2.2.2-Cryptand as a bidentate ligand in rare-earth metal chemistry†‡

Amanda B. Chung, Daniel N. Huh, Joseph W. Ziller, and William J. Evans*†

The 2.2.2-cryptand ligand (crypt) that is heavily used in reductions of rare-earth metal complexes to encapsulate alkali metal ions has been found to function as a bidentate ligand to rare-earth metal ions in some cases. The X-ray crystal structures of the reduced dinitrogen metal complex, [(R₂N)₂Ce(crypt-x²-O₂, O)]₃(u-η¹,η²-N₂, O)] (R = SiMe₃), and the ytterbium metallocene, (C₈Me₁₂₂)₂Yb(crypt-x²-O₂).O₁, are presented to demonstrate this binding mode. The implications of this available binding mode in rare-earth metal cryptand chemistry are discussed.

Introduction

One of the recent advances in rare-earth metal chemistry has been the discovery of crystallographically-characterizable molecular complexes of La(II), Ce(II), Pr(II), Gd(II), Tb(II), Ho(II), Er(II), Lu(II), and Y(II) according to syntheses such as those shown in eqn (1).1–9

Prior to those discoveries, molecular complexes of +2 lanthanide ions were known only for Eu(II), Yb(II), Sm(II), Tm(II), Dy(II), Er(II), Lu(II), and Nd(II) according to syntheses such as those shown in eqn (1).1–9

(1)

This journal is © the Partner Organisations 2020

Cite this: Inorg. Chem. Front., 2020, 7, 4445

Department of Chemistry, University of California, Irvine, California 92697-2025, USA. E-mail: wevans@uci.edu
† Dedicated to Professor Xu Guangxian for his extensive efforts in research as the "father of Chinese rare-earth chemistry" and for his excellent teaching which has generated an ongoing legacy of outstanding students.
‡ Electronic supplementary information (ESI) available. CCDC 2011829. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d0qi00746c

Frontiers in Inorganic Chemistry

Published on 13 October 2020. Downloaded on 8/2/2024 11:30:36 AM.
rare-earth metal ion inside crypt and the situation in which crypt is not coordinating the rare-earth metal ion at all. We describe here two crystal structures that show that crypt can function as a bidentate ligand to rare-earth ions. This has interesting implications in the reaction chemistry of rare-earth metal complexes involving crypt.

Results and discussion

The first example of a bidentate crypt metal complex of a rare-earth metal ion was discovered while examining the reduction of dinitrogen with Ce(NR₂)₃ (R = SiMe₃) and potassium graphite. Numerous LnA₃/M reactions (A = anion; M = alkali metal) of this type have been performed in the past and generated both (N≡N)²⁻ and (N₂)³⁻ metal complexes.⁴³–⁴⁸ For example, crystallographically-characterized examples of [(R₂N)₂(THF)Ln]₂(µ-η²:η²-N₂) have been isolated in this way from reactions in THF for the smaller rare-earths, Ln = Nd, Gd, Tb, Dy, Ho, Y, Er, Tm, and Lu, eqn (2).⁴⁴ Analogous reactions with the larger lanthanides, La, Ce, and Pr, appeared to proceed similarly, but crystallographic confirmation of the products was not obtained. ¹H and ¹⁵N NMR data on the La product were similar to those on the Y and Lu products.⁴⁴,⁴⁶ Hence, it was likely that (N≡N)²⁻ products of La, Ce, and Pr formed, but the metal complexes were too sterically unsaturated with these larger metals to crystallize well. Further evidence of reaction in eqn (2) with the large lanthanides was obtained by isolation and crystallographic characterization of the tetrakis(amide) products, [K(THF)₆][Ln(NR₂)₄] for La and Pr and [Na(THF)₆(Et₂O)][Ce(NR₂)₄] for Ce. These tetrakis(amides) can form by complexation to the Ln(NR₂)₃ starting material of the (NR₂)¹⁻ ligands lost by each metal in a successful dinitrogen reduction.⁴⁴

When the LnA₃/M reaction was conducted in Et₂O using Ce (NR₂)₃ and KC₈ in the presence of crypt, the (N≡N)²⁻ metal complex, [[(R₂N)₂Ce(crypt-κ²-O,O’)]₂(µ-η²:η²-N₂)], 1, was isolated and identified by X-ray diffraction, eqn (3), Fig. 1. This was the first cerium amide (N≡N)²⁻ metal complex that could be crystallized.

