A computational study of the reactivity of rare-earth/phosphorus Lewis pairs toward polymerization of conjugated polar alkenes

Yanan Zhao, Gen Luo, Xin Xu, Zhaomin Hou, and Yi Luo

The polymerization mechanism of methyl methacrylate (MMA) catalyzed by rare-earth/phosphorus (RE/P) Lewis pairs has been systematically studied through density functional theory (DFT) calculations. Having achieved an agreement between theory and experiment, it is found that the polymerization of MMA mediated by intermolecular RE/P Lewis pairs mainly follows the bimetallic mechanism, while the monometallic pathway could not be excluded in the case of a La analogue. In comparison with phenyl phosphorus as a Lewis base, the higher activity of cyclohexyl phosphorus toward MMA polymerization could be ascribed to the electron-donation ability, rendering more electron flow in the addition reaction. Besides, a computational modelling of analogous intramolecular RE/P systems indicates that the size of the central metal and the length of the chain connecting Lewis pairs play an important role in the catalytic activity.

Introduction

Polymers derived from conjugated polar monomers have attracted much attention because an unsaturated bond and a polar functional group remain in the polymer chain and thus are capable of meeting specific applications or undergoing further functionalization. Besides the radical and anionic polymerization methods,\(^1,2\) the catalytic coordination insertion\(^3\) and conjugate addition such as group-transfer polymerization (GTP)\(^4\) and Lewis pair polymerization (LPP)\(^5\) are also useful for the synthesis of such polymers. The former is usually problematic in controllability, and transition-metal catalyzed coordination insertion is known to suffer from poisoning by the functional group.\(^3\) In the context of conjugate addition polymerization, LPP has attracted recent interest, thanks to the cooperation between the Lewis acid and base in chain initiation, propagation, and termination. In view of the cooperative behavior in LPP, the polymerization activity could be regulated by both the Lewis acid and Lewis base and thus showed rich chemistry, as demonstrated by previous works.\(^6\) Since the first LPP work reported by Chen and coworkers in 2010,\(^5\) significant progress has been made in this field.\(^5b-h\) In Chen’s primary work, Al(C\(_6\)F\(_5\))\(_3\)-based Lewis pairs were demonstrated to catalyze the polymerization of conjugated polar alkenes and a high molecular weight polymerization product was obtained. Hong\(^7\) and Zhang\(^6,8\) reported a series of main-group FLP catalysts for the polymerization of a wide range of conjugated polar monomers, some of which showed living and controllable features. In spite of group 4 metal involved ion-pair polymerization,\(^9\) transition-metal containing LPP is not well established.\(^10,11\) Therefore, a highly active transition-metal containing LPP system is still a worthy challenge, which could be improved by modulation of Lewis acids and bases.

It is known that rare-earth metal complexes were reported not only to mediate the synthesis of small molecules\(^12,13b\) but also catalyze the polymerizations of non-polar or polar olefins.\(^11\) To regulate the acidity of Lewis acids in LPP, Xu \textit{et al.} developed intramolecular and intermolecular rare-earth/phosphorus (RE/P) Lewis pairs (Chart 1) for polymerizing conjugated polar monomers such as methyl methacrylate (MMA).\(^14\) Their works demonstrated that the polymerization activity is significantly affected by rare-earth metals and Lewis bases. The authors observed that La complex 3 showed higher activity...
than Sc analogue 2 and Lewis base PCy₃ exhibited higher activity compared with PPh₃. However, the origin of such activity discrepancy remained unclear.

