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Synthesis, structure, and superconductivity of
B-site doped perovskite bismuth lead oxide with
indium+i
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Many elements can be doped into the A site of perovskite BaBiOs-based superconductors, but only Bi,
Pb, Tl, Sb, Mg, and Na are found in the B site. Here, the successful synthesis of Ba(Big »5Pbg 75)1_xINxO3_s
superconductors by solid state reaction provides an example with indium located in the B site. The X-ray,
neutron, and selected area electron diffraction data indicate that all the samples crystallize in the non-
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centrosymmetric space group P1 at room temperature. The superconductive transition temperature TZ%"©
of Ba(Big 25Pbo 75)1_xINxO=_s decreases with an increase of indium, which is attributed to the fact that the
hole concentration in the samples departs from the optimal hole doping state of BaBig»s5Pbg 7503_s
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Introduction

Since the discovery of superconductivity in perovskite
BaBii_beyOS_E,1 studies on perovskite superconductors have
continued to date because they are the only high-temperature
oxide superconductors to show fully three-dimensional con-
ductivity and are very different from the well-studied cuprate
superconductors and iron-based superconductors showing
two-dimensional conductivity. The typical ones include
Ba,_,K,BiO; (0.30 < x < 0.45),>® (Nag,5Ko.45)BazBisO1s,*
Ba,_,K.Bi;_,Pb,03,>® BayoK,BiO;,” Ba;_,Lny(Big0Pbo.g0)0s-s
(Ln =, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Lu)as'g BaO.SS—xLaxPrO.lS(BiO.ZOPbO.SO)OS—éylo
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KBag(Bio.89N30.11)4012711 BaBio.stlo.zsPbo.5003—6,12 (Ko.g7Bio.13)
Bi03,13 Srl—xKxBiOB;14 BaO.82K0.18Bi0.53Pb0.4703715
Bao.ezKo.ssBio.9zMgo.0803,16 BaSbo.zSPbo.7503,17 Lao.zKo.sBiO3,18
Sto.5sRb, 5sBiO3,"* and so on. Most of these superconductors are
usually denoted as BaBiOjz-based superconductors except
BaSby »5Pby 7503. Many elements can be doped into the A site
of BaBiOs-based perovskite superconductors, but only Sb, TI,
Pb, Bi, Mg, and Na are found in the B site, although many
other elements can be doped into the B site to form a BaBiO;-
based perovskite nonsuperconductor.®>" Is there a rule to
select the specific elements to be doped in the B site of
BaBiO;s-based perovskite superconductors? Let us look for
some similarities among the elements in the B site of BaBiOs-
based perovskite superconductors. Tl, Pb, and Bi belong to the
same row in the periodic table. Therefore, TI**, Pb*" and Bi®"
have the same electronic structure. This may be the reason
why they can coexist in the B site to maintain the superconduc-
tivity.”> Sb is just above Bi in the same column of the periodic
table. The electronic structure of Sb>" is very similar to those
of Bi®* and Pb*". Therefore, BaSbg.,5Pb, 7505 is found to be a
superconductor'” similar to BaBi,,5Pb, 750;. Following these
ideas, In*" and Sn*" have a chance to coexist in the B site of a
perovskite superconductor because the electronic structures of
In*" and Sn*" are the same as that of Sb>". Herein, by using the
hole-doping superconductor BaBi,,5Pby,505_5 as a starting
perovskite compound,* we have synthesized hole-overdoped
superconductors Ba(Big,5Pb 75)1-xIN03_s with In*" success-
fully doped into the B site. The present results support the fact
that similar electronic structure seems to benefit the keeping
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of superconductivity of BaBiOs-based perovskite superconduc-
tors with B site doping.

