 mM (host)		Fluorescence	ς c
I	I		16 nM	0.02 mM (hoet)		1 IVwie	10
			10 μΜ 31 μΜ	0.05 mM (host)		UV-vis	10
I			31 µM	0.08 mM (host)		UV-vis	0
97	97		I	1:10		UV-vis, DLS, TEM, SEM, crvo-TEM. HR TEM	6
4.3 ± 0.7	4.3 ± 0.7		$(162\pm8)~\mu{ m M}$		35 °C	Surface tension, NMR,	õ
30 + 2	30 + 2		(93 + 2) mM	1:250	35 °C	light microscopy, cryo-TEM Surface tension, NMR,	30
			(13 ± 1) mM	1.100		light microscopy, cryo-TEM	5 6
			()		0	light microscopy, cryo-TEM	Ś
29 ± 3	29 ± 3		$(6.5\pm0.8)~\mathrm{mM}$	1:70	35 °C	Surface tension, NMR,	30
wer-based 12 ± 1	12 ± 1			1:25	35 °C	light microscopy, cryo-TEM Surface tension, NMR,	э Э
ssicles wer-hased 6.0 + 0.2	0 + U 9		I	ע די ד	35 °C	light microscopy, cryo-TEM Surface tension_NMR	
sicles	7.0 + 0.0					light microscopy, cryo-TEM	5
	Ι		6.0 mM			Fluorescence, surface tension	30
I			70 µM	$20 \ \mu M (host)$		Fluorescence, surface tension	30
I	I		80 μM	50 μM (host)		Fluorescence, surface tension	30
eoste 106	196		100 µ1M1	80 μил (11031) 1 - 15		FIUDIESCENCE, SULLACE VELISION	20%
icelle 300 (length) 20 (heioht)	300 (length) 20 (height)	; 100 (width);	I	1.2:2	25 °C	TEM, AFM	32

Published on 27 September 2019. Downloaded on 8/29/2025 6:20:29 PM.

w																																							Μ	late	eri	als	С	he	mi	stry	y F	ror	ntiers
Ref.		300	000		000	00c	000	000	300	300	300	300	300	300	300	300	304	304	304	298	298	303	303	303	303	308	308	319	319	319	319	319	305	306	306	297	297	297	297	297	309	309	309	317	317	317	317	317	317
Method		DLS, 1 EM 				UV-VIS DIS TEM SEM AEM	TALLY TATAO (TATAO) TATA		U V-VIS	UIV-vis	DLS. TEM. SEM. AFM		UV-vis	UV-vis	UV-vis	DLS, TEM, SEM, AFM	Conductivity	UV-vis	DLS, SLS, TEM	DLS	DLS, TEM, SEM, AFM	Surface tension, DLS, TEM, AFM	Surface tension	DLS, TEM, AFM	DLS, TEM, AFM	DLS	DLS	DLS	DLS	Fluorescence	DLS	DTS			DLS. TEM		UV-vis	UV-vis	UV-vis	DLS, TEM, SEM	AFM, SEM	AFM, SEM	AFM	DLS	DLS	DLS	DLS	DLS MINATEM SANS	DLS, cryo-TEM, SANS
Condition ^a	27 °C	3/ C																											50 mM NaCl, 15 $^{\circ}$ C	50 mM NaCl											0.1 M PB, pH 7.2	0.1 M PB, pH 7.2	0.1 M PB, pH 7.2						
Quantity (host : oriest)	10.0	1.4.54	0.00 mM (hast)		0.04 IIIM (II0St)	0.00 111M (1105L)	0.4		0.02 IIIM (IIOSL)	0.06 mM (host)	2:5	, i	0.02 mM (host)	0.04 mM (host)	0.06 mM (host)	2:5		50 µM (host)	1:4	Ι		Ι	$1\!:\!2$	$1\!:\!2$	1:4		1:1	1:2-7	1:3	1:2	1:2-6	1:2-6	Mm 00.0	Mm 20.0	2:5		0.02 mM (host)	0.05 mM (host)	0.08 mM (host)	1:2	1:5	$1\!:\!2$	1:1	$1\!:\!2$	1:5	1:3-120	1:1	1:1-200	1:20
CAC	2	 1 mM			Wind C.C	Mud c./	1 mM		3.0 µM	3.7 IIM		1 mM	3.7 µM	5.0 µM	6.6 µM		0.14 mM	0.125 mM		Ι		0.14 mM	7.0 µM	I	Ι	90 μM	0.8 µM	I		16 μM	I		Mm 8/0.0	0.102 mM		20 mM	0.02 mM	0.04 mM	0.07 mM			Ι	Ι			I			
Radius (nm)	(IIII) mmr					— 66.1	2.00				62.3			Ι		49.0			$R_{ m h}$: 141, $R_{ m g}$: 108	96	100	55	Ι	30	60	240	72	15-48	2.4 ± 0.2		20-39	25 - 41			133.36					181	10^4 (length)	1.5-1.7 (height)	0.8 - 0.9	65 ± 10	88 ± 28	80 - 190	80 ± 30 75 150	/ 3-130 65-100	35-75
Morrholow							ACSICIC	1			Vesicle		1		1	Vesicle		1	Multilamellar sphere	Mixtures of fibers and something larger	Mixture of fibers and columnar stacks	Spherical aggregate		Multilamellar spherical aggregate	Spherical and linear aggregate	1		Spherical and oblate lamellar NP	Supramolecular micelle	Supramolecular micelle	Spherical lamellar NP	Spherical NP	1		Spherical NP		1	1	1	Vesicle	Fiber-like	Flake-like	NP	NP	NP	NP	NP	ur I amellar enherical accreate	Multilayered spherical aggregate
Guest	046	212		10	150	115		010	618	618	G18	G19	G19	G19	G19	G19	G20	G20	G20	G21	G21	G22	G22	G22	G22	G23	G23	G24	G24	G24	625	626	175	170	G27	G35	G35	G35	G35	G35	G38	G39	G39	G41	G41	G41	642	242	G42
Host	110	60 1	16.4		+C+	+04 757	FOF	!	404 151	454	454		454	454	454	454		454	454	454	454		454	454	459		454	456	456	456	456	456	404 154	454 154	454		454	454	454	454	460	460	455	456	456	456	456	156	456

Published on 27 September 2019. Downloaded on 8/29/2025 6:20:29 PM.

Host	Guest	Morphology	Radius (nm)	CAC	Quantity (host:guest)	Condition ^{<i>a</i>}	Method	Ref.
	G42	Micelle	2.3 ± 0.2	I		20 mM NaCl	DLS	318
456	G42	NP	33-100	I	1:6	0-110 mM NaCl	DLS	318
456	G42	NP	33-119		1:5	0-110 mM NaCl	DLS	318
456	G42	NP	25-87	Ι	1:4	0-40 mM NaCl	DLS	318
456	G42	Supramolecular micelle	3.0 ± 0.2		1:4	40–53 mM NaCl	DLS	318
456	G42	NP	28-69		1:3	0–25 mM NaCl	DLS	318
456	G42	Supramolecular micelle	3.0 ± 0.2		1:3	25–33 mM NaCl	DLS	318
456	G42	NP	33-94	Ι	$1\!:\!2$	0–15 mM NaCl	DLS	318
456	G42	Supramolecular micelle	3.0 ± 0.2	Ι	$1\!:\!2$	15-17 mM NaCl	DLS	318
456	G42	Supramolecular micelle – NP	3-250	Ι	$1\!:\!2$	15 mM NaCl, 27–33 $^{\circ}$ C	DLS	318
456	G42	Supramolecular micelle – NP	3-250		$1\!:\!2$	50 mM NaCl, 33–38 $^{\circ}$ C	DLS	318
456	G42	NP	80		1:3	15 mM NaCl, 20 $^{\circ}$ C	DLS	318
456	G42	Supramolecular micelle	3	Ι	1:3	15 mM NaCl, 25 $^{\circ}$ C	DLS	318
456	G42	NP	185	Ι	1:3	15 mM NaCl, 30 $^{\circ}$ C	DLS	318
456	G42	NP	36 ± 10		1:4		Cryo-TEM	318
456	G42	Supramolecular micelle	< 8		1:4	53 mM NaCl	Cryo-TEM	318
	G42	Micelle		720 µM		50 mM NaCl	Fluorescence	318
456	G42			15 μM	$1\!:\!2$	50 mM NaCl	Fluorescence	318
456	G42	I		15 μM	1:1	50 mM NaCl	Fluorescence	318
456	G42	1		15 μM	1:3	50 mM NaCl	Fluorescence	318
456	G42	1		15 μM	1:3.6	50 mM NaCl	Fluorescence	318
454	G42	NP	100		$1\!:\!2$	0-0.08 mM NaCl	DLS, cryo-TEM	307
454	G42	NP	100		1:4	0-0.07 mM NaCl	DLS, cryo-TEM	307
457	G42	NP	23 - 45		1:2-9		DLS	307
457	G42	NP	45		1:6.8-8.8	0-50 mM NaCl	DLS	307
457	G42	Supramolecular micelle – NP	2.5-350		1:4.9	30 mM NaCl, 45–55 $^{\circ}$ C	DLS	307
457	G42	Supramolecular micelle – NP	2.5 - 320		1:4.9	50 mM NaCl, 50–55 $^{\circ}$ C	DLS	307
457	G42	NP – supramolecular micelle	45-2.5		1:5.8	0-50 mM NaCl	DLS	307
457	G42	NP – supramolecular micelle	38-2.5		1:3.9	0–50 mM NaCl	DLS	307
457	G42			15 μM	1:2.0	50 mM NaCl	Fluorescence	307
457	G42			12 µM	1:5.9	50 mM NaCl	Fluorescence	307
456	G43	NP	55 ± 13		$1\!:\!1$		DLS	317
456	G43	NP	06-09	1	1:1-200		DLS	317
	G44			0.27 mM	I		Fluorescence	310
455	G44	I		0.07 mM	0.02 mM (host)		Fluorescence	310
455	G44	1		0.09 MM	0.05 mM (host)		Fluorescence	310
455	G44	1		0.08 mM	0.08 mM (host)		Fluorescence	310
455	G44	Vesicle	49.4		1:4		DLS, TEM, SEM	310
^a The	conditio	h is 25 °C in pure water if no label.						

