Giant thermal conductivity and strain thermal response of nitrogen substituted diamane: a machine-learning-based prediction†
Abstract
With the ongoing trend of seeking miniaturization and enhanced performance for electronic devices, effective thermal management has emerged as a critical concern. The discovery and investigation of high thermal conductivity (κ) materials have proved to be pivotal in addressing this challenge. This study aims to explore the distinctive properties and potential applications of nitrogen substituted diamane (NCCN), a two-dimensional material with a diamond-like structure composed of carbon and nitrogen atoms. This work systematically delves into NCCN's thermal, mechanical, and electrical properties. It is predicted that NCCN exhibits an exceptional κ, ∼2288 W m−1 K−1, at room temperature (300 K) by combining the machine-learning interatomic potential method and the phonon Boltzmann transport equation, surpassing that of H-diamane and rivaling that of diamond, and an impressive electronic band gap of ∼4.47 eV (PBE). For mechanical properties, the stress–strain relationship reveals that NCCN exhibits isotropic elastic properties and anisotropic tensile strengths. Additionally, the variations in NCCN's κ and electronic energy band structure under different strains underscore its substantial potential in the field of thermoelectric applications.