An amide hydrogen bond templated [1]rotaxane displaying a peptide motif – demonstrating an expedient route to synthetic mimics of lasso peptides†‡

Matthew J. Young, § Geoffrey R. Akien and Nicholas H. Evans *

The rapid synthesis of an amide hydrogen bond templated [1]rotaxane is reported – demonstrating a potential pathway to synthetic analogues of lasso peptides. The structures of the [1]rotaxane and its unthreaded isomer have been characterized by NMR spectroscopy and modelled using DFT calculations.

Introduction

Lasso peptides are a fascinating class of structurally unusual peptides consisting of a polypeptide chain that threads its “tail” through a macrolactam “ring” (Fig. 1). Due to their entangled structure, lasso peptides have been found to evade degradation by enzymes, and examples have been shown to possess a number of useful bioactive characteristics, including antimicrobial activity, receptor antagonism and enzyme inhibition. The total synthesis of lasso peptides is in its infancy, with the first chemical synthesis of a lasso peptide having only very recently been reported. However, it has been established that the conformationally constrained amino acids displayed in the “loop region” (see Fig. 1) are important in determining the biological activity of a lasso peptide. Synthetic [1]rotaxanes are structurally equivalent to lasso peptides, but examples that display peptide sequences are rare.

Recently we have rapidly prepared [2]rotaxanes by use of hydrogen bond templation and CuAAC click chemistry to stopper a simple amide half-axle component threaded through an isophthalamide macrocycle. Here we are reporting an adaptation of this method to rapidly prepare a [1]rotaxane displaying a Gly-Gly-Gly-Gly peptide sequence within the key loop region, by appending and then cyclizing a peptide chain on a novel “scaffold” [2]rotaxane. Successful preparation of the target [1]rotaxane was confirmed by NMR spectroscopy and mass spectrometry. Structural comparison with the non-interlocked isomer of the [1]rotaxane has also been undertaken by NMR spectroscopy and DFT calculations.

When compared to prior work from the laboratories of Coutrot and Bode, the synthetic route reported here has the potential to generate better mimics of naturally occurring lasso peptides. In the previous cases, the entangled structure arises from the non-amide templation of a protonated ammonium passing through a 24-crown-8 macrocycle. Here, amide motifs (used to template formation of the interlocked structure through the carbonyl O atom of the axle to the isophthalamide N–Hs of the macrocycle) are to be found in both the axle and ring components – not just the peptide sequence in the loop region.

Results and discussion

The synthesis of [1]rotaxane 6 is presented in Scheme 1. All novel compounds were characterized by NMR spectroscopy (¹H, ¹³C and where applicable ¹⁹F), IR spectroscopy and high resolution mass spectrometry. Scaffold [2]rotaxane 4 was prepared using azide 1, alkyne 2 and amino macrocycle 3. Azide 1 was synthesized according to our previously reported pro-
cedures in two chromatography-free steps. Novel alkyne 2 was prepared in four chromatography-free steps (see ESI, page S3‡), with inclusion of a glycine unit as part of 2 to guarantee sufficient bulk for the rotaxane stopper. Novel amino macrocycle 3 was synthesized in four steps from commercially available starting materials (see ESI, pages S6 & S9‡).

[2]Rotaxane 4 was synthesized using our recently reported hydrogen bond templated strategy. Macrocycle 3 was dissolved in CH₂Cl₂ in the presence of 1.1 equivalents of azide 1 and 1.1 equivalents of alkyne 2. Catalytic [Cu(CH₃CN)₄]BF₄ and TBTA and 1.2 equivalents of DIPEA were added and the reaction stirred overnight at room temperature under an inert atmosphere. After aqueous work-up and careful silica chromatography, [2]rotaxane 4 was isolated in 27% yield.

The ¹H NMR spectra of [2]rotaxane 4, along with that of non-interlocked macrocycle 3 and axle 7 (for synthesis of axle
In addition, the molecular ion peak \([\text{M} + \text{Na}]^+\) for [2]rotaxane protons attached to the same carbon to become inequivalent. due to the directionality of the threaded axle that causes the

4-ane

washing in 80% yield (using three equivalents of the protected tri-

macrocyclic amine group of [2]rotaxane

Scheme 1.