Experimental

Samples with the nominal formula Ba(Big 25Pbg.75)1—xIN,O03_5
(x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10,
0.12, and 0.14, denoted as In1, In2, ..., and In13, respectively)
have been synthesized. The raw materials were In,0; (99.99%),
BaCO; (A.R.), Bi,O3; (A.R.), and PbO (A.R.). The oven-dried
reagents were homogenized by about thirty minutes of grind-
ing using an agate mortar and a pestle. Usually the weight of
each sample is about 10 g. The mixtures were sintered first at
760 °C for 12 hours. Then, the reacted powders were pressed
into pellets under 30 MPa and sintered at 780 °C for 12 hours.
The sintered mass was again crushed, pulverized, and pressed
into cylindrical pellets to undergo three 12 hour heat treat-
ments at 780 °C (In1), 800 °C (In2 and In3), 840 °C (In4, In5,
In6, In7, In8, and In9) and 880 °C (In10, In11, In12, and In13),
followed by furnace cooling every time with intermediate
grinding and then pressing into pellets under 30 MPa. All the
treatments were performed in air. Powder X-ray diffraction
(PXRD) data were collected on a PANalytical x’Pert’ Powder
with Cu Ka (4; = 0.15405 nm and 4, = 0.15443 nm) radiation
(26 range: 5-120° for 2 hours; step: 0.0131°) at 40 kV and
40 mA at room temperature. Neutron diffraction data were col-
lected on the GPPD of the Spallation Neutron Source Science
Center at Dongguan, China. The X-ray and neutron diffraction
data were analyzed using GSAS software.>>> Selected area elec-
tron diffractions (SAEDs) were carried out on JEM2100 with an
accelerating voltage of 200 kV. The X-ray photoelectron spec-
troscopy (XPS) patterns were obtained using a UK Kratos Axis
Ultra spectrometer with an Al Ka X-ray source operated at 15
kV and 15 mA. The chamber pressure was less than 5.0 x 10~°
Torr. Electron binding energies were calibrated against the C
1s emission at E;, = 284.8 eV. The resistivities of the samples
were investigated wusing a cryogenic Physical Property
Measurement System (PPMS, supplied by East Changing,
China) from 2 to 50 K. IR spectra were recorded on an FTIR
spectrophotometer in the region of 900-150 cm™'. Raman
spectra were recorded on a Micro Raman Imaging spectro-

meter DXRxi in the region of 1200-50 cm™".

Results and discussion
Structure of Ba(Biy »5Pby 75)1—xIN,O03_5

Powder X-ray diffraction patterns of Ba(Big 25Pbg 75)1-xINO03_5
are similar to that of BaBi,sPby7503_5, as shown in Fig. 1,
which indicates that the structure of these samples may be the
same as BaBi, »5Pby ;503_5. However, there are diverse reports
on the structure of BaBi,,5Pb,,505_s in the literature. D. E.
Cox and A. W. Sleight>®*® proposed the space group I4/mcm
with @ = b ~ 6.047 A, and ¢ ~ 8.063 A to describe the structure
of BaBiy,5Pby505_5 by neutron diffraction, which was fol-

3562 | Inorg. Chem. Front, 2020, 7, 3561-3570

View Article Online

Inorganic Chemistry Frontiers

Fig. 1 X-ray diffraction data of Ba(Bip25Pbo75)1_xINxOs_5. (x = 0.00,
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.12, and 0.14
for In1, In2, ..., and In13, respectively).

lowed by that of J. Bredthauer et al.>” Y. Khan et al.*® have
suggested a Cmm2 space group with a ~ 6.076 A, b ~ 6.097 A
and ¢ ~ 4.291 A for BaBi ,5Pbg 505_s. (The X-ray diffraction
patterns expected by this model are very different from the
obtained X-ray diffraction patterns shown in Fig. 1. Therefore,
it is not discussed further.) M. Oda et al.*>*' suggested that
the weak difference of oxygen deficiency in the sample could
induce the change of tetragonal BaBi, ,5Pbg 7505_5 with the 74/
mem space group (a = b ~ 6.047 A, and ¢ ~ 8.063 A) to ortho-
rhombic BaBi ,5Pby750;5_5 with the Ibmm space group (a =
6.072 A, b ~ 6.055 A, and ¢ ~ 8.544 10\), which had been con-
firmed by T. Hashimoto et al.**>* J. Thringer et al.*>* suggested
a monoclinic space group I2/m with a ~ 6.095 A, b ~ 6.095 A, ¢
~ 8.567 A, and y ~ 90.04° for BaBi, ,5Pb, 750;_5 around room
temperature. T. Hashimoto et al.® suggested that the space
group should be Im with a ~ 6.077 A, b~ 6.058A, c~ 85544,
and y ~ 90.00°. Further, E. Climent-Pascual et al.*” suggested
that BaPb,_,Bi,O3_s with 0.2 < x < 0.3 was a dimorphic rather
than a phase-separated system, showing the coexistence of
tetragonal and orthorhombic polymorphs of the same compo-
sition but not chemical phase separation. This suggestion may
be useful for the samples quenching too quickly to let the
high temperature polymorph translate completely into the low
temperature polymorph. In this case, two polymorphs with
almost the same composition may coexist. However, this kind
of sample can be a single phase or a phase-separated system
with multiple phases if it is annealed at a suitable temperature
for a long time. E. Climent-Pascual’s suggestion®” is not appli-
cable for the samples annealed for a long time, which were
used by several researchers including us.