Fig. 7 (a) Schematic illustration of the complex-induced aggregation of BPTA-PBI (**G21**) by **454** and **455**. Reprinted with permission from ref. 298. Copyright 2012 from Royal Society of Chemistry. (b) Schematic representation of the construction of a supramolecular binary vesicle based on the host–guest complexation of **454** with **G35**. Reprinted with permission from ref. 297. Copyright 2011 from American Chemical Society. (c) Illustration of **454** induced **G42** formation of nanoparticles and supramolecular micelles. Reprinted with permission from ref. 307. Copyright 2016 from American Chemical Society.

Actually, binding and assembling abilities complement each other and influence each other. As we mentioned above, aggregation enhances the binding ability by regulating the calixarene conformation.⁸⁶ Furthermore, by utilizing the host–guest recognition cavity of calixarenes on the assembly surface, the morphology of the assembly can be controlled by guests, non-covalent modification of specific functional groups can be performed, and multidimensional and hierarchical self-assemblies can be achieved.

In summary, aiming on these objectives and challenges will lead to a deep understanding of the assembling features of amphiphiles and supra-amphiphiles based on calixarenes, and also enrich their construction motifs and strategies, which are essential to develop functional materials based on calixarenes. Moreover, although this review focused on calixarenes, the conclusions are also transferable to other macrocyclic amphiphiles and supra-amphiphiles.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the NSFC (51873090 and 21672112), the Fundamental Research Funds for the Central Universities

and the Innovation Project of Hebei Province (19241303D), which are gratefully acknowledged.

Notes and references

- 1 Y. Chang, Y. Jiao, H. E. Symons, J. F. Xu, C. F. J. Faul and X. Zhang, *Chem. Soc. Rev.*, 2019, **48**, 989–1003.
- A. Sorrenti, O. Illa and R. M. Ortuno, *Chem. Soc. Rev.*, 2013, 42, 8200–8219.
- 3 Y.-C. Liu, H.-W. Sun and D.-S. Guo, *Curr. Org. Chem.*, 2018, 22, 2127–2149.
- 4 Y. Yao, R.-B. Zhao, Y.-J. Shi, Y. Cai, J. Chen, S.-Y. Sun, W. Zhang and R.-K. Tang, *Chem. Commun.*, 2018, **54**, 8068–8071.
- 5 S. Shinkai, S. Mori, H. Koreishi, T. Tsubaki and O. Manabe, *J. Am. Chem. Soc.*, 1986, **108**, 2409–2416.
- 6 G. Varan, C. Varan, N. Erdogar, A. A. Hincal and E. Bilensoy, *Int. J. Pharm.*, 2017, **531**, 457–469.
- 7 J. Gao and D.-S. Guo, Sci. Sin.: Chim., 2019, 49, 811-820.
- 8 H. Zhang, Z. Liu and Y. Zhao, *Chem. Soc. Rev.*, 2018, 47, 5491–5528.
- 9 S.-Y. Sun, M. Geng, L. Huang, Y.-M. Chen, M.-P. Cen, D. Lu, A.-W. Wang, Y. Wang, Y.-J. Shi and Y. Yao, *Chem. Commun.*, 2018, 54, 13006–13009.
- 10 X. Zhang and C. Wang, Chem. Soc. Rev., 2011, 40, 94-101.
- 11 G.-C. Yu, K.-C. Jie and F.-H. Huang, *Chem. Rev.*, 2015, **115**, 7240–7303.
- 12 D.-Y. Xia, Y. Li, K.-C. Jie, B.-B. Shi and Y. Yao, *Org. Lett.*, 2016, **18**, 2910–2913.
- 13 C. D. Gutsche, Acc. Chem. Res., 1983, 16, 161-170.
- 14 V. Bohmer, Angew. Chem., Int. Ed. Engl., 1995, 34, 713-745.
- 15 K. Helttunen and P. Shahgaldian, New J. Chem., 2010, 34, 2704–2714.
- 16 N. Basilio, V. Francisco and L. Garcia-Rio, Int. J. Mol. Sci., 2013, 14, 3140–3157.
- 17 R. V. Rodik, A. S. Klymchenko, Y. Mely and V. I. Kalchenko, J. Inclusion Phenom. Macrocyclic Chem., 2014, 80, 189–200.
- 18 J. Wang, X. Ding and X. Guo, Adv. Colloid Interface Sci., 2019, 269, 187–202.
- 19 S. Kolusheva, O. Molt, M. Herm, T. Schrader and R. Jelinek, J. Am. Chem. Soc., 2005, 127, 10000–10001.
- 20 T. Sun, L.-R. Qi, W.-W. Li, Y. Li, X.-M. Shuai, Z.-Q. Cai, H.-P. Chen, X.-G. Qiao and L.-F. Ma, *J. Chromatogr. A*, 2019, 1601, 310–318.
- 21 V. I. Kalchenko, Theor. Exp. Chem., 2018, 54, 74-84.
- A. B. Mirgorodskaya, E. I. Yackevich, Y. R. Kudryashova, R. R. Kashapov, S. E. Solovieva, A. T. Gubaidullin, I. S. Antipin, L. Y. Zakharova and A. I. Konovalov, *Colloids Surf.*, *B*, 2014, **117**, 497–504.
- 23 E. J. Cho, J. K. Kang, W. S. Han and J. H. Jung, *Langmuir*, 2008, 24, 5229–5232.
- 24 J. Luo and Y.-S. Zheng, Prog. Chem., 2018, 30, 601-615.
- 25 Z. Xu, D. Gonzalez-Abradelo, J. Li, C. A. Strassert, B. J. Ravoo and D.-S. Guo, *Mater. Chem. Front.*, 2017, **1**, 1847–1852.
- 26 Z. Zheng, W.-C. Geng, Z. Xu and D.-S. Guo, *Isr. J. Chem.*, 2019, **59**, 1–16.