This journal is © The Royal Society of Chemistry 2020

8

splitting of aromatic macrocycle protons

see ESI, page S30

7

Carbon

Fig. 2 \(^1\text{H} \) NMR spectra of (a) macrocycle 3, (b) [2]rotaxane 4 and (c) axle 7 (1:1 CDCl\(_3\)/CD\(_3\)OD, 400 MHz, 298 K). For atom labels see Scheme 1.

7 see ESI, page S30‡ are shown in Fig. 2. The upfield shift and splitting of aromatic macrocycle protons 8 and 9 and the upfield shifts of axle protons 17, 20, 21, 22, 23 and 25 in [2] rotaxane 4 compared to macrocycle 3 and axle 7 are consistent with the threading of the axle component through the macrocycle. The downfield shift of internal isophthalamide proton 4 is indicative of hydrogen bonding to the carbonyl oxygen of the axle amide. Evidence to support the co-conformation of [2] rotaxane 4 depicted in Scheme 1 is provided by the appearance of through-space correlations in the \(^1\text{H} \) ROESY NMR spectrum between protons 8 and 9 of the macrocycle and axle proton environments 17, 20 and 21 (see ESI, page S16‡). For [2]rotaxane 4, the resonances of macrocyclic protons 6 and 11 are split due to the directionality of the threaded axle that causes the protons attached to the same carbon to become inequivalent. In addition, the molecular ion peak \([\text{M} + \text{Na}]^+\) for [2]rotaxane 4 was observed in the positive-ion electrospray mass spectrum at \(m/z = 1209\) Da (see ESI, page S17‡).

With [2]rotaxane 4 in-hand, preparation of the target [1] rotaxane was executed. Boc–Gly–Gly–Gly was appended to the macrocyclic amine group of [2]rotaxane 4 by use of EDC coupling in 80% yield (using three equivalents of the protected tri-peptide). Treatment of Boc-peptide appended [2]rotaxane 5 with TFA in CH\(_2\)Cl\(_2\) simultaneously removed both the Boc and tert-butyl ester. Cyclization was carried out using HATU\(^16\) at a dilute concentration of 2 mmol L\(^{-1}\) of deprotected 5 in CH\(_2\)Cl\(_2\) to minimize the effect of competing oligomerization reactions, with [1]rotaxane 6 being isolated in 34% yield (over two steps from 5) after aqueous work-up and silica gel column chromatography. Confirmation of the successful isolation of target [1] rotaxane 6 was ascertained by NMR spectroscopy and mass spectrometry – a molecular ion peak \([\text{M} + \text{Na}]^+\) for 6 being observed in the positive-ion electrospray mass spectrum at \(m/z = 1306\) Da (see ESI, page S24‡).

To study the structural effects of [1]rotaxane 6 being inter-

locked, the unthreaded analogue 8 was also prepared (for details of synthesis see ESI, page S33‡). Inspection of the \(^1\text{H} \) NMR spectra (recorded in D\(_6\)-DMSO due to the very limited solubility of 8, Fig. 3) reveals the anticipated shielding of protons 8, 9, 17, 20, 21, 22 and 25 (but interestingly not 23) and deshielding of proton 4 for [1]rotaxane 6 compared to unthreaded 8. In addition, the axle amide proton c is notably upfield in 6 compared to 8, consistent to being present within the shielding macrocyclic cavity of [1]rotaxane 6. There is also the expected marked splitting of macrocyclic resonances 6 and 11 for [1]rotaxane 6 arising from the directionality of the threaded axle. Other notable differences in chemical shift between the two molecules are for amide proton a (signifi-

antly greater than for any of the glycine amide protons d–g) and aromatic axle proton 27, tentatively attributed to differences in hydrogen bonding involving these protons (either intramolecularly and/or with the strongly hydrogen bond accepting DMSO solvent).

NMR experiments at elevated temperatures provided no evidence of detreading of 6 or threading of 8. However, they were used to study variation in the chemical shift of NH reso-
Fig. 4 Minimum energy DFT calculated structures of (a) [1]rotaxane 6 and (b) unthreaded isomer 8 (C–H hydrogen atoms omitted for clarity).