To clarify the structure of BaBiy,s5Pby7503_5, a systemic
structural study on BaBi;_,Pb,0; 5 (0.00 < y < 1.00)>*° has
been performed in our lab. As an end member of the series
BaBi;_,Pb,05_s, the structure of BaBiO;_s; has been described
as an orthorhombic," rhombohedral,*® monoclinic,*® and tri-
clinic*® distortion of a simple cubic perovskite cell with one
Ba, one Bi, and three O in the unit cell by X-ray diffraction
data only. Later, BaBiO;_s was reported to crystallize in the 12/

This journal is © the Partner Organisations 2020
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m space group at room temperature containing both Bi*" and
Bi®* with a rock salt-like ordering in a perovskite-type frame-
work using neutron diffraction and/or synchrotron X-ray
diffraction.*”™” The corresponding lattice parameters are
similar to a ~ 6.186 A, b = 6.141 A, ¢ ~ 8.672 A, and f ~ 90.16°
at room temperature.’® Four Ba, four Bi, and twelve O are in
the unit cell with one Ba, two Bi, and two O being crystallogra-
phically independent. However, S. Sugai’® suggested that an
inversion center is absent in the crystal structure of BaBiO;_s
from the Raman and infrared reflection spectra of a single
crystalline specimen. T. Hashimoto et al.*® further suggested
that the space group of BaBiO;_s; should be P1 with the
suggested lattice parameters of a ~ 6.188 A, b ~ 6.139 A, ¢ ~
8.671 A, a =~ 89.99° f ~ 90.14°, and y ~ 90.02° at room temp-
erature by convergent-beam electron diffraction (CBED) and
synchrotron X-ray diffraction. This diversity lead to a confirm-
ing study on the symmetry of BaBiO;_; by the combined use of
selected area electron diffraction (SAED), convergent-beam
electron diffraction (CBED), neutron powder diffraction (NPD)
with two different wavelengths (4 = 1.6215 and 2.4395 A),
powder X-ray diffraction (PXRD) data with a single wavelength
(Cu Kal, 1 = 1.5407 A), IR spectra, and Raman spectra.”® The
corresponding result shows that BaBiO;_s synthesized in our
lab crystalizes in the P1 space group with a ~ 6.141 A, b =
6.186 A, ¢ ~ 6.144 A, a ~ 59.90°, f ~ 59.98°, and y ~ 59.87°,
which is about half of the T. Hashimoto’s P1 space group in
the volume of unit cell.*” Two Ba, two Bi, and six O are con-
tained in the unit cell. All of them are crystallographically
independent. This unit cell is the smallest one to describe the
structure of BaBiO;_s with Bi*" and Bi®" at different crystallo-
graphically independent sites. Further studies show that this
structural model can be also used to describe the structure of
BiFeO;_; and BaTbO;_s.>"%" However, this P1 space group is
not applicable to describe the structure of BaPbO;_; at room
temperature, which has been confirmed to crystalize in the
space group Imma with a ~ 6.030 A, b ~ 8.509 A, and ¢ ~
6.069 A.>*>7°* There are four Ba, four Pb, and twelve O in the
unit cell of BaPbO;_;, where the crystallographically indepen-
dent Ba, Pb, and O are one, one, and two, respectively. A con-
tinuous solid solution for BaBi;_,Pb,0;_5 (0.0 <y < 1.0) is not
expected because the two end members BaBiO;_s and
BaPbO;_; crystalize in different space groups, P1 and Imma,
respectively. After careful checking, it has been found that
BaBi;_,Pb,0;_; crystalizes in the P1 space group when 0.0 <y
<0.88 and in the Imma space group when 0.93 <y < 1.0 with
a two-phase region between them,” which agrees well with the
Gibbs phase rule.>®” Therefore, the P1 space group (a
6.141 A, b ~ 6.186 A, c ~ 6.144 A, a ~ 59.90°, f ~ 59.98°, and y
~ 59.87°) is suggested to describe the structure of
BaBig »5Pbg 7503_s-