- 27 W.-C. Geng, Q. Huang, Z. Xu, R. Wang and D.-S. Guo, *Theranostics*, 2019, **9**, 3094–3106.
- 28 E. S. Espanol and M. M. Villamil, *Biomolecules*, 2019, 9, DOI: 10.3390/biom9030090.
- 29 J. Gao and D.-S. Guo, Sci. Sin.: Chim., 2018, 48, 949-956.
- 30 J. L. J. Blanco, J. M. Benito, C. O. Mellet and J. M. G. Fernandez, J. Drug Delivery Sci. Technol., 2017, 42, 18–37.
- 31 S. Karakurt, T. F. Kellici, T. Mavromoustakos, A. G. Tzakos and M. Yilmaz, *Curr. Org. Chem.*, 2016, 20, 1043–1057.
- 32 Y. Zhou, H. Li and Y.-W. Yang, *Chin. Chem. Lett.*, 2015, **26**, 825–828.
- 33 X. Ma and Y. Zhao, Chem. Rev., 2015, 115, 7794-7839.
- 34 M. Giuliani, I. Morbioli, F. Sansone and A. Casnati, *Chem. Commun.*, 2015, **51**, 14140–14159.
- 35 M.-F. Ma, P.-Y. Xing, S.-Y. Li, X.-X. Chu, B. Wang and A.-Y. Hao, *Prog. Chem.*, 2014, 26, 1317–1328.
- 36 K.-C. Jie, Y.-J. Zhou, Y. Yao and F.-H. Huang, *Chem. Soc. Rev.*, 2015, 44, 3568–3587.
- 37 S. Sayin and M. Yilmaz, *Tetrahedron*, 2016, 72, 6528–6535.
- 38 J. J. Michels, J. Huskens, J. F. J. Engbersen and D. N. Reinhoudt, *Langmuir*, 2000, 16, 4864–4870.
- 39 M. Moradi, L. G. Tulli, J. Nowakowski, M. Baljozovic, T. A. Jung and P. Shahgaldian, *Angew. Chem., Int. Ed.*, 2017, 56, 14395–14399.
- 40 Z.-F. Xiao, W.-P. Yang, F.-Y. Yan, L.-B. Ji, W. Li and W. Wang, *CrystEngComm*, 2019, **21**, 439–448.
- 41 K. Suwinska, O. Shkurenko, C. Mbemba, A. Leydier, S. Jebors, A. W. Coleman, R. Matar and P. Falson, *New J. Chem.*, 2008, 32, 1988–1998.
- 42 M. Strobel, K. Kita-Tokarczyk, A. Taubert, C. Vebert, P. A. Heiney, M. Chami and W. Meier, *Adv. Funct. Mater.*, 2006, **16**, 252–259.
- 43 P. K. Eggers, T. Becker, M. K. Melvin, R. A. Boulos, E. James, N. Morellini, A. R. Harvey, S. A. Dunlop, M. Fitzgerald, K. A. Stubbs and C. L. Raston, *RSC Adv.*, 2012, 2, 6250–6257.
- 44 Q. Zhao, Y. Chen, S. H. Li and Y. Liu, *Chem. Commun.*, 2018, 54, 200–203.
- 45 S. E. Sestito, F. A. Facchini, I. Morbioli, J. M. Billod, S. Martin-Santamaria, A. Casnati, F. Sansone and F. Peri, *J. Med. Chem.*, 2017, 60, 4882–4892.
- 46 Z. Xu, S. Peng, Y.-Y. Wang, J.-K. Zhang, A. I. Lazar and D.-S. Guo, *Adv. Mater.*, 2016, 28, 7666–7671.
- 47 K. I. Assaf, A. Hennig, S. Peng, D.-S. Guo, D. Gabel and W. M. Nau, *Chem. Commun.*, 2017, 53, 4616–4619.
- 48 V. A. Burilov, G. A. Fatikhova, D. A. Mironova, S. E. Solovieva and I. S. Antipin, *Macroheterocycles*, 2015, **8**, 409–414.
- 49 S. Shinkai, T. Arimura, K. Araki and H. Kawabata, *J. Chem. Soc., Perkin Trans.* 1, 1989, 2039–2045.
- 50 J. Cui, V. D. Uzunova, D.-S. Guo, K. Wang, W. M. Nau and Y. Liu, *Eur. J. Org. Chem.*, 2010, 1704–1710.
- 51 X.-P. Ding, D.-B. Tang, T. Li, S.-F. Wang and Y.-Y. Zhou, *Spectrochim. Acta, Part A*, 2011, **81**, 44–47.
- 52 N. Basilio, V. Francisco and L. Garcia-Rio, *J. Org. Chem.*, 2012, 77, 10764–10772.
- 53 N. Basilio and L. Garcia-Rio, *ChemPhysChem*, 2012, 13, 2368–2376.

- 54 N. Basilio, L. Garcia-Rio and M. Martin-Pastor, *Langmuir*, 2012, **28**, 2404–2414.
- 55 X.-Y. Hu, S. Peng, D.-S. Guo, F. Ding and Y. Liu, *Supramol. Chem.*, 2015, **27**, 336–345.
- 56 Y.-C. Pan, H.-W. Tian, S. Peng, X.-Y. Hu and D.-S. Guo, *Chin. Chem. Lett.*, 2017, **28**, 787–792.
- 57 S. Fernandez-Abad, M. Pessego, N. Basilio and L. Garcia-Rio, *Chem. – Eur. J.*, 2016, **22**, 6466–6470.
- 58 Y.-X. Wang, Y.-M. Zhang, Y.-L. Wang and Y. Liu, Chem. Mater., 2015, 27, 2848–2854.
- 59 M. Esmaielzade Rostami, B. Gorji and R. Zadmard, *Tetrahedron Lett.*, 2018, **59**, 2393–2398.
- 60 I. Shulov, R. V. Rodik, Y. Arntz, A. Reisch, V. I. Kalchenko and A. S. Klymchenko, *Angew. Chem., Int. Ed.*, 2016, 55, 15884–15888.
- 61 S. Kolusheva, R. Zadmard, T. Schrader and R. Jelinek, J. Am. Chem. Soc., 2006, 128, 13592–13598.
- 62 S. Peng, A. Barba-Bon, Y.-C. Pan, W. M. Nau, D.-S. Guo and A. Hennig, *Angew. Chem., Int. Ed.*, 2017, **56**, 1–5.
- 63 S. Fujii, S. Yamada, S. Matsumoto, G. Kubo, K. Yoshida, E. Tabata, R. Miyake, Y. Sanada, I. Akiba, T. Okobira, N. Yagi, E. Mylonas, N. Ohta, H. Sekiguchi and K. Sakurai, *Sci. Rep.*, 2017, 7, 44494.
- 64 S. Fujii, J. H. Lee, R. Takahashi and K. Sakurai, *Langmuir*, 2018, 34, 5072–5078.
- 65 S. Fujii, R. Takahashi, J. H. Lee and K. Sakurai, *Soft Matter*, 2018, **14**, 875–878.
- 66 J. H. Lee, S. Fujii, R. Takahashi and K. Sakurai, *Chem. Commun.*, 2019, 55, 1303–1305.
- 67 D. Elend, U. Pieles and P. Shahgaldian, Chimia, 2010, 64, 45-48.
- 68 N. Moridi, O. Danylyuk, K. Suwinska and P. Shahgaldian, J. Colloid Interface Sci., 2012, 377, 450–455.
- 69 L. G. Tulli, N. Moridi, W. Wang, K. Helttunen, M. Neuburger, D. Vaknin, W. Meier and P. Shahgaldian, *Chem. Commun.*, 2014, 50, 3938–3940.
- 70 L. G. Tulli, W. Wang, W. R. Lindemann, I. Kuzmenko, W. Meier, D. Vaknin and P. Shahgaldian, *Langmuir*, 2015, 31, 2351–2359.
- 71 N. O. Mchedlov-Petrossyan, L. N. Vilkova, N. A. Vodolazkaya, A. G. Yakubovskaya, R. V. Rodik, V. I. Boyko and V. I. Kalchenko, *Sensors*, 2006, 6, 962–977.
- R. V. Rodik, A. S. Klymchenko, N. Jain, S. I. Miroshnichenko, L. Richert, V. I. Kalchenko and Y. Mely, *Chem. – Eur. J.*, 2011, 17, 5526–5538.
- 73 N. O. McHedlov-Petrossyan, N. A. Vodolazkaya, R. V. Rodik, L. N. Bogdanova, T. A. Cheipesh, O. Y. Soboleva, A. P. Kryshtal, L. V. Kutuzova and V. I. Kalchenko, *J. Phys. Chem. C*, 2012, **116**, 10245–10259.
- 74 E. V. Ukhatskaya, S. V. Kurkov, M. A. Hjalmarsdottir, V. A. Karginov, S. E. Matthews, R. V. Rodik, V. I. Kalchenko and T. Loftsson, *Int. J. Pharm.*, 2013, 458, 25–30.
- 75 E. V. Ukhatskaya, S. V. Kurkov, R. V. Rodik, V. I. Kalchenko,
 S. E. Matthews, P. Jansook and T. Loftsson, *J. Inclusion Phenom. Macrocyclic Chem.*, 2013, **79**, 473–483.
- 76 I. O. Melezhyk, R. V. Rodik, N. V. Iavorska, A. S. Klymchenko, Y. Mely, V. V. Shepelevych, L. M. Skivka and V. I. Kalchenko, *Anti-Infect. Agents*, 2015, **13**, 87–94.