A few theoretical mechanistic works on the mechanism of MMA polymerization by main-group FLPs have been documented.⁵⁻⁷ Chen and Cavallo at al. reported the calculations on the formation of the zwitterionic active species in LPP of MMA and found that NHC-based zwitterions were more stable compared with PR₃-based analogues and the MMA addition favorably followed the bimetallic pathway.⁵ They also conducted mechanistic studies on the chain propagation and termination of LPP of conjugated polar monomers catalyzed by Al-based FLPs and found that intramolecular backbiting cyclization might account for the chain-termination,¹⁶ being in line with separate works by Lu et al.¹⁸ Taton and coworkers computationally demonstrated a cooperative mechanism in MMA polymerization catalyzed by a PR₃/Me₃SiNTf₂ Lewis pair.¹⁷ In spite of these mechanistic studies on the main-group LPP, the theoretical study of such 1,4-conjugate addition polymerization catalyzed by RE/P Lewis pairs, to the best of our knowledge, has not been reported to date.

Stimulated by our previous theoretical works on rare-earth metal catalyzed polymerizations,¹⁹ we are interested in the molecular-level factors governing the polymerization activity observed in the RE/P systems, with the purpose of elucidating the related reaction mechanism. It is generally considered that, in the LPP, stronger acidity of the Lewis acid could induce higher activity. Our primary calculation based on the HSAB (hard and soft acids bases) principle and DFT indicates that 2 has higher chemical hardness and thus stronger Lewis acidity in comparison with 3 (0.20 vs. 0.16 eV).¹⁹⁻²⁰ However, as aforementioned, the activity of 3 is higher than that of 2,¹⁴b which drove us to explore the origin of such activity discrepancy. In the present work, DFT calculations have been conducted for the intramolecular and intermolecular RE/P Lewis pairs (Chart 1) toward the polymerization of MMA, which is a commercially important and scientifically interesting commodity acrylic monomer. On the basis of the clarification of the related polymerization mechanism, the origin of different activity between Sc and La analogues and the effects of different Lewis bases have been elucidated, which could provide a piece of information for the development of LPP systems.

Results and discussion
Polymerization mechanism
It is generally considered that FLP (frustrated Lewis pair) mediated polymerization of conjugated polar alkenes follows Michael addition to grow a polymer chain rather than coordination insertion or single electron transfer.¹⁵,¹⁶ In the case of intramolecular Lewis pairs such as 1⁺ (Chart 1), as shown in Fig. 1, the reaction starts with the coordination of monomer MMA and then 1,4-addition (1ₐ₊→1ₐTS→1ₐ) could occur to provide 1a with a newly formed P-C bond. While the incoming monomer approaches the metal center of the active species 1a, the 1,4-addition reaction repeatedly takes place to form C–C bonds and the polymerization could smoothly occur. Such a C–C formation process has a moderate energy barrier (19.6 kcal mol⁻¹) and is exergonic (Fig. 1), suggesting a feasible polymerization event.

In the case of the intermolecular RE/P Lewis pair (Chart 1), the monometallic and bimetallic mechanisms have been considered, respectively. As shown in Fig. 2, starting with 2C, the energy barrier for the monometallic mechanism (2TS⁻ deₐ, 34.9 kcal mol⁻¹, see Fig. S2 in the ESI† for the complete monometallic pathway) is significantly higher than that for the bimetallic pathway (2TS⁺ deₐ, 20.2 kcal mol⁻¹), showing a preference for the bimetallic reaction manner. Although the enchainment of the second MMA is slightly endergonic (conversion of 2C to 2F), the addition of the third MMA is exergonic (2F to 2H), suggesting an energetically favorable enchainment process.