As shown in Fig. 2, the Rietveld refinement of the X-ray and
neutron diffraction data of BaBiy ,5Pby 750;3-5 (the sample In1)
could be performed well using the space group P1 with the
corresponding parameters listed in Table 1. Two diffractions
(004 and 220) are expected in the region from 41 to 43° of two
theta or 2.12 to 2.16 A of d value by the space groups Im/4cm
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Fig. 2 Rietveld plot of the X-ray (a) and neutron (b) diffraction data for
BaBip.25Pbg 7503_5 using the space group P1. The plus symbol represents
the observed value, the solid line represents the calculated value, the
marks below the diffraction patterns are the calculated reflection posi-
tions, and the difference curve is shown at the bottom in the figure.

Table 1 Rietveld refinement details of the X-ray and neutron diffraction
data for BaBig 25Pbg 7503_s in the space group P1

a=6.0629(2) A, b = 6.0574(3) A, ¢ = 6.0681(3) A,

Lattice a=60.24(1)°, f = 59.91(2)°, y = 60.02(2)°

parameter

Atom X9, 2 Occupancy  Uiso

Bal 0.2498(1), 0.2464(2), 0.2368(1)  1.000 0.0036(2)
Ba2 0.7527(3), 0.7399(2), 0.7411(2) ~ 1.000 0.0044(2)
Bi1/Pb1 0.0000, 0.0000, 0.0000 0.250/0.750  0.0029(4)
Bi2/Pb2 0.5023( ), 0.4912(2) 0.5004(3)  0.250/0.750  0.0047(4)
o1 0.2989(3), 0.1857(3), 0.7394(4)  0.986(6) 0.0075(5)
02 0.7177(4), 0.7787(3), 0.2759(3)  0.985(5) 0.0074(4)
03 0.7676(4), 0.2505(2), 0.2448(3)  0.986(4) 0.0088(5)
04 0.2477(3), 0.6754(4), 0.8170(4)  0.986(5) 0.0075(4)
05 0.2347(3), 0.7544(4), 0.2754(3)  0.986(4) 0.0088(5)
06 0.7565(3), 0.2578(3), 0.7495(3)  0.985(5) 0.0075(3)
R factor” R}y =0.048, R} = 0.031; Ry, = 0.073, Ry =

0.057

“R,,, R, and Ry, Ry are the R factors of the whole patterns and the
peaﬁs for X-ray ( XP) and neutron (n) diffraction data, respectively.

and Ibmm; three diffractions (004, —220 and 220) are expected
by the space groups I12/m and Im; three diffractions (202, 220
and 022) are expected by the space group P1. In addition, one
diffraction (404) is expected in the region from 76 to 78° of two
theta or 1.23 to 1.25 A of d value by the space group Im/4cm;
two diffractions (404 and 044) are expected by the space
groups Ibmm, 12/m and Im; four diffractions (004, 040, 400 and
444) are expected by the space group P1. As shown in inset of

Inorg. Chem. Front., 2020, 7, 3561-3570 | 3563
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Fig.3 SAED patterns of BaBigosPbg7505_5 (a—-c) and Ba
(Bio,zspbojs)o,gs'no(o4o375 (d—f) along different directions.

Fig. 2, three diffractions are found in the region from 41 to 43°
of two theta or 2.12 to 2.16 A of d value and more than two
diffractions are found in the region from 76 to 78° of two theta
or 1.23 to 1.25 A of d value. Therefore, the space group P1 is
suitable to describe the structure of the sample
BaBi, »5Pbg 75035 synthesized in our lab.

Selected area electron diffraction (SAED) are useful to
confirm the space group of the studied sample.>”® Therefore,
SAED patterns of BaBij,5Pbg;505;_5 have been checked.
Typical data are shown in Fig. 3. These patterns can be well
indexed by the space group P1 with a ~ 6.063 A, b ~ 6.057 A, ¢
~ 6.070 A, a ~ 60.23°, f ~ 59.87°, and y ~ 60.04°, which indi-
cates it is acceptable to use the P1 space group to describe the
structure of BaBi »5Pb ;505_5. The present lattice parameters
are very close to rhombohedral with a ~ b ~ ¢ ~ 6.06 A and a ~
p ~ y ~ 60.0°. The unit cell looks like a rhombohedron, as
shown in Fig. 4. There are two crystallographically indepen-
dent sites for Ba and six sites for O in the unit cell. There are
also two crystallographically independent sites randomly occu-
pied by Bi or Pb with the ratio of 0.25:0.75.