- 77 R. V. Rodik, A.-S. Anthony, V. I. Kalchenko, Y. Mély and
 A. S. Klymchenko, *New J. Chem.*, 2015, **39**, 1654–1664.
- 78 C. Weeden, K. J. Hartlieb and L. Y. Lim, *J. Pharm. Pharmacol.*, 2012, **64**, 1403–1411.
- 79 T. Arimura, H. Kawabata, T. Matsuda, T. Muramatsu, H. Satoh, K. Fujio, O. Manabe and S. Shinkai, *J. Org. Chem.*, 1991, **56**, 301–306.
- 80 D. Hardy, R. M. Bill, A. Jawhari and A. J. Rothnie, *Biochem. Soc. Trans.*, 2016, 44, 838–844.
- 81 T. Sun, L.-R. Qi, W.-W. Li, Y. Li, X.-M. Shuai, Z.-Q. Cai, H.-P. Chen, X.-G. Qiao and L.-F. Ma, *J. Chromatogr. A*, 2019, 1601, 310–318.
- 82 H.-Y. Tian, H.-J. Li, Y.-J. Chen, D. Wang and C.-J. Li, *Ind. Eng. Chem. Res.*, 2002, 41, 4523–4527.
- 83 T. Jin, F. Fujii, H. Sakata, M. Tamura and M. Kinjo, *Chem. Commun.*, 2005, 4300–4302.
- 84 N. Basilio, L. Garcia-Rio and M. Martin-Pastor, J. Phys. Chem. B, 2010, 114, 4816–4820.
- 85 M.-X. Chen, T. Li, S. Peng and D. Tao, *New J. Chem.*, 2016, 40, 9923–9929.
- 86 H.-W. Tian, Y.-C. Pan and D.-S. Guo, Supramol. Chem., 2017, 30, 562–567.
- 87 A. Fraix, D. Afonso, G. M. L. Consoli and S. Sortino, *Photochem. Photobiol. Sci.*, 2019, **18**, 2216–2224.
- 88 X.-Y. Hu, Y. Chen and Y. Liu, *Chin. Chem. Lett.*, 2015, 26, 862–866.
- 89 Y.-X. Wang, D.-S. Guo, Y.-C. Duan, Y.-J. Wang and Y. Liu, *Sci. Rep.*, 2015, 5, 9019.
- 90 S. Song, J.-H. Wang, H.-T. Feng, Z.-H. Zhu and Y.-S. Zheng, *RSC Adv.*, 2014, 4, 24909–24913.
- 91 M. S. Becherer, B. Schade, C. Bottcher and A. Hirsch, *Chem. – Eur. J.*, 2009, **15**, 1637–1648.
- 92 F. Rodler, B. Schade, C. M. Jager, S. Backes, F. Hampel, C. Bottcher, T. Clark and A. Hirsch, *J. Am. Chem. Soc.*, 2015, 137, 3308–3317.
- 93 P. Shahgaldian, M. A. Sclotti and U. Pieles, *Langmuir*, 2008, 24, 8522–8526.
- 94 L. G. Tulli, W.-J. Wang, V. Rullaud, W. R. Lindemann,
 I. Kuzmenko, D. Vaknin and P. Shahgaldian, *RSC Adv.*,
 2016, 6, 9278–9285.
- 95 J. H. Lee, S. Fujii, R. Takahashi and K. Sakurai, *Langmuir*, 2018, 34, 12109–12115.
- 96 M. Fricke, D. Volkmer, C. E. Krill, M. Kellermann and A. Hirsch, *Cryst. Growth Des.*, 2006, **6**, 1120–1123.
- 97 M. Kellermann, W. Bauer, A. Hirsch, B. Schade, K. Ludwig and C. Bottcher, *Angew. Chem., Int. Ed.*, 2004, 43, 2959–2962.
- 98 C. Yihwa, M. Kellermann, M. Becherer, A. Hirsch and C. Bohne, *Photochem. Photobiol. Sci.*, 2007, 6, 525–531.
- 99 C. M. Jager, A. Hirsch, B. Schade, C. Bottcher and T. Clark, *Chem. – Eur. J.*, 2009, **15**, 8586–8592.
- 100 I. Di Bari, A. Fraix, R. Picciotto, A. R. Blanco, S. Petralia, S. Conoci, G. Granata, G. M. L. Consoli and S. Sortino, *RSC Adv.*, 2016, 6, 105573.
- 101 I. Di Bari, R. Picciotto, G. Granata, A. R. Blanco, G. M. Consoli and S. Sortino, *Org. Biomol. Chem.*, 2016, 14, 8047–8052.

- 102 G. Granata, I. Paterniti, C. Geraci, F. Cunsolo, E. Esposito, M. Cordaro, A. R. Blanco, S. Cuzzocrea and G. M. L. Consoli, *Mol. Pharmaceutics*, 2017, 14, 1610–1622.
- 103 I. Di Bari, G. Granata, G. M. L. Consoli and S. Sortino, New J. Chem., 2018, 18096–18101.
- 104 S. Friedman, S. Kolusheva, R. Volinsky, L. Zeiri, T. Schrader and R. Jelinek, *Anal. Chem.*, 2008, **80**, 7804–7811.
- 105 R. Zadmard and T. Schrader, *J. Am. Chem. Soc.*, 2005, **127**, 904–915.
- 106 Y.-L. Liu, L. Liu, Y.-L. Wang, Y.-C. Han, D. Wong and Y.-J. Chen, *Green Chem.*, 2008, **10**, 635–640.
- 107 Z. Zheng, W.-C. Geng, J. Gao, Y.-J. Mu and D.-S. Guo, *Org. Chem. Front.*, 2018, **5**, 2685–2691.
- 108 L. Gallego-Yerga, M. Lomazzi, V. Franceschi, F. Sansone, C. Ortiz Mellet, G. Donofrio, A. Casnati and J. M. Garcia Fernandez, Org. Biomol. Chem., 2015, 13, 1708–1723.
- 109 K.-P. Wang, Y. Chen and Y. Liu, *Chem. Commun.*, 2015, **51**, 1647–1649.
- 110 X.-M. Chen, Y. Chen, Q. Yu, B.-H. Gu and Y. Liu, Angew. Chem., Int. Ed., 2018, 57, 12519–12523.
- 111 G. Granata, G. M. L. Consoli, R. Lo Nigro, G. Malandrino and C. Geraci, *Supramol. Chem.*, 2016, **28**, 377–383.
- 112 F. Sansone, M. Dudic, G. Donofrio, C. Rivetti, L. Baldini, A. Casnati, S. Cellai and R. Ungaro, *J. Am. Chem. Soc.*, 2006, 128, 14528–14536.
- 113 T. Takeuchi, V. Bagnacani, F. Sansone and S. Matile, *ChemBioChem*, 2009, **10**, 2793–2799.
- A. D. Martin, E. Houlihan, N. Morellini, P. K. Eggers, E. James,
 K. A. Stubbs, A. R. Harvey, M. Fitzgerald, C. L. Raston and
 S. A. Dunlop, *ChemPlusChem*, 2012, 77, 308–313.
- 115 G. M. L. Consoli, G. Granata, R. Picciotto, A. R. Blanco, C. Geraci, A. Marino and A. Nostro, *MedChemComm*, 2018, 9, 160–164.
- 116 E. James, P. K. Eggers, A. R. Harvey, S. A. Dunlop, M. Fitzgerald, K. A. Stubbs and C. L. Raston, *Org. Biomol. Chem.*, 2013, **11**, 6108–6112.
- 117 V. Rullaud, M. Siragusa, A. Cumbo, D. Gygax and P. Shahgaldian, *Chem. Commun.*, 2012, **48**, 12186–12188.
- 118 N. Moridi, C. Wackerlin, V. Rullaud, R. Schelldorfer, T. A. Jung and P. Shahgaldian, *Chem. Commun.*, 2013, 49, 367–369.
- 119 V. Rullaud, N. Moridi and P. Shahgaldian, *Langmuir*, 2014, 30, 8675–8679.
- 120 A. Galukhin, A. Erokhin, I. Imatdinov and Y. Osin, *RSC Adv.*, 2015, **5**, 33351–33355.
- 121 W.-C. Geng, Y.-C. Liu, Y.-Y. Wang, Z. Xu, Z. Zheng, C.-B. Yang and D.-S. Guo, *Chem. Commun.*, 2016, **53**, 392–395.
- 122 S. Fujii, Y. Sanada, T. Nishimura, I. Akiba, K. Sakurai, N. Yagi and E. Mylonas, *Langmuir*, 2012, **28**, 3092–3101.
- 123 S. Sakamoto, S. Fujii, K. Yoshida and K. Sakurai, *Langmuir*, 2016, **32**, 12434–12441.
- 124 M. Araki, S. Fujii, J. H. Lee, R. Takahashi and K. Sakurai, *Soft Matter*, 2019, 3515–3519.
- 125 E. Mylonas, N. Yagi, S. Fujii, K. Ikesue, T. Ueda, H. Moriyama, Y. Sanada, K. Uezu, K. Sakurai and T. Okobira, *Sci. Rep.*, 2019, 9, 1982.