![Fig. 1 ORTEP representation of \([[(R₂N)₂Ce(crypt-κ²-O,O’)]₂(µ-η²:η²-N₂)], 1,\) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and an Et₂O in the lattice are excluded for clarity.](image-url)
The crystal structure of 1, shows that it is a neutral metal complex with a side-on bound \([N=N]^{2-} \) and two amide ligands bound to each cerium. This is similar to the known series of THF adducts in eqn (2), \([([\text{THF}]_{2}R_{2}N)_{2}Ln]_{2}[^{1-}\eta^{3}:\eta^{1}:N, N_{2}]^{4+}\), except instead of one THF molecule per metal, a crypt ligand coordinates to each metal through two oxygen atoms. In this case, crypt is acting as a \(\kappa^{2}:O,O' \) “exo-crypt” with binding similar to that of a dimethoxyethane (DME) ligand. Presumably, with the extra steric bulk of crypt versus THF, the Ce \([N=N]^{2-} \) product is sterically saturated enough to allow isolation and crystallization.

Compound 1 is sparingly soluble in both toluene and benzene. A \(^{1}H \) NMR spectrum was taken in both toluene-\(d_{8} \) and \(C_{6}D_{6} \) (see ESI*). The crypt resonances align with free cryptand in solution and only one resonance is seen for the methyl group of the silyl amides, which is shifted upfield.

The 1.233(4) Å N–N distance in 1 is similar to those in the metal complexes in eqn (2), 1.258(3)–1.305(6) Å, and is consistent with a double bond, i.e. \([N=N]^{2-} \). Theexo-crypt in 1 does not bind symmetrically and has Ce–O distances in 1 of 2.545(2) Å for Ce–O1 and 2.796(2) Å for Ce–O2. In comparison, the Ce–O(THF) distances in the cyclopentadienyl cerium dinitrogen complexes, \([[C_{5}Me_{4}H]_{2}[\text{THF}]\text{Ce}[\mu-\eta^{3}:\eta^{1}:N, N_{2}]]^{2+}\) and \([[C_{5}Me_{4}H]_{2}[\text{THF}]\text{Ce}[\mu-\eta^{3}:\eta^{1}:N, N_{2}]]^{2+}\), are 2.607(4) Å and 2.589(3) Å, respectively.\(^{46}\) Hence, the crypt coordination could also be described as a monodentate ligand with a long secondary interaction. The 2.545(2) Å Ce–O(crypt) distance is similar to the 2.518(1) Å Nd–O(THF) distance in \([[[R_{2}N]_{2}[\text{THF}]\text{Nd}[\mu-\eta^{3}:\eta^{1}:N, N_{2}]]^{2+}\) when the 0.027 Å ionic radius increase from Nd to Ce is considered.\(^{21}\)

Within the coordinated crypt, the 1.437(3)–1.443(3) Å C–O distances involving the coordinating O1 and O2 are within the error limits of the other 1.399(4)–1.424(4) Å C–O distances, as shown in Table 1. The C–C distances and the angles involving the bound oxygen atoms are similar to those in the rest of the crypt molecule.

A second example of exo-crypt coordination was found in the reaction of \([C_{5}Me_{5}]_{2}Yb[BPh_{4}]_{2}\) with crypt in toluene. This reaction was explored to determine if ligand redistribution would occur to form an Yb(II)-in-crypt product.\(^{30}\) However, ligand rearrangement occurred to form a bis(cyclopentadienyl) metalloocene which crystallized with crypt bound as a bidentate ligand, \([C_{5}Me_{5}]_{2}Yb[\text{crypt-} \kappa^{2}:O,O']\), 2, eqn (4), Fig. 2. The compound was identified by X-ray crystallography, but the data were not of high enough quality for a detailed structural discussion. In the metal complex 2, as in 1, the exo-crypt ligand coordinates like DME. X-ray crystal structures of similar formally eight coordinate \([C_{5}Me_{5}]_{2}YbL_{2}\) compounds are common with \(L = \text{pyridine} \) and with \(L_{2} = \text{bipyridine} \) and substituted bipyrindines.\(^{53,54}\)

Conclusion

Although 2.2.2-cryptand can stabilize alkali metal ions to generate favorable lattices for crystallization of rare-earth metal complexes and it can encapsulate rare-earth ions as an octadentate ligand, it can also function as a stabilizing bidentate \(\kappa^{2}\)-chelating ligand for rare-earth metal ions as shown in \([[[(R_{2}N)_{2}Ce[\text{crypt-} \kappa^{2}:O,O']][\mu-\eta^{3}:\eta^{1}:N, N_{2}]]^{2+}\), 1, and \([C_{5}Me_{5}]_{2}Yb[\text{crypt-} \kappa^{2}:O,O'\)]^{2+}\), 2. The diverse nature of these two metal complexes suggests that crypt could coordinate to rare-earth metal ions in a variety of different coordination environments.