In fact, one may find that the X-ray and neutron diffraction
data of the sample In1 can be refined well using the space
group P1 with a = 6.063 A, b ~ 6.057 A, ¢ ~ 6.070 A, a ~ 60.23°,
B =~ 59.87° and y = 60.04° (the other details are listed in
Table S1 of the ESIf). The refinement is improved just a little
using the P1 space group than P1. One can attribute this to the
fact that more parameters are refined when the P1 space group
is used. Does this mean the P1 space group is a good choice?
For comparison, the X-ray and neutron diffraction data of

Q@Ba
QBi’Ph
90

Fig. 4 Crystal structure of BaBig 25Pbg 7503_5.
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BaBiOj;_; in our previous work are also checked to confirm the
Rietveld refinement using the P1 space group with the same
lattice parameters published for the P1 space group® with Ba
(0.2519(2), 0.2532(2), 0.2454(1)), Bi1 (0.0000, 0.0000, 0.0000),
Bi2 (0.5000, 0.5000, 0.5000), O1 (0.2206(3), 0.3012(2), 0.7038
(4)), 02 (0.7124(3), 0.2815(3), 0.2310(2)), and O3 (0.2710(4),
0.8032(3), 0.2480(3)). Two crystallographically independent
sites are set for Bi. The refinement is also improved just a little
using the P1 space group rather than P1 for BaBiO; (see the
ESI}). These results may indicate that sometimes it is difficult
to find the difference between P1 and P1 using the Rietveld
refinement. In this case, the idea “the activities in Raman and
infrared spectroscopy are mutually exclusive in a crystal with
inversion symmetry” mentioned by S. Sugai*® seems to provide
us with a possible way to solve such a question. Then, the
Raman and infrared spectra of the sample In1 are obtained. As
shown in Fig. 5, the partial overlaps of the Raman peaks and
infrared peaks for In1 indicate that there is no inversion sym-
metry for In1. Therefore, it is a good choice to use the P1 space
group to describe the structure of In1.

The SAED patterns of the samples In2 to In13 can also be
indexed well with the space group P1 using similar lattice para-
meters of BaBi ,5Pb, ;505_5 as shown in Fig. 3 for the sample
In5. In addition, the Raman peaks and infrared peaks of In5
and In9 are partially overlapped, as shown in Fig. 5. Therefore,
the structure of BaBij,s5Pbo 75035 is used as the starting
model to refine the X-ray diffraction data of In2 to In13. These
data can be refined well with R, < 0.062 and R;, < 0.039 as
shown in Fig. 6a and c for the samples In5 and In9, respect-
ively. After these refinements, the volume of the unit cell of
each sample can be obtained. The corresponding data are
shown in Fig. 7. The volume of the unit cell decreases linearly
with an increase of indium in the sample, which agrees well
with Vegard’s law.”>®® This may be due to the fact that the
average ionic radius of B site decreases with the increase of
indium in the sample. For simplicity, one can just suggest that
there are 0.125 Bi**, 0.125 Bi®, and 0.75 Pb*" in
BaBi, ,5Pby 750;5_5 (although in the next section, it is found
that Pb®>" ion is also present in the sample due to oxygen
vacancy) with § = 0. The average ionic radius of B site is about
0125 rgjs+ + 0125 rpjs- + 0.75 Ippar. FOr Ba(Big 25Pbg 75)1_IN,05_5,
one can simply assume x In*" replace 0.125x Bi*" + 0.125x Bi*"
+ 0.75x Pb*" and force the change from 0.5x Bi** to 0.5x Bi’"
when 6 = 0. In this case, the average ionic radius of B site is
about (0.125-0.625x) rgps + (0.125 + 0.375x)rg;s + (0.75-0.75x)
I'ppi + Xrpee. The difference is (—0.625rp: + 0.375rps —

a(In1) b (In5) ¢ (In9)

< IR

Raman ™ Raman Ramen

! ! ! N ! 1 ! ! ! ! 1 N
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Wavenumbers 1cm") Wavenumbers (cm") Wavenumbers (cm")

Fig. 5 Raman and infrared spectra of Inl (a), In5 (b), and In9 (c).
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Neutron Diffraction of In9|

2 .. 3 4
d (A) d(A)
Fig. 6 Rietveld plot of the X-ray and neutron diffraction data of the
samples In5 (a and b) and In9 (c and d) at room temperature. The plus
symbol represents the observed value, the solid line represents the cal-
culated value, the marks below the diffraction patterns are the calcu-

lated reflection positions, and the difference curve is shown at the
bottom in the figure.