- 126 E. Houel, A. Lazar, E. Da Silva, A. W. Coleman, A. Solovyov,S. Cherenok and V. I. Kalchenko, *Langmuir*, 2002, 18, 1374–1379.
- 127 M. Rehm, M. Frank and J. Schatz, *Tetrahedron Lett.*, 2009, **50**, 93–96.
- 128 J. Gasparello, A. Manicardi, A. Casnati, R. Corradini, R. Gambari, A. Finotti and F. Sansone, *Sci. Rep.*, 2019, 9, 3036.
- 129 A. D. Martin, R. A. Boulos, K. A. Stubbs and C. L. Raston, *Chem. Commun.*, 2011, 47, 7329–7331.
- 130 J. Mo, L. Wang, X. Huang, B. Lu, C. Zou, L. Wei, J. Chu, P. K. Eggers, S. Chen, C. L. Raston, J. Wu, L. Y. Lim and W. Zhao, *Nanoscale*, 2017, 9, 13142–13152.
- 131 K. Samanta, D. S. Ranade, A. Upadhyay, P. P. Kulkarni and C. P. Rao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 5109–5117.
- 132 S. Arimori, T. Nagasaki and S. Shinkai, *J. Chem. Soc., Perkin Trans.* 1, 1993, 887–889.
- 133 R. Takahashi, S. Matsumoto, S. Fujii, T. Narayanan and K. Sakurai, *Angew. Chem., Int. Ed.*, 2017, 56, 6734–6738.
- 134 E. V. Ukhatskaya, S. V. Kurkov, S. E. Matthews, A. El Fagui, C. Amiel, F. Dalmas and T. Loftsson, *Int. J. Pharm.*, 2010, 402, 10–19.
- 135 E. V. Ukhatskaya, S. V. Kurkov, S. E. Matthews and T. Loftsson, *J. Inclusion Phenom. Macrocyclic Chem.*, 2013, **79**, 47–55.
- 136 V. A. Burilov, G. A. Fatikhova, M. N. Dokuchaeva, R. I. Nugmanov, D. A. Mironova, P. V. Dorovatovskii, V. N. Khrustalev, S. E. Solovieva and I. S. Antipin, *Beilstein J. Org. Chem.*, 2018, 14, 1980–1993.
- 137 R. Zadmard, M. Arendt and T. Schrader, *J. Am. Chem. Soc.*, 2004, **126**, 7752–7753.
- 138 Y.-X. Wang, D.-S. Guo, Y. Cao and Y. Liu, *RSC Adv.*, 2013, 3, 8058–8063.
- 139 S. Fujii, K. Sakurai, T. Okobira, N. Ohta and A. Takahara, *Langmuir*, 2013, **29**, 13666–13675.
- 140 S. Fujii, R. Takahashi and K. Sakurai, *Langmuir*, 2017, **33**, 4019–4027.
- 141 E.-H. Ryu, J. Yan, Z. Zhong and Y. Zhao, J. Org. Chem., 2006, 71, 7205–7213.
- 142 K. Khan, H. Huang and Y.-S. Zheng, *Curr. Org. Chem.*, 2012, 16, 2745–2751.
- 143 K. Khan, S. L. Badshah, N. Ahmad, H. U. Rashid and Y. Mabkhot, *Molecules*, 2017, 22, 783.
- 144 T. Mecca, G. M. Messina, G. Marletta and F. Cunsolo, *Chem. Commun.*, 2013, **49**, 2530–2532.
- 145 E.-H. Ryu and Y. Zhao, Org. Lett., 2004, 6, 3187-3189.
- 146 H. Huang, D.-M. Li, W. Wang, Y.-C. Chen, K. Khan, S. Song and Y.-S. Zheng, *Org. Biomol. Chem.*, 2012, **10**, 729–735.
- 147 H. Matsuoka, M. Tsurumi and N. Ise, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1988, **38**, 6279–6286.
- 148 H.-Y. Tian, Y.-J. Chen, D. Wang, C. C. Zeng and C. J. Li, *Tetrahedron Lett.*, 2000, **41**, 2529–2532.
- 149 S. Avvakumova, P. Fezzardi, L. Pandolfi, M. Colombo, F. Sansone, A. Casnati and D. Prosperi, *Chem. Commun.*, 2014, 50, 11029–11032.
- 150 K. Yoshida, S. Fujii, R. Takahashi, S. Matsumoto and K. Sakurai, *Langmuir*, 2017, **33**, 9122–9128.

- 151 S. Shinkai, H. Koreishi, H. Mori, T. Sone and O. Manabe, *Chem. Lett.*, 1985, 1033–1036.
- 152 L.-T. Zhang, L. A. Godinez, T.-B. Lu, G. W. Gokel and A. E. Kaifer, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 235–237.
- 153 Y.-J. Zhang and W.-X. Cao, New J. Chem., 2001, 25, 483–486.
- 154 I. S. Ryzhkina, Y. V. Kiseleva, L. I. Murtazina, S. E. Solovieva, N. G. Manin and A. I. Konovalov, *Macroheterocycles*, 2017, **10**, 190–195.
- 155 S. Houmadi, D. Coquiere, L. Legrand, M. C. Faure, M. Goldmann, O. Reinaud and S. Remita, *Langmuir*, 2007, 23, 4849–4855.
- 156 N. Micali, V. Villari, G. M. Consoli, F. Cunsolo and C. Geraci, *Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.*, 2006, 73, 051904.
- 157 R. Miyake, S. Fujii, J. H. Lee, R. Takahashi and K. Sakurai, J. Colloid Interface Sci., 2019, 535, 8–15.
- 158 Y. Tokunaga, H. Sakon, H. Kanefusa, Y. Shimomura and K. Suzuki, *ARKIVOC*, 2003, 135–143.
- 159 J. Dauvergne, E. M. Desuzinges, C. Faugier, S. Igonet, M. Soulié, E. Grousson, D. Cornut, F. Bonneté, G. Durand, E. Dejean and A. Jawhari, *ChemistrySelect*, 2019, 4, 5535–5539.
- 160 S. Shinkai, Y. Shirahama, T. Tsubaki and O. Manabe, J. Chem. Soc., Perkin Trans. 1, 1989, 1859–1860.
- 161 J. Zhang, D.-S. Guo, L.-H. Wang, Z. Wang and Y. Liu, Soft Matter, 2011, 7, 1756–1762.
- 162 Z. Wang, D.-S. Guo, J. Zhang and Y. Liu, Acta Chim. Sin., 2012, 70, 1709.
- 163 L. Gallego-Yerga, M. Lomazzi, F. Sansone, C. Ortiz Mellet, A. Casnati and J. M. Garcia Fernandez, *Chem. Commun.*, 2014, **50**, 7440–7443.
- 164 L. Gallego-Yerga, I. Posadas, C. de la Torre, J. Ruiz-Almansa, F. Sansone, C. Ortiz Mellet, A. Casnati, J. M. Garcia Fernandez and V. Cena, *Front. Pharmacol.*, 2017, 8, 249.
- 165 X. Yan, V. Janout, J. T. Hsu and S. L. Regen, J. Am. Chem. Soc., 2003, 125, 8094–8095.
- 166 D. H. McCullough, V. Janout, J. W. Li, J. T. Hsu, Q. Truong, E. Wilusz and S. L. Regen, *J. Am. Chem. Soc.*, 2004, **126**, 9916–9917.
- 167 S. Fujii, K. Nishina, S. Yamada, S. Mochizuki, N. Ohta, A. Takahara and K. Sakurai, *Soft Matter*, 2014, **10**, 8216–8223.
- 168 P. Shahgaldian, A. W. Coleman, S. S. Kuduva and M. J. Zaworotko, *Chem. Commun.*, 2005, 1968–1970.
- 169 J. Bugler, N. A. J. M. Sommerdijk, A. J. W. G. Visser, A. van Hoek, R. J. M. Nolte, J. F. J. Engbersen and D. N. Reinhoudt, *J. Am. Chem. Soc.*, 1999, **121**, 28–33.
- 170 N. Bono, C. Pennetta, A. Sganappa, E. Giupponi, F. Sansone,A. Volonterio and G. Candiani, *Int. J. Pharm.*, 2018, 549, 436–445.
- 171 D. Coquiere, J. Marrot and O. Reinaud, *Org. Lett.*, 2007, 9, 3271–3274.
- 172 A. V. Solovyov, S. O. Cherenok, O. I. Kalchenko, L. I. Atamas, Z. I. Kazantseva, I. A. Koshets, I. F. Tsymbal and V. I. Kalchenko, *J. Mol. Liq.*, 2011, **159**, 117–123.
- 173 R. Bussolati, P. Carrieri, A. Secchi, A. Arduini, A. Credi, M. Semeraro, M. Venturi, S. Silvi, D. Velluto, R. Zappacosta and A. Fontana, *Org. Biomol. Chem.*, 2013, **11**, 5944–5953.