Similar to these crypt-\(\kappa^{2}:O,O' \) binding modes, 18-crown-6 (18-c-6) rare-earth metal complexes are known in which not all

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Selected distances (Å) and angles (°) for 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce1–N3(amide)</td>
<td>2.409(2)</td>
</tr>
<tr>
<td>Ce1–N2(amide)</td>
<td>2.41(2)</td>
</tr>
<tr>
<td>Ce1–O1</td>
<td>2.7957(18)</td>
</tr>
<tr>
<td>N1–N1’</td>
<td>1.233(4)</td>
</tr>
<tr>
<td>C–O–C distance</td>
<td></td>
</tr>
<tr>
<td>C1–O1</td>
<td>1.439(3)</td>
</tr>
<tr>
<td>O1–C14</td>
<td>1.438(3)</td>
</tr>
<tr>
<td>C2–O26</td>
<td>1.414(3)</td>
</tr>
<tr>
<td>N1–N1</td>
<td>2.451(2)</td>
</tr>
<tr>
<td>N1–N1’</td>
<td>2.468(2)</td>
</tr>
<tr>
<td>N1–O1</td>
<td>2.5453(18)</td>
</tr>
<tr>
<td>C–C–C distance</td>
<td></td>
</tr>
<tr>
<td>C13–C14</td>
<td>1.525(4)</td>
</tr>
<tr>
<td>C17–C18</td>
<td>1.504(4)</td>
</tr>
<tr>
<td>C21–C22</td>
<td>1.525(4)</td>
</tr>
<tr>
<td>C25–C26</td>
<td>1.299(4)</td>
</tr>
<tr>
<td>C29–C30</td>
<td>1.289(4)</td>
</tr>
</tbody>
</table>

\[(C_{5}Me_{5})_{2}Yb(BPh_{4}) + 2.2.2\text{-cryptand} \rightarrow \text{toluene} = \text{Yb(BPh_{4})} \]
O-donors are coordinated. Two scandium metal complexes containing [ScCl₄(κ²-18-c-6)]X (X = SbCl₆ or FeCl₄)³⁵,³⁶ and [Ce(κ²-18-c-6)]N(SiMe₃)₂PhF] (PhF = pentafluorophenyl)³⁷ have been reported.

To the extent that crypt binds like dimethoxyethane, it constitutes a sterically bulky variation of this commonly-used ether. The size and 3-dimensional nature of crypt means that it can substantially fill the coordination environment of a sterically unsaturated compound. In the case of the [[(R₂N)₂Ln]₂(µ-κ²-N₂)] which crystallizes for smaller metals, Nd–Lu, but not for Ce, it is possible that a single THF ligand was not enough to sterically saturate the coordination environment to yield single crystals for X-ray diffraction. Crypt coordination in 1 led to successful crystallization of this cerium (N=N²⁻) compound. Attempts to crystallize "[[[(R₂N)₂Ce]₂(µ-κ²-N₂)]", with DME have been unsuccessful.

The efficacy of crypt in 2 is somewhat different since the (C₅M₅)₂Yb unit crystallizes in any of the others and with one and two coordinating ligands,²⁻³⁻⁵⁻⁶⁻⁶⁰ Hence, this is not the case of a sterically unsaturated unit that will not crystallize. The κ²-crypt just functions as other bidentate coordinating bases.

These results raise interesting possibilities in reaction chemistry. It is possible that crypt can coordinate to a rare-earth metal ion before alkali metal reduction occurs and before the alkali metal cation is formed and inserts into the crypt. Similarly, in the reactions that form Ln-in-crypt [Ln(crypt)]⁺ cations,¹⁰⁻¹³⁻¹⁵⁻¹⁷⁻¹⁹⁻²⁰⁻²¹⁻²³⁻²⁴⁻²⁵⁻²⁶⁻²⁷⁻²⁸⁻²⁹⁻³⁰⁻³¹⁻³²⁻³³⁻³⁴⁻³⁵⁻³⁶⁻³⁷⁻³⁸⁻³⁹⁻⁴⁰⁻⁴¹⁻⁴²⁻⁴³⁻⁴⁴⁻⁴⁵⁻⁴⁶⁻⁴⁷⁻⁴⁸⁻⁴⁹⁻⁵⁰⁻⁵¹⁻⁵²⁻⁵³⁻⁵⁴⁻⁵⁵⁻⁵⁶⁻⁵⁷⁻⁵⁸⁻⁵⁹⁻⁶⁰ Hence, this is not the case of a sterically unsaturated unit that will not crystallize. The κ²-crypt just functions as other bidentate coordinating bases.

Confls of interest
There are no conflicts to declare.

Acknowledgements
We thank the U. S. National Science Foundation for support of this research under CHE-1855328. We also thank Chen Sun for assistance with X-ray crystallography and David H. Woen for sample preparation.

Notes and references
4 M. E. Fieser, M. R. Macdonald, B. T. Krull, J. E. Bates, J. W. Ziller, F. Furche and W. J. Evans, Structural, Spectroscopic, and Theoretical Comparison of Traditional vs Recently Discovered Ln²⁺ Ions in the [K(2.2.2-

57 D. T. Tilley, R. A. Andersen, B. Spencer, H. Ruben and D. H. Templeton, Divalent Lanthanide Chemistry. Bis

