Improving the supercapacitor performance of the Co-MOF via cerium-induced shape modulation and defect engineering†
Abstract
Rational design and structural modulation of MOF materials are crucial to developing high-performance supercapacitor electrodes. In this research study, high-performance bimetallic MOF supercapacitor electrode materials have been successfully fabricated via a cerium-induced strategy. The addition of cerium not only adjusts the morphology of the Co-MOF but also enhances the oxygen vacancy defects. Notably, the Co4Ce1-MOF material possesses a unique nanorod-like morphology, which greatly increases the specific surface area, shortens the ion transport routes and exposes more active sites. Meanwhile, the higher oxygen vacancy concentration in the Co4Ce1-MOF suggests its more pronounced oxygen vacancy defects compared to the Co-MOF. These findings provide an innovative strategy for the fabrication of MOF-based high-performance electrode materials for supercapacitor applications.