- 174 D. Vollhardt, J. Gloede, G. Weidemann and R. Rudert, Langmuir, 2003, 19, 4228-4234.
- 175 F. Mayer, S. Tiruvadi Krishnan, D. T. Schuhle, S. V. Eliseeva, S. Petoud, E. Toth and K. Djanashvili, Front. Chem., 2018, 6, 1.
- 176 Y. Cakmak, T. Nalbantoglu, T. Durgut and E. U. Akkaya, Tetrahedron Lett., 2014, 55, 538-540.
- 177 O. Kasyan, E. R. Healey, A. Drapailo, M. Zaworotko, S. Cecillon, A. W. Coleman and V. Kalchenko, J. Inclusion Phenom. Macrocyclic Chem., 2006, 58, 127-132.
- 178 N. Moridi, D. Elend, O. Danylyuk, K. Suwinska and P. Shahgaldian, Langmuir, 2011, 27, 9116-9121.
- 179 Z. Xu, S. Jia, W. Wang, Z. Yuan, B. Jan Ravoo and D.-S. Guo, Nat. Chem., 2019, 11, 86-93.
- 180 J. Gao, J. Li, W.-C. Geng, F.-Y. Chen, X.-C. Duan, Z. Zheng, D. Ding and D.-S. Guo, J. Am. Chem. Soc., 2018, 140, 4945-4953.
- 181 J. Gao, Z. Zheng, L. Shi, S.-Q. Wu, H. Sun and D.-S. Guo, Beilstein J. Org. Chem., 2018, 14, 1840-1845.
- 182 Y. Zhao and E.-H. Ryu, J. Org. Chem., 2005, 70, 7585-7591.
- 183 E.-H. Ryu and Y. Zhao, J. Org. Chem., 2006, 71, 9491-9494.
- 184 E.-H. Ryu, H. Cho and Y. Zhao, Org. Lett., 2007, 9, 5147-5150.
- 185 M. Lee, S.-J. Lee and L.-H. Jiang, J. Am. Chem. Soc., 2004, 126, 12724-12725.
- 186 Y.-Y. Xie, L.-F. Mao and L.-H. Li, J. Chem. Res., 2013, 476-479.
- 187 M. Mori, A. Hirayama, H. Tsue and S. Tanaka, Acta Chromatogr., 2007, 19, 73-80.
- 188 L. S. Yakimova, L. H. Gilmanova, V. G. Evtugyn, Y. N. Osin and I. I. Stoikov, J. Nanopart. Res., 2017, 19, 173.
- 189 F. Liu, G.-Y. Lu, W.-J. He, M.-H. Liu and L.-G. Zhu, Thin Solid Films, 2004, 468, 244-249.
- 190 P. Shahgaldian, E. Da Silva and A. W. Coleman, J. Inclusion Phenom. Macrocyclic Chem., 2003, 46, 175-177.
- 191 D. Momekova, D. Budurova, E. Drakalska, S. Shenkov, G. Momekov, B. Trzebicka, N. Lambov, E. Tashev and S. Rangelov, Int. J. Pharm., 2012, 436, 410-417.
- 192 G. Sautrey, I. Clarot, E. Rogalska and J.-B. Regnouf-de-Vains, New J. Chem., 2012, 36, 2060.
- 193 J. Gualbert, P. Shahgaldian and A. W. Coleman, Int. J. Pharm., 2003, 257, 69-73.
- 194 G. M. L. Consoli, G. Granata, E. Galante, I. Di Silvestro, L. Salafia and C. Geraci, Tetrahedron, 2007, 63, 10758-10763.
- 195 J.-H. Yim, J. Kim, D. W. Gidley, R. S. Vallery, H.-G. Peng, D. K. An, B.-K. Choi, Y.-K. Park and J.-K. Jeon, Macromol. Mater. Eng., 2006, 291, 369-376.
- 196 G. Sautrey, I. Clarot, A. B. Salem, E. Rogalska and J.-B. Regnouf de Vains, New J. Chem., 2012, 36, 78-85.
- 197 P. Shahgaldian, A. W. Coleman and V. I. Kalchenko, Tetrahedron Lett., 2001, 42, 577-579.
- 198 V. Bagnacani, V. Franceschi, L. Fantuzzi, A. Casnati, G. Donofrio, F. Sansone and R. Ungaro, Bioconjugate Chem., 2012, 23, 993-1002.
- 199 D. Volkmer, M. Fricke, M. Gleiche and L.-F. Chi, Mater. Sci. Eng., C, 2005, 25, 161-167.

- 200 L. Y. Zakharova, Y. R. Kudryashova, N. M. Selivanova, M. A. Voronin, A. R. Ibragimova, S. E. Solovieva, A. T. Gubaidullin, A. I. Litvinov, I. R. Nizameev, M. K. Kadirov, Y. G. Galyametdinov, I. S. Antipin and A. I. Konovalov, J. Membr. Sci., 2010, 364, 90-101.
- 201 P. Shahgaldian and A. W. Coleman, Langmuir, 2003, 19, 5261-5265.
- 202 O. M. Martin and S. Mecozzi, Supramol. Chem., 2005, 17, 9-15.
- 203 O. M. Martin and S. Mecozzi, Tetrahedron, 2007, 63, 5539-5547.
- 204 A. B. Mirgorodskaya, E. I. Yatskevich, Y. R. Kudryashova, S. E. Solov'eva, I. S. Antipin, L. Y. Zakharova and A. I. Konovalov, Kinet. Catal., 2011, 52, 529-535.
- 205 Y. R. Kudryashova, F. G. Valeeva, L. Y. Zakharova, S. E. Solovieva, I. S. Antipin, A. T. Gubaidullin and A. I. Konovalov, Colloid J., 2012, 74, 67-77.
- 206 B. Korchowiec, A. Ben Salem, Y. Corvis, J. B. R. de Vains, J. Korchowiec and E. Rogalska, J. Phys. Chem. B, 2007, 111, 13231-13242.
- 207 M. Pojarova, G. S. Ananchenko, K. A. Udachin, F. Perret, A. W. Coleman and J. A. Ripmeester, New J. Chem., 2007, 31, 871-878.
- 208 A. Mustafina, L. Zakharova, J. Elistratova, J. Kudryashova, S. Soloveva, A. Garusov, I. Antipin and A. Konovalov, J. Colloid Interface Sci., 2010, 346, 405-413.
- 209 A. V. Ten'kovstev, A. B. Razina and M. M. Dudkina, Polym. Sci., Ser. B, 2014, 56, 274-281.
- 210 D. Volkmer and M. Fricke, Z. Anorg. Allg. Chem., 2003, 629, 2381-2390.
- 211 X. Yu, C.-L. Tu, L. He, R.-B. Wang, G.-M. Sun, D.-Y. Yan and X.-Y. Zhu, J. Macromol. Sci., Part A: Pure Appl. Chem., 2009, 46, 360-367.
- 212 D. Volkmer, M. Fricke, D. Vollhardt and S. Siegel, J. Chem. Soc., Dalton Trans., 2002, 4547.
- 213 P.-F. Gou, W.-P. Zhu and Z.-Q. Shen, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 5643-5651.
- 214 R. Roy and J. M. Kim, Angew. Chem., Int. Ed., 1999, 38, 369-372.
- 215 P. Shahgaldian, M. Cesario, P. Goreloff and A. W. Coleman, Chem. Commun., 2002, 326-327.
- 216 A. Dubes, I. L. Moudrakovski, P. Shahgaldian, A. W. Coleman, C. I. Ratcliffe and J. A. Ripmeester, J. Am. Chem. Soc., 2004, 126, 6236-6237.
- 217 A. Dubes, K. A. Udachin, P. Shahgaldian, A. N. Lazar, A. W. Coleman and J. A. Ripmeester, New J. Chem., 2005, 29, 1141.
- 218 G. S. Ananchenko, M. Pojarova, K. A. Udachin, D. M. Leek, A. W. Coleman and J. A. Ripmeester, Chem. Commun., 2006, 386-388.
- 219 G. S. Ananchenko, K. A. Udachin, M. Pojarova, A. Dubes, J. A. Ripmeester, S. Jebors and A. W. Coleman, Cryst. Growth Des., 2006, 6, 2141-2148.
- 220 D. N. Polovyanenko, E. G. Bagryanskaya, A. Schnegg, K. Mobius, A. W. Coleman, G. S. Ananchenko, K. A. Udachin and J. A. Ripmeester, Phys. Chem. Chem. Phys., 2008, 10, 5299-5307.