To obtain better understanding of the priority of the bimetallic mechanism, the distortion/interaction analyses have been comparatively performed for the key transition states 2TS⁻ deₐ and 2TS⁺ deₐ. During such analyses, the energies of the monomer moiety and the remaining metal complex (two fragments) in the TS geometries were evaluated via single-point calculations. Such single-point energies of the fragments and the energy of the TS were used to estimate the interaction
energy ΔE_{int}. These energies, together with the energies of the respective fragments in their optimal geometry, allow for the estimation of the deformation energies of the two fragments, $\Delta E_{\text{def(cat.)}}$ and $\Delta E_{\text{def(mono.)}}$. As the energy of the TS, ΔE_{TS}, is evaluated with respect to the energy of the two separated fragments, the relation $\Delta E_{\text{TS}} = \Delta E_{\text{int}} + \Delta E_{\text{def(cat.)}} + \Delta E_{\text{def(mono.)}}$ holds. As shown in Fig. 3, the total deformation energy ΔE_{def} in 2TS_{DE} is 60.7 (12.8 + 47.9) kcal mol$^{-1}$, which could be hardly balanced out by its ΔE_{int} (-12.3 kcal mol$^{-1}$), leading to high ΔE_{TS} of 48.4 kcal mol$^{-1}$. However, the ΔE_{def} in 2TS_{DE} (31.9 kcal mol$^{-1}$) is compensated by an interaction energy of -9.2 kcal mol$^{-1}$, leading to $\Delta E_{\text{TS}} = 22.7$ kcal mol$^{-1}$, which is lower than that for 2TS_{DE}. As a consequence, the less steric hindrance inducing smaller deformations of the metal complexes could account for the higher stability of 2TS_{DE}. A comparison of the structures of the two transition states indicates that the C1–C2 distance in 2TS_{DE} is obviously shorter than that in 2TS_{DE} (2.09 vs. 2.17 Å, Fig. 3), suggesting a more crowded environment at the reaction center in 2TS_{DE}. This is also consistent with the greater deformations in the 2TS_{DE} case.

Metal effect on catalyst activity

It was reported that different metal centers led to a significant activity difference in the intermolecular FLP system.14b This drove us to computationally compare the MMA addition mediated by an analogous complex such as 3 (La complex) with the same ligand as that in 2 (Sc complex, Chart 1). Like the 2/PET$_3$ system, it is also found that, in the case of 3/PET$_3$,

Fig. 1 Computed energy profiles (M06(SMD)/6-311G**(n SDD)//B3PW91/6-31G**(n SDD)), see the ESI† for more details for 1$^+$ mediated polymerization of MMA (intramolecular RE/P systems). Free energies (kcal mol$^{-1}$) are relative to isolated reactants.

Fig. 2 Computed energy profiles for 2/PET$_3$ mediated (intermolecular RE/P systems) bimetallic enchainment of MMA. Free energies (kcal mol$^{-1}$) are relative to isolated reactants.
the bimetallic mechanism is both kinetically and thermodynamically more favorable than the monometallic pathway (Fig. 4 and S3†). However, the overall energy barrier of the monometallic pathway is 16.1 kcal mol\(^{-1}\), which is not totally insurmountable under experimental conditions (room temperature). Besides, the monometal-mediated insertion process of MMA tends to be exergonic in chain propagation (3f \(\rightarrow\) 3i, Fig. S3†). In view of this and the limited catalyst concentration, the monometallic mechanisms could not be excluded in the 3/PEt\(_3\) system. However, in the case of 2, the calculated energy barrier for the monometallic mechanism is too high (34.9 kcal mol\(^{-1}\)) to be overcome under the experimental conditions. Therefore, only the bimetallic mechanism works in the 2 involved system. On the other hand, in the favorable bimetallic pathway, the overall energy barrier in the 3 catalyzed system is significantly lower than that in the 2 mediated reaction (10.9 vs. 20.2 kcal mol\(^{-1}\), Fig. 4 and 2). This is in line with the experimentally observed higher activity of 3 compared with 2.\(^{1,4b}\)