157.80
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167.55

0.00 0.04 0.08 0.12 0.16
x in Ba(Big 55Pbyg 75)141n,05 5

Fig. 7 Volume of the unit cell of Ba(Big25Pbg 75)1_xINxO3_5 at room
temperature.

0.757pps+ + I'mso)x. It is known that rgp = 1.03 A (six co-
ordinated), rgis = 0.76 A (six coordinated), rpps = 0.775 A (six
coordinated) and 7y = 0.80 A (six coordinated). Then, the
difference is about —0.14x. Therefore, with an increase of In*"*
in the sample Ba(Big »5Pbg.75)1_xIN03_s, the average radius of
the ion at the B site decreases, which causes the decrease of
the volume of the unit cell.

As well known, the Rietveld refinement of the powder X-ray
diffraction data is not sensitive to oxygen (its position and
occupation) when there are heavy atoms such as Ba, Bi, or Pb
in the unit cell. Therefore, three samples In1, In5 and In9 are
chosen to collect the neutron diffraction data to assess the
occupancy of oxygen at its crystallographic site by the Rietveld
refinement. This information is important due to the fact that
oxygen vacancy could change the structure and properties
such as that reported for BaBig,sPbg,505_5.>°"" The com-
bined Rietveld refinement of powder neutron diffraction data
and X-ray diffraction data are performed well for these

This journal is © the Partner Organisations 2020
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samples with R,,, < 0.073 and R;, < 0.057. Rietveld plots are
shown in Fig. 6 for In5 and In9 (the one for In1 is shown in
Fig. 2). The crystallographic data, and structural parameters
for In5 and In9 are tabulated in Table 2. There is no obvious
difference among the oxygen occupancy at the six crystallo-
graphic oxygen sites. Oxygen deficiency increases slightly from
In5 to Ino.

It should be mentioned that the samples with the nominal
formula Ba(Biy»5Pbg.75)1_xIN,O3_s (0.14 < x < 0.25) have also
been synthesized in our lab. The upper substitution limit
is around x = 0.20. However, for some reason, the results of
the resistance measurement for the samples Ba
(Bip.25Pbg.75)1-xINO3_s (0.14 < x < 0.25) are not stable. These
data are not suitable to be published at present.

Valence of the elements in Ba(Big 55Pby 75)1—xIN03_5

Valence of the element in a compound has an important effect
on its lattice parameters, which has been mentioned in the
above section and has also been discussed in a previous
work.’ In addition, the valence of the element in oxide com-
pounds has a strong relationship to the oxygen vacancy.
Therefore, XPS spectra of Ba(Big,5Pbg75)1-IN03_s are
obtained for several selected samples. Fig. 8 shows the typical
data for the samples In5 and In9. The survey shown in Fig. 8a
indicates that the sample is composed of Ba, Bi, Pb, In, and O
elements, while the C element is ascribed to be calibrated
from the XPS instrument itself. Two symmetric peaks located
at 779.53 eV and 794.83 eV in Fig. 8b correspond to Ba 3ds,
and Ba 3djs, of Ba® ions in the perovskite structure.’’ No
obvious change could be observed in the XPS spectra of Ba
3ds), or Ba 3d3,, for In5 and In9, respectively. The XPS spectra
of Bi 4f,, (Pb 4f,,) and Bi 4fs;,, (Pb 4fs,) are doublets, as
shown in Fig. 8c and d. The higher binding energy peaks of Bi
af,;, (Pb 4f;),) and Bi 4f;;, (Pb 4fs/,) around 159.03 eV (139.33
eV) and 164.28 eV (143.16 eV) are characteristic peaks for
Bi**(Pb*").>'>%>%3 The lower binding energy peaks of Bi 4f,,
(Pb 4f;,,) and Bi 4f5,, (Pb 4fs),) around 158.19 eV (137.20 eV)
and 163.48 eV (142.07 eV) are characteristic peaks for
Bi**(Pb>*).>'° The peaks corresponding to Bi’ *(Pb**) for In9
are larger than that of In5, which may mean more Bi® “(Pb*")
in the sample In9.