- 221 P. Shahgaldian, A. W. Coleman, B. Rather and M. J. Zaworotko, J. Inclusion Phenom. Macrocyclic Chem., 2005, 52, 241–245.
- 222 X.-L. Lou, F. Cheng, P.-F. Cao, Q. Tang, H.-J. Liu and Y. Chen, *Chem. Eur. J.*, 2009, **15**, 11566–11572.
- 223 A. I. Litvinov, F. G. Valeeva, L. Y. Zakharova, S. E. Solovieva, I. S. Antipin and M. K. Kadirov, *Russ. Chem. Bull.*, 2013, 62, 1350–1353.
- 224 L. Li, H.-Y. Zhang and Y. Liu, *Sci. China: Chem.*, 2012, 55, 1092–1096.
- 225 P. Shahgaldian, Eur. J. Pharm. Biopharm., 2003, 55, 107-113.
- 226 P. Shahgaldian, E. Da Silva, A. W. Coleman, B. Rather and M. J. Zaworotko, *Int. J. Pharm.*, 2003, **253**, 23–38.
- L. Zakharova, Y. Kudryashova, A. Ibragimova, E. Vasilieva,
 F. Valeeva, E. Popova, S. Solovieva, I. Antipin, Y. Ganeeva,
 T. Yusupova and A. Konovalov, *Chem. Eng. J.*, 2012,
 185–186, 285–293.
- 228 N. Maulucci, F. De Riccardis, C. B. Botta, A. Casapullo, E. Cressina, M. Fregonese, P. Tecilla and I. Izzo, *Chem. Commun.*, 2005, 1354–1356.
- 229 G. M. L. Consoli, G. Granata, R. Lo Nigro, G. Malandrino and C. Geraci, *Langmuir*, 2008, 24, 6194–6200.
- 230 M. Mourer, R. E. Duval, P. Constant, M. Daffe and J.-B. Regnouf-de-Vains, *ChemBioChem*, 2019, **20**, 911–921.
- 231 X. Guo, L. Zhang, G.-Y. Lu, M.-F. Yin, F. Liu and M.-H. Liu, *Chin. Chem. Lett.*, 2005, **16**, 1543–1546.
- 232 L. Yakimova, P. Padnya, D. Tereshina, A. Kunafina,
 A. Nugmanova, Y. Osin, V. Evtugyn and I. Stoikov, *J. Mol. Liq.*, 2019, 279, 9–17.
- 233 O. M. Martin, L. Yu and S. Mecozzi, *Chem. Commun.*, 2005, 4964–4966.
- 234 Z.-S. Wang, G.-Y. Lu, X. Guo and H.-M. Wu, *Supramol. Chem.*, 2003, **15**, 327–334.
- 235 E. A. Andreyko, P. L. Padnya and I. I. Stoikov, *Colloids Surf., A*, 2014, **454**, 74–83.
- 236 E. A. Andreyko, P. L. Padnya and I. I. Stoikov, *J. Phys. Org. Chem.*, 2015, **28**, 527–535.
- 237 E. A. Andreyko, P. L. Padnya, R. R. Daminova and I. I. Stoikov, *RSC Adv.*, 2014, 4, 3556–3565.
- 238 F. Liu, Y.-H. Wang and G.-Y. Lu, *Chem. Lett.*, 2005, 34, 1450–1451.
- 239 A. R. Esker, L.-H. Zhang, C. E. Olsen, K. No and H. Yu, *Langmuir*, 1999, **15**, 1716–1724.
- 240 L. H. Zhang, A. R. Esker, K. No and H. Yu, *Langmuir*, 1999, 15, 1725–1730.
- 241 X. Guo, G.-Y. Lu and Y. Li, *Thin Solid Films*, 2004, 460, 264–268.
- 242 B. Guan, M. Jiang, X.-G. Yang, Q. Liang and Y.-Y. Chen, *Soft Matter*, 2008, **4**, 1393.
- 243 S. Jebors, G. S. Ananchenko, A. W. Coleman and J. A. Ripmeester, *Tetrahedron Lett.*, 2007, **48**, 5503–5506.
- 244 S. Jebors, F. Fache, S. Balme, F. Devoge, M. Monachino,S. Cecillon and A. W. Coleman, *Org. Biomol. Chem.*, 2008, 6, 319–329.
- 245 F. A. Loiseau, A. M. Hill and K. K. Hii, *Tetrahedron*, 2007, **63**, 9947–9959.

- 246 S. Jebors, B. Lesniewska, O. Shkurenko, K. Suwinska and A. W. Coleman, J. Inclusion Phenom. Macrocyclic Chem., 2010, 68, 207–217.
- 247 P. L. Padnya, E. A. Andreyko, O. A. Mostovaya, I. K. Rizvanov and I. I. Stoikov, *Org. Biomol. Chem.*, 2015, **13**, 5894–5904.
- 248 D. Volkmer, M. Fricke, C. Agena and J. Mattay, *J. Mater. Chem.*, 2004, **14**, 2249.
- 249 C. Tu, G. Li, Y. Shi, X. Yu, Y. Jiang, Q. Zhu, J. Liang, Y. Gao, D. Yan, J. Sun and X. Zhu, *Chem. Commun.*, 2009, 3211–3213.
- 250 L. S. Yakimova, P. L. Padnya, A. F. Kunafina, A. R. Nugmanova and I. I. Stoikov, *Mendeleev Commun.*, 2019, **29**, 86–88.
- 251 G. Gattuso, A. Notti, A. Pappalardo, S. Pappalardo, M. F. Parisi and F. Puntoriero, *Tetrahedron Lett.*, 2013, 54, 188–191.
- 252 G. Gattuso, A. Notti, S. Pappalardo, M. F. Parisi, I. Pisagatti and S. Patanè, *New J. Chem.*, 2014, **38**, 5983–5990.
- 253 G. Arena, A. Pappalardo, S. Pappalardo, G. Gattuso, A. Notti, M. F. Parisi, I. Pisagatti and C. Sgarlata, *J. Therm. Anal. Calorim.*, 2015, **121**, 1073–1079.
- 254 L. Barbera, G. Gattuso, F. H. Kohnke, A. Notti, S. Pappalardo, M. F. Parisi, I. Pisagatti, S. Patane, N. Micali and V. Villari, *Org. Biomol. Chem.*, 2015, 13, 6468–6473.
- 255 W.-P. Zhu, J. Ling and Z.-Q. Shen, *Macromol. Chem. Phys.*, 2006, **207**, 844–849.
- 256 A. V. Ten'kovtsev and A. B. Razina, *Russ. J. Appl. Chem.*, 2009, **82**, 1615–1619.
- 257 I. Pisagatti, L. Barbera, G. Gattuso, S. Patanè, M. F. Parisi and A. Notti, *Supramol. Chem.*, 2018, **30**, 658–663.
- 258 A. V. Tenkovtsev, M. M. Dudkina, L. I. Scherbinskaya, V. Aseyev and H. Tenhu, *Polymer*, 2010, **51**, 3108–3115.
- 259 Z.-M. Zhao, Y. Wang, J. Han, H.-D. Zhu and L. An, *Chem. Pharm. Bull.*, 2015, **63**, 180–186.
- 260 G. de Miguel, M. T. Martin-Romero, J. M. Pedrosa, E. Munoz, M. Perez-Morales, T. H. Richardson and L. Camacho, *Phys. Chem. Chem. Phys.*, 2008, **10**, 1569–1576.
- 261 G. de Miguel, M. T. Martin-Romero, M. Perez-Morales, E. Munoz and L. Camacho, *J. Porphyrins Phthalocyanines*, 2009, **13**, 597–605.
- 262 S. Jebors, A. Leydier, Q. Wu, B. Bertino Ghera, M. Malbouyre and A. W. Coleman, *J. Microencapsulation*, 2010, 27, 561–571.
- 263 A. M. Gonzalez-Delgado, J. J. Giner-Casares, G. Brezesinski,
 J. B. Regnouf-de-Vains and L. Camacho, *Langmuir*, 2012,
 28, 12114–12121.
- 264 U. Darbost, M. Giorgi, N. Hucher, I. Jabin and O. Reinaud, *Supramol. Chem.*, 2005, **17**, 243–250.
- 265 Z. Rafiee, A. Kakanejadifard, R. Hosseinzadeh, M. Nemati and M. Adeli, *RSC Adv.*, 2016, **6**, 17470–17473.
- 266 V. A. Burilov, D. A. Mironova, R. R. Ibragimova, R. I. Nugmanov, S. E. Solovieva and I. S. Antipin, *Colloids Surf.*, A, 2017, 515, 41–49.
- 267 R. R. Ibragimova, V. A. Burilov, A. R. Aimetdinov, D. A. Mironova, V. G. Evtugyn, Y. N. Osin, S. E. Solovieva and I. S. Antipin, *Macroheterocycles*, 2016, 9, 433–441.
- 268 V. Burilov, A. Valiyakhmetova, D. Mironova, E. Sultanova, V. Evtugyn, Y. Osin, S. Katsyuba, T. Burganov, S. Solovieva and I. Antipin, *New J. Chem.*, 2018, **42**, 2942–2951.