To gain deeper insights into this activity difference between 2 and 3 in the bimetal mediated chain propagations, the
similar distortion/interaction analyses21 of the two C–C bond forming transition states (2TS\(_{DE}\) and 3TS\(_{DE}\), Fig. 2 and 4) were performed. As shown in Fig. 5, although the interaction between the two fragments in 3TS\(_{DE}\) is weaker than that in 2TS\(_{DE}\) (−8.7 vs. −9.2 kcal mol\(^{-1}\)), the total deformation energy of the former (13.0 + 6.2 = 19.2 kcal mol\(^{-1}\)) is significantly smaller than that of the latter (19.1 + 12.8 = 31.9 kcal mol\(^{-1}\)), which compensates for the less negative interaction energy in 3TS\(_{DE}\), and eventually makes this TS more stable (free energy barrier of 5.9 vs. 20.2 kcal mol\(^{-1}\)). These results suggest that the steric factor (geometrical deformation) accounts for the lower stability of 2TS\(_{DE}\). In order to compare the steric factors around the metal center in 2 and 3, the topographic steric maps were generated using the SambVca 2.0 web tool22. When submitting an optimized structure on the web page of SambVca 2.0 and selecting the center site, the buried volume can be therefore calculated, simultaneously generating a topographic steric map. As expected, 3 had a lower percentage of buried volume in total (% V\(_{Bur}\), 52.0 vs. 61.5, Fig. 5b) because of the larger radius of La; thus the relatively open environment in 3 could account for its higher activity. On the other hand, the torsion angle difference \(\Delta \angle C1C2C3P = 22.4^\circ\) and \(\Delta \angle O5C6C5C4 = 14.2^\circ\) in 2TS\(_{DE}\) is significantly larger than those in 3TS\(_{DE}\) (\(\Delta \angle C1C2C3P = 7.4^\circ\) and \(\Delta \angle O5C6C5C4 = 2.1^\circ\), Fig. S4†). Such a greater geometrical deformation in 2TS\(_{DE}\) is also in line with the result of interaction/distortion analysis, resulting in a higher energy barrier and thus lower activity of the Sc complex.

Lewis base effect on polymerization activity

An experimental observation was noted that changing the substituents on the P atom in the Lewis base can also alter polymerization activities14b. For instance, the replacement of PEt\(_3\) with triphenylphosphine (PPh\(_3\)) noticeably decreased the activity. To understand the origin of such substituent effects, the energy profiles for MMA polymerization initiated by 2 and different bases R\(_3\)P (R = Cy and Ph) were calculated. Following the bimetallic mechanism, the effect of the Lewis base on the polymerization activity is mainly reflected in the chain initiation step; thus only the chain initiation process is considered here.

The computational results indicate that PCy\(_3\) as the Lewis base induced a lower energy barrier in comparison with PPh\(_3\) (Fig. 6). In addition, PCy\(_3\) involved zwitterionic species beyond
the C–P bond formation transition state is more stable than the case of PPh₃ (PCy₃: −5.3 kcal mol⁻¹ vs. PPh₃: 1.8 kcal mol⁻¹). This result is in agreement with the activity trend experimentally observed. However, it remains a challenge to provide a chemically meaningful explanation for the origin of such a discrepancy in the activity. To obtain a piece of information on such differences, similar distortion/interaction analyses were performed for the key transition states TS₂₂Cy and TS₂₂Ph.