The peaks at the binding energy of 443.52 eV and 451.73 eV
in Fig. 8e could be assigned to 3ds/, and 3ds, for In**.%*** The
broad peak near 3ds,, of In*" can be divided into two peaks
with a binding energy of about 441.6 eV and 440.1 eV corres-
ponding to 4ds, for Bi** and Bi**, respectively. It is reasonable
that the intensity of In*" 3d;, for In9 is stronger than that for
In5 as there are more indium atoms in the sample In9.

The spectrum of O 1s has two components O1 1s and O2
1s, as shown in Fig. 8f. O1 1s is at around 528.96 eV, which
corresponds to O®~ ions without the oxygen vacancy in the
first near neighbor.®>**%%%¢ 02 1s is at about 531.01 eV, which
can be associated with 0>~ ions with the oxygen vacancy in the
first near neighbor.®*>°® The intensity of 02 1s of In9 is
stronger than that of In5, which may mean that more oxygen
vacancy exists in the sample In9 than In5.
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Table 2 Rietveld refinement details of the X-ray and neutron diffraction data for In5 and In9

In5

In9

P1

r1

Space group N
a=6.0657(1) A, b =6.0582(3) A, ¢ = 6.0640(2) A,

a=6.0646(1) A, b = 6.0600(3) A, ¢ = 6.0603(2) A,

Lattice a=60.20(1)°, = 59.86(3)°, y = 60.06(2)° a=60.26(2)°, =59.82(2)°, y = 60.07(3)°
parameter
Atom X, 2 Occupancy Uiso X, ),2 Occupancy Uiso
Bal 0.2512(1), 0.2681(2), 0.2387(1) 1.000 0.0051(4) 0.2484(2), 0.2666(1), 0.2441(2) 1.000 0.0058(3)
Ba2 0.7522(3), 0.7628(2), 0.7434(3) 1.000 0.0082(3) 0.7452(3), 0.7710(2), 0.7414(3) 1.000 0.0058(3)
Bi/Pb/In1 0.0000, 0.0000, 0.0000 0.240/0.720/0.040 0.0076(5) 0.0000, 0.0000, 0.0000 0.230/0.690/0.080 0.0081(4)
Bi/Pb/In2 0.4988(2), 0.4978(2), 0.5032(3)  0.240/0.720/0.040 0.0070(5) 0.5009(3), 0.4971(2), 0.5019(2)  0.230/0.690/0.080 0.0074(4)
01 0.2638(2), —0.2036(1), 0.7072(3) 0.986(6) 0.0138(6) 0.2648(1), —0.2204(1), 0.7219(3) 0.982(6) 0.0108(5)
02 0.7652(3), 0.7290(3), 0.2391(1)  0.985(5) 0.0080(5) 0.7746(3), 0.7158(2), 0.2206(1)  0.983(6) 0.0118(6)
03 0.7383(3), 0.2090(1), 0.2878(2)  0.988(5) 0.0075(4) 0.7570(3), 0.2095(1), 0.2787(2)  0.982(5) 0.0098(5)
04 0.2095(1), 0.2892(2), 0.7898(3)  0.986(6) 0.0155(5) 0.2355(1), 0.2667(2), 0.7986(3)  0.982(6) 0.0161(6)
05 0.2349(1), 0.7255(3), 0.2713(2)  0.987(6) 0.0154(4) 0.2532(1), 0.6947(3), 0.2606(2)  0.982(6) 0.0173(6)
06 0.7260(3), 0.2359(2), 0.7762(3)  0.986(6) 0.0130(5) 0.7471(3), 0.2314(1), 0.7569(2)  0.983(5) 0.0110(5)
R factor” R"p 0.038, RE =0.026; R"Wp =0.043,
Rn =0.057, R =0.043 RX =0.029;
RE, =0.057,
RE =0.048

“RXWP, Ry and Ry, Ry are the R factors of the whole patterns and the peaks for X-ray and neutron diffraction data, respectively.
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Fig. 8 Binding energies of the survey (a), Ba 3d (b), Bi 4f (c), Pb 4f (d), In
3d (e), and O 1s (f) spectra of Ba(Bip.25Pbg.75)1_xINxO3_s (In5 with x = 0.04
and In9 with x = 0.08).