- Review
- 269 V. A. Burilov, R. I. Nugmanov, R. R. Ibragimova, S. E. Solovieva and I. S. Antipin, *Mendeleev Commun.*, 2015, **25**, 177–179.
- 270 A. A. Vavilova, V. V. Gorbachuk, D. N. Shurpik, A. V. Gerasimov,
 L. S. Yakimova, P. L. Padnya and I. I. Stoikov, *J. Mol. Liq.*, 2019,
 281, 243–251.
- 271 V. A. Burilov, R. R. Ibragimova, B. H. Gafiatullin, R. I. Nugmanov, S. E. Solovieva and I. S. Antipin, *Macroheterocycles*, 2017, **10**, 215–220.
- 272 V. A. Burilov, D. A. Mironova, R. R. Ibragimova, S. E. Solovieva,B. König and I. S. Antipin, *RSC Adv.*, 2015, 5, 101177.
- 273 Q. Liang, G.-S. Chen, B. Guan and M. Jiang, J. Mater. Chem., 2011, 21, 13262.
- 274 S. Aleandri, A. Casnati, L. Fantuzzi, G. Mancini, G. Rispoli and F. Sansone, *Org. Biomol. Chem.*, 2013, **11**, 4811–4817.
- 275 B. Guan, Q. Liang, Y. Zhu, M.-H. Qiao, J. Zou and M. Jiang, J. Mater. Chem., 2009, 19, 7610–7613.
- 276 Q. Liang, B. Guan and M. Jiang, J. Mater. Chem., 2010, 20, 8236.
- 277 Q. Liang, C. Li, G. Chen and M. Jiang, J. Colloid Interface Sci., 2012, 383, 82–88.
- 278 D. T. Schuhle, J. Schatz, S. Laurent, L. Vander Elst, R. N. Muller, M. C. Stuart and J. A. Peters, *Chem. Eur. J.*, 2009, 15, 3290–3296.
- 279 J. W. Steed, D. R. Turner and K. J. Wallace, *Core concepts in supramolecular chemistry and nanochemistry*, Wiley, Chichester, West Succex, England, 2007.
- 280 C. Lau, R. Bitton, H. Bianco-Peled, D. G. Schultz, D. J. Cookson, S. T. Grosser and J. W. Schneider, *J. Phys. Chem. B*, 2006, **110**, 9027–9033.
- 281 M. Miyake, K. Yamada and N. Oyama, *Langmuir*, 2008, 24, 8527.
- 282 J. N. Israelachvli, D. J. Mitchell and B. W. Ninham, *J. Chem. Soc., Faraday Trans.* 2, 1976, **72**, 1525–1568.
- 283 Q. Liang, B. Guan and M. Jiang, Prog. Chem., 2010, 22, 388-399.
- 284 H.-T. Cui, Y.-M. Feng, W.-Z. Ren, T. Zeng, H.-Y. Lv and Y.-F. Pan, *Recent Pat. Nanotechnol.*, 2009, **3**, 32–41.
- 285 N.-M. Hwang, J.-S. Jung and D.-K. Lee, *Thermodynamics Fundamentals and its application in science*, InTech, Rijeka, Croatia, 2012.
- 286 E. Mattia and S. Otto, Nat. Nanotechnol., 2015, 10, 111–119.
- 287 C. Wang, Z.-Q. Wang and X. Zhang, Acc. Chem. Res., 2012, 45, 608–618.
- 288 Y. Kang, K. Liu and X. Zhang, *Langmuir*, 2014, 30, 5989–6001.
- 289 P. Xing, T. Sun and A. Hao, *RSC Adv.*, 2013, 3, 24776–24793.
- 290 C. Wang, Z. Wang and X. Zhang, *Small*, 2011, 7, 1379–1383.
- 291 Y. Kang, X. Tang, Z. Cai and X. Zhang, Adv. Funct. Mater., 2016, 26, 8920–8931.
- 292 X. Zhang, *Supramolecular amphiphiles*, The Royal Society of Chemistry, London, UK, 2017.
- 293 O. Varga, M. Kubinyi, T. Vidóczy, P. Baranyai, I. Bitter and M. Kállay, J. Photochem. Photobiol., A, 2009, 207, 167–172.
- 294 V. Francisco, N. Basilio, L. Garcia-Rio, J. R. Leis, E. F. Maques and C. Vazquez-Vazquez, *Chem. Commun.*, 2010, 46, 6551–6553.

- 295 V. Lau and B. Heyne, Chem. Commun., 2010, 46, 3595-3597.
- 296 M. Megyesi and L. Biczok, J. Phys. Chem. B, 2010, 114, 2814–2819.
- 297 K. Wang, D.-S. Guo, X. Wang and Y. Liu, *ACS Nano*, 2011, 5, 2880–2894.
- 298 D.-S. Guo, B.-P. Jiang, X. Wang and Y. Liu, *Org. Biomol. Chem.*, 2012, **10**, 720–723.
- 299 D.-S. Guo, K. Wang, Y.-X. Wang and Y. Liu, J. Am. Chem. Soc., 2012, 134, 10244–10250.
- 300 Z.-Q. Li, C.-X. Hu, Y.-Q. Cheng, H. Xu, X.-L. Cao, X.-W. Song, H.-Y. Zhang and Y. Liu, *Sci. China: Chem.*, 2012, 55, 2063–2068.
- 301 N. Basilio, A. Pineiro, J. P. Da Silva and L. Garcia-Rio, J. Org. Chem., 2013, 78, 9113–9119.
- 302 Y. Cao, Y.-X. Wang, D.-S. Guo and Y. Liu, *Sci. China: Chem.*, 2013, 57, 371–378.
- 303 B.-P. Jiang, D.-S. Guo, Y.-C. Liu, K.-P. Wang and Y. Liu, ACS Nano, 2014, 8, 1609–1618.
- 304 Z.-B. Qin, D.-S. Guo, X.-N. Gao and Y. Liu, *Soft Matter*, 2014, 10, 2253–2263.
- 305 C. Costa, V. Francisco, S. G. Silva, M. L. C. do Vale,
 L. García-Río and E. F. Marques, *Colloids Surf.*, A, 2015,
 480, 71–78.
- 306 Y.-X. Wang, Y.-M. Zhang and Y. Liu, J. Am. Chem. Soc., 2015, 137, 4543-4549.
- 307 J. G. Harangozo, V. Wintgens, Z. Miskolczy, J. M. Guigner, C. Amiel and L. Biczok, *Langmuir*, 2016, 32, 10651–10658.
- 308 Y.-C. Liu, Y.-Y. Wang, H.-W. Tian, Y. Liu and D.-S. Guo, Org. Chem. Front., 2016, 3, 53-61.
- 309 D.-S. Guo, K. Chen, H.-Q. Zhang and Y. Liu, *Chem. Asian J.*, 2009, 4, 436–445.
- 310 K. Wang, D.-S. Guo and Y. Liu, *Chem. Eur. J.*, 2010, **16**, 8006-8011.
- 311 N. Basilio and L. Garcia-Rio, Chem. Eur. J., 2009, 15, 9315-9319.
- 312 N. Basilio, M. Martin-Pastor and L. Garcia-Rio, *Langmuir*, 2012, **28**, 6561–6568.
- 313 N. Basilio, B. Gomez, L. Garcia-Rio and V. Francisco, *Chem. Eur. J.*, 2013, **19**, 4570–4576.
- 314 N. Basilio, D. A. Spudeit, J. Bastos, L. Scorsin, H. D. Fiedler, F. Nome and L. Garcia-Rio, *Phys. Chem. Chem. Phys.*, 2015, 17, 26378–26385.
- 315 N. Basilio, B. Gomez and L. Garcia-Rio, *Langmuir*, 2017, 33, 13008–13013.
- 316 C. Bize, J. C. Garrigues, M. Blanzat, I. Rico-Lattes, O. Bistri,
 B. Colasson and O. Reinaud, *Chem. Commun.*, 2010, 46, 586–588.
- 317 V. Wintgens, C. Le Coeur, C. Amiel, J. M. Guigner, J. G. Harangozo, Z. Miskolczy and L. Biczok, *Langmuir*, 2013, 29, 7682–7688.
- 318 V. Wintgens, Z. Miskolczy, J. M. Guigner, C. Amiel, J. G. Harangozo and L. Biczok, *Langmuir*, 2015, **31**, 6655–6662.
- 319 V. Wintgens, J. G. Harangozo, Z. Miskolczy, J. M. Guigner,
 C. Amiel and L. Biczok, *Langmuir*, 2017, 33, 8052–8061.
- 320 X. Yao, X. Wang, T. Jiang, X. Ma and H. Tian, *Langmuir*, 2015, **31**, 13647–13654.

- 321 L. Di Costanzo, S. Geremia, L. Randaccio, R. Purrello, R. Lauceri, D. Sciotto, F. G. Gulino and V. Pavone, *Angew. Chem., Int. Ed.*, 2001, 40, 4245–4247.
- 322 H. Huang, D.-M. Li, W. Wang, Y.-C. Chen, K. Khan, S. Song and Y.-S. Zheng, Org. Biomol. Chem., 2012, 10, 729–735.
- 323 D.-S. Guo and Y. Liu, Acc. Chem. Res., 2014, 47, 1925–1934.
- 324 I. S. Ryzhkina, Y. V. Kiseleva, L. I. Murtazina, Y. N. Valitova,
 S. E. Solov'eva, L. M. Pilishkina and A. I. Konovalov, *Russ. Chem. Bull.*, 2010, 59, 1327–1335.
- 325 C.-L. Tu, L.-J. Zhu, P.-P. Li, Y. Chen, Y. Su, D.-Y. Yan, X.-Y. Zhu and G.-Y. Zhou, *Chem. Commun.*, 2011, 47, 6063–6065.

- 326 B. C. M. A. Ashwin, C. Saravanan, M. Senthilkumaran, R. Sumathi, P. Suresh and P. M. Mareeswaran, *Supramol. Chem.*, 2017, **30**, 32–41.
- R. V. Rodik, A. S. Klymchenko, N. Jain, S. I. Miroshnichenko,
 L. Richert, V. I. Kalchenko and Y. Mely, *Chem. Eur. J.*, 2011, 17, 5526–5538.
- 328 S. Peng, K. Wang, D.-S. Guo and Y. Liu, *Soft Matter*, 2015, **11**, 290–296.
- 329 J. G. Harangozó, V. Wintgens, Z. Miskolczy, C. Amiel and L. Biczók, *Colloid Polym. Sci.*, 2016, **294**, 1807–1814.
- 330 K. Wang, D.-S. Guo, M.-Y. Zhao and Y. Liu, *Chem. Eur. J.*, 2016, 22, 1475–1483.
- 331 S. Peng, J. Gao, Y. Liu and D.-S. Guo, *Chem. Commun.*, 2015, **51**, 16557–16560.