As shown in Fig. 7a, the two fragments (2C and 2A) are highlighted in black and green, respectively. The activation energy of each transition state (ΔEₜₛₜ) is decomposed into the distortion energy (ΔEₜₜ) and the interaction energy (ΔEₜₛ) between the two reactive fragments and the interaction energy (ΔEₜₜ) of the two reactive fragments in the deformed two fragments. In TS₂₂Ph, the total distortion energy ΔEₜₜ is 54.6 kcal mol⁻¹, which could be partially balanced out by its ΔEₜₜ (−6.9 kcal mol⁻¹) resulting in a ΔEₜₛₜ of 47.7 (54.6–6.9 = 47.7) kcal mol⁻¹. However, the total distortion energy (ΔEₜₜ = 55.9 kcal mol⁻¹) in TS₂₂Cy can be largely compensated by an interaction energy of −9.2 kcal mol⁻¹, thus giving a lower ΔEₜₛₜ (46.7 kcal mol⁻¹). The distortion/interaction model analysis indicates that higher interaction energy could account for the stability of TS₂₂Cy in comparison with TS₂₂Ph. To have a better understanding of such an interaction accounting for the relative stability of these two transition states, the ETS-NOCV (extended transition state and natural orbitals for chemical valence) calculations were performed by using the Amsterdam density functional (ADF) package to dissect the interaction energy (Fig. 7b). The interaction energy (ΔEₜₜ) between the deformed 2A and 2Cₘ can be further dissected into Pauli repulsion (ΔEₚₚₜ), electrostatic interactions (ΔEₚₑₜₚₑ), orbital interactions (ΔEₚₚₑₚₑ), and dispersion interactions (ΔEₚₚₑₚₑ) (see computational methods in the ESI). Of these interactions, the electrostatic (ΔEₚₑₜₚₑ), orbital (ΔEₚₚₑₚₑ), and dispersion (ΔEₚₚₑₚₑ) interactions are the stabilizing factors, while the Pauli repulsion (ΔEₚₚₑₚₑ) is the destabilizing factor. As shown in Fig. 7b, although the TS₂₂Cy is disfavored by Pauli repulsion compared with TS₂₂Ph (ΔEₚₚₑₚₑ = 112.3−98.9 = +13.4 kcal mol⁻¹), it has stronger attractive orbital interactions (ΔEₚₚₑₚₑ = −7.9 kcal mol⁻¹) and electrostatic interaction (ΔEₚₑₜₚₑ = −7.3 kcal mol⁻¹) between the 2A and 2C moieties. These results indicate that the electronic properties of the Lewis base (PPh₃ and PCy₃) can alter the electron-density of the C=C bond in the 2Cₘ and 2Ph, as also suggested by the CHelpG atomic charge charges from the electrostatic potential using a grid-based method. As shown in Fig. 8a, the unsigned values of charge on C1 and C3 in 2Cₘ and 2Ph, are smaller than those in 2Cₘ, suggesting an inductive effect of the Ph groups in 2Cₘ. This could account for the lower reactivity of PPh₃ as a Lewis base because of the lower electron density on C1 atoms in comparison with PCy₃ (−0.19 vs. −0.45), rendering more electron flow during the 1,4-addition in the case of PCy₃. On the other hand, to gain a deeper understanding of the orbital inter-

Fig. 7 (a) Distortion/interaction model (kcal mol⁻¹) and (b) energy decomposition analysis of TS₂₂cy and TS₂₂Ph. ΔG² and ΔEₜₛₜ is calculated at the level of B3PW91/6-31G(d) in the Gaussian 16 program. ΔEₜₛₜ is dissected into chemically meaningful terms according to the ETS-NOCV calculations at the level of B3LYP-D3/DZP in the Amsterdam density functional (ADF) package.
action, orbital analysis based on the NOCV approach was performed, which could give useful information about the reorganization of the electronic density in the transition states through the electronic deformation density. Fig. 8b shows the leading electronic deformation densities and the corresponding energies for TS_2Cy and TS_2Ph. It is indicated that the $\Delta E_{\text{orbital}}$ energy of TS_2Cy (-47.8 kcal mol$^{-1}$) is more negative than that of TS_2Ph (-40.2 kcal mol$^{-1}$). The charge flow from 2CCy (red region) to 2A (blue region) in TS_2Cy is also more evident than that in TS_2Ph. Therefore, different Lewis bases could influence the electronic population in the intermediate such as 2C and further affect the stability of the addition reaction transition state. In order to further explore the regulation effect of the Lewis base, the hydroxyl (electron-donating group) substituted phenyls have been modelled (Fig. 8a). As expected, the calculated CHelpG charge on C1 changed from -0.19 to -0.32 and the addition reaction energy barrier reduced from 30.8 to 26.5 kcal mol$^{-1}$.
Conclusions