Oxygen vacancy in Ba(Big 5Pbg 75)1—xIn,03_;

XPS data and Rietveld refinements of the neutron diffraction
data of In5 and In9 indicate that there are oxygen vacancies in
the samples. In order to evaluate the quantity of the oxygen
vacancies in the sample, an iodometric titration is performed
for several samples. As shown in Fig. 9a, the oxygen vacancies
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Fig. 9 The composition-dependent oxygen vacancy § (a) and electrons
per 6S orbital (b) of Ba(Big 25Pbg 75)1-xINxO3_s.

first decrease and then increase with an increase of indium in
the samples. The content of oxygen vacancy of In5 is less than
that of In9. This agrees well with the result obtained from the
XPS spectra shown in Fig. 8f and the Rietveld refinement of
the neutron diffraction data of In5 and In9. Under the con-
sideration that the samples are neutral, one can evaluate the
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number of electrons per 6S orbital from the obtained value of
oxygen vacancy in the samples, which decreases with an
increase of indium in the samples, as shown in Fig. 9b. This
means that the content of holes in the samples increases.

Superconductivity of Ba(Big »5Pbg.75)1—xIny03_5

All the samples Ba(Big 25Pbg 75)1-xIn03_5 (0.00 < x < 0.14) are
superconductors. Typical temperature-dependent resistivity is
shown in Fig. 10a-c for the samples In1, In5 and In13, respect-
ively. The electric resistivity first slightly decreases for the
sample In1, or increases for the samples In5 and In13 when
the temperature of the sample decreases and then abruptly
decreases at a certain temperature (which is noted as T"),
indicating the metallic or semiconducting behavior above this
temperature. The electric resistivity becomes zero at a lower
temperature (noted as 7:°) when the temperature is
decreased further. 79"t and 7™ for BaBi ,5Pbg 750;5-5 syn-
thesized in our lab are 11.8 K and 10.4 K, respectively. These
agree well with the previous data reported by other
researchers.">>®” T%™ of Ba(Big,5Pbg 75)1_»In,05_5 decreases
with an increase of indium in the samples, as shown in
Fig. 10d. This decrease may be due to the fact that Ba
(Bip.25Pbg.75)1-xIN03_s departs from the optimal hole-doping
state of BaBiy ,5Pby ;503;_s with an increase of indium in the
samples. As  discussed in  Oxygen vacancy in
Ba(Bip »5Pbg.75)1-xIN03_5, the increase of indium in the
sample Ba(Bi ,5Pbg 75); _xIn,O3_s will decrease electrons in the
6S orbital, which means that holes increase. BaBi, ,5Pbg 7505_5
is reported to be an optimal hole-doped superconductor.®”
Therefore, Ba(Big 5Pbg.75)1_xIN03_s will depart from the
optimal hole-doping state to let the corresponding 77
decrease with an increase of indium.

It is interesting that T¢"* of Ba(Big5PDg 75)1-+IN03-5
decreases more slowly than 77 as shown in the inset of
Fig. 8d. This means that AT(=T¢"" — T%™°) increases with an
increase of indium. Does this indicate that the homogeneity of
Ba(Big »5Pbg.75)1_,In,03_s5 becomes worse with more different
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Fig. 10 Temperature-dependent resistance of Inl (a), In5 (b) and In13
(c), and composition-dependent T2 of Ba(Big 25Pbg 75)1-xINxOz_s (d).
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atoms at the B site when more indium is doped into the
sample? The present data could not give a clear answer. Maybe
the change of synthesis conditions can narrow AT.

Conclusions

Indium has been successfully doped into the B site of
BaBiy ,5Pb(.7505_s to form solid solutions Ba
(Bip.25Pbg.75)1-xINx03_5 (0 < x < 0.14) by a solid state reaction
at temperatures from 780 °C to 880 °C. They all crystalize in
the P1 space group confirmed by selected area electron, X-ray,
and neutron diffraction data. The resistivity of the samples
was measured between 3 K and 50 K, which indicates that all
the studied samples show superconductivity. 7¢° of Ba
(Bip.25Pbg.75)1-xIN,O3_s decreases with an increase of indium
in the samples, which is due to the fact that the content of
holes departs from the optimal doping state of
BaBij.»5Pbg.7505_s.
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