Conclusions

An expedient route to a peptide containing amide hydrogen bond templated [1]rotaxane has been demonstrated by the synthesis and structural characterization of a tetra-glycine containing [1]rotaxane. Looking forward, substitution of Boc–Gly–Gly–Gly by other aliphatic side-chained peptide sequences should be straightforward, and in principle with modifications to protecting group strategy more exotic amino acid side-chains (or non-peptide motifs) could be incorporated. Hence delicate bioactive functionality could be displayed in the loop region, with protection against enzymatic degradation and/or conformational control being provided by the entangled [1]rotaxane structure. Work on some of these avenues of research, as well as developing alternative synthetic routes to novel [1]rotaxanes, are ongoing in our laboratories.

Experimental

General information

Commercially available solvents and chemicals were used without further purification unless stated. Dry solvents, NEt3 and DIPEA were purchased dry and stored under an inert atmosphere. Cu(CH3CN)4BF4 was stored in desiccator over P2O5. Deionised water was used in all cases.

Silica gel with a 60 Å particle size was used as the stationary phase for column chromatography. Analytical TLC was used to monitor the progress of column chromatography and analytical TLC plates were examined under short wavelength (λ = 254 nm) UV light. Preparatory TLC was carried out on silica gel possessing a fluorescent indicator to allow for examination with short wavelength UV light.

IR spectra of neat samples were recorded on an Agilent Technologies Cary 630 FTIR spectrometer. NMR spectra of samples dissolved in deuterated solvent were recorded on a Bruker AVANCE III 400 spectrometer at 298 K. 1D NMR spectra were referenced using residual solvent peaks, and assigned using standard 1H–1H COSY, 1H–13C HSQC and 1H–13C HMBC NMR experiments, with data being reported according to the atom labels as defined in the structures below. Electrospray mass spectra of dissolved samples, diluted in CH3CN or CH3OH, were recorded on a Shimadzu LCMS IT ToF instrument. Melting points were recorded on a Gallenkamp capillary melting point apparatus and are uncorrected.
Experimental procedures

[2]Rotaxane 4. Amino macrocycle 3 (107 mg, 0.219 mmol) and azide 1 (82 mg, 0.24 mmol) were dissolved in dry CH₂Cl₂ (10 mL) under an Ar (g) atmosphere. Then alkyne stopper 2 (6 mg, 0.24 mmol) in dry CH₂Cl₂ (1 mL), Cu(CH₃CN)₄BF₄ (7.6 mg, 0.024 mmol), TBTDA (13 mg, 0.024 mmol) and DIPEA (34 mg, 46 µL, 0.26 mmol) were added. The reaction was stirred at r.t. for 15 h under an Ar (g) atmosphere. Then, the reaction was diluted to 20 mL, washed with 0.02 M EDTA in 1 M NH₃ (aq) solution (2 × 20 mL) and brine (1 × 20 mL). The organic layer was dried (MgSO₄) and solvent removed in vacuo. The crude material was purified by silica gel column chromatography (CH₂Cl₂/CH₃OH 99 : 1 to 96 : 4) to yield pure product 4 as a colourless film (52 mg). In addition, axle 7 (102 mg) was also isolated. Further pure product 4 was isolated after prep TLC of mixed fractions (17 mg). Total yield of [2]rotaxane 4: 69 mg, 27%.

Rf 0.20 (CH₂Cl₂/CH₃OH 98 : 2).

ν_{max/cm⁻¹} (neat): 3350 (N-H), 2920 (C=H), 1740 (C=O ester), 1650 (C=O amide), 1600, 1520, 1450, 1360, 1280, 1230, 1130, 1100.