In summary, the origin of activity difference in the polymerization of methyl methacrylate (MMA) catalyzed by various rare-earth/phosphorus Lewis pairs (RE/P), via Michael addition, has been computationally elucidated. The calculated energy landscapes indicate that the intramolecular RE/P mediated MMA polymerization is a significant exergonic process and features a moderate energy barrier. In the case of intermolecular RE/P, the bimetallic mechanism is kinetically preferable over the monometallic pathway. Unlike the Sc(OAr)₃/PEt₃ (Ar = 2,6-iBu₂-C₆H₃) Lewis pair, however, the La analogue may also follow a monometallic mechanism in view of limited catalyst concentration and surmountable enthalpy barrier. The detailed structure and energy analyses disclosed that geometrical deformation required for achieving the enrichment transition state mainly accounts for the activity discrepancy of the rare-earth metal complex as a Lewis acid in the intermolecular RE/P system. Meanwhile, given the same Lewis acid, the observed activity difference of various PR₃ Lewis bases (R = Cy and Ph) could be ascribed to the electronic induction effect of the R group. Namely, the R group with stronger electron donation ability could increase the electron density on the reactive vinyl group and render more electron flow during the Michael addition, resulting in higher activity in comparison with the electron withdrawing group, which is in line with the experimentally observed activity trend. Besides, further computational modellings on a series of intramolecular RE/P catalysts indicate that increasing the radius of the central metal or the flexibility of the bridge connecting Lewis pair in the catalyst is beneficial to improving catalytic activity. These theoretical results are expected to be useful for the design of a more efficient RE/P polymerization system.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was partly supported by the NSFC (U1862115 and 21674014). The authors also thank the RICC (RIKEN Integrated Cluster of Clusters) and the Network and Information Center of the Dalian University of Technology for part of the computational resources. G. L. thanks the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province (2020LCX006).

References

3 For reviewers, see: (a) C. Chen, Designing Catalysts for Olefin Polymerization and Copolymerization: Beyond Electronic and Steric Tuning, Nat. Rev. Chem., 2018, 2, 6–14; (b) M. Chen and C. Chen, Polar and Functionalized Polyolefins: New Catalysts, New Modulation Strategies and

(a) X. Wang, Y. Zhang and M. Hong, Controlled and Efficient Polymerization of Conjugated Polar Alkenes by Lewis Pairs Based on Sterically Hindered Aryloxide-Substituted Alkylaluminum, Molecules, 2018, 23, 442–453; (b) X. Wang and M. Hong, Precise Control of Molecular Weight and Stereospecificity in Lewis Pair Polymerization of Semifluorinated Methacrylates: Mechanistic Studies and Stereocomplex Formation, Macromolecules, 2020, 53, 4659–4669.

(a) M. Nishiura and Z. Hou, Novel Polymerization Catalysts and Hydride Clusters from Rare-earth Metal Dialkyls, Nat. Chem., 2010, 2, 257–268; (b) M. Nishiura, F. Guo and Z. Hou, Half-Sandwich Rare-Earth-Catalyzed Olefin Polymerization, Carbometalation, and Hydroarylation, Acc. Chem. Res., 2015, 48, 2209–2220; (c) D. Cui, Studies on Homo- and Co-polymerizations of Polar and Non-polar...

14 (a) P. Xu, Y. Yao and X. Xu, Frustrated Lewis Pairs Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes, Chem. – Eur. J., 2017, 23, 1263–1267; (b) P. Xu and X. Xu, Homoleptic Rare-Earth Aryloxide Based Lewis Pairs for Polymerization of Conjugated Polar Alkenes, ACS Catal., 2018, 8, 198–202; (c) P. Xu, L. Wu, L. Dong and X. Xu, Chemoselective Polymerization of Polydivinyl Monomers with Rare-Earth/Phosphine Lewis Pairs, Molecules, 2018, 23, 360.