δ_H (400 MHz; CDCl₃/CD₃OD 1 : 1): 8.18 (2H, s, C₁₇H₃), 8.05 (1H, s, C₁₄H₂), 7.75–7.76 (2H, m, C₂₁H₂ & C₂₃H₂), 7.67 (1H, t, J = 1.5 Hz, C₁₇H₂), 7.64 (1H, s, C₁₇H₂), 7.43 (1H, t, J = 5.4 Hz, C₂₆NH₂), 7.36 (2H, d, J = 1.5 Hz, C₁₇H₂), 7.32 (1H, s, C₁₂H₂), 6.88 (4H, d, J = 7.9 Hz, C₁₇H₂), 6.71 (4H, d, J = 7.9 Hz, C₁₇H₂), 5.02 (2H, s, C₂₃H₂), 4.49 (2H, d, J = 14 Hz, C₈H – diastereotopic) 4.25–4.30 (4H, m, C₁₈H – diastereotopic & C₁₄H – diastereotopic) 4.05–4.08 (4H, m, C₁₁H – diastereotopic & C₁₄H), 3.99 (2H, t, J = 7.0 Hz, C₁₁H₂), 3.54–3.72 (8H, m, C₁₈H & C₁₅H₂), 2.67 (2H, br s, C₁₃H), 1.66–1.73 (2H, m, C₁₉H), 1.47 (9H, s, C₃₇H).

δ_C (100 MHz; CDCl₃/CD₃OD 1 : 1): 170.0 (C¹⁵), 168.7 (C¹), 167.9 (C¹³), 165.0 (C¹⁹), 159.4 (C²₃), 149.1 (C¹), 143.1 (C²₄), 138.1 (C¹), 137.1 (C¹⁰), 137.1 (sic, C²₈), 136.7 (C₁₈), 136.0 (C¹), 132.8 (q, J = 32 Hz, C₂₀), 132.3 (q, J = 34 Hz, C₁₅), 129.6 (C²), 129.1 (C¹⁷), 129.0 (C⁸), 125.7 (C³), 125.3 (br, C₁₄), 124.0 (q, J = 271 Hz, C₁₆), 118.0 (C⁵), 117.6 (br, C₁₉), 117.3 (C₁₅) 115.9 (br, C₁₁), 114.2 (C₁), 82.9 (C₃₆), 74.3 (C₁₃), 71.6 (C₁₆), 70.4 (C₁₅), 62.4 (C²₅), 48.7 (C²₅), 44.8 (C⁸), 43.1 (C₃₄), 38.1 (C₂₀), 29.6 (C²₁), 28.4 (C¹). Quartet for C₁₃ lost in baseline.

m/z (ES): 1209.4047 ([M + Na]+ C₅₁H₃₃F₆N₇NaO₁₀ requires 1209.4103).

Boc-peptide [2]rotaxane 5. [2]Rotaxane 4 (69 mg, 0.058 mmol) was dissolved in dry CH₂Cl₂ (2 mL), and cooled to 0 °C under an Ar (g) atmosphere. Then dry NE₄BF₄ (8.8 mg, 12 µL, 0.087 mmol), triglycine tert-butyl ester (17 mg, 0.058 mmol), HOBt-hydrate (10 mg, 0.076 mmol) and EDCI-HCl (15 mg, 0.076 mmol) were added, maintaining the temperature at 0 °C. The reaction was stirred at r.t. for 6 h, at which time analytical TLC confirmed presence of 4. The reaction flask was cooled to 0 °C and further dry NE₄BF₄ (8.8 mg, 12 µL, 0.087 mmol), triglycine tert-butyl ester (17 mg, 0.058 mmol), HOBt-hydrate (10 mg, 0.076 mmol) and EDCI-HCl (15 mg, 0.076 mmol) were added. The reaction was stirred at r.t. for a further 16 h, at which time analytical TLC confirmed presence of 4. The reaction flask was cooled to 0 °C and further dry NE₄BF₄ (8.8 mg, 12 µL, 0.087 mmol), triglycine tert-butyl ester (17 mg, 0.058 mmol), HOBt-hydrate (10 mg, 0.076 mmol) and EDCI-HCl (15 mg, 0.076 mmol) were added. The reaction was stirred at r.t. for a further 24 h, then diluted with CH₂Cl₂ (20 mL), and then washed with H₂O (1 × 20 mL), 10% citric acid (aq) (2 × 20 mL), saturated NaHCO₃ (aq) (2 × 20 mL) and brine (1 × 20 mL). The organic layer was dried (MgSO₄), and the solvent removed in vacuo. The crude material was purified by silica gel chromatography (CH₂Cl₂/CH₃OH 98 : 2 to 92 : 8) to yield pure product 5 as a white film (68 mg, 80%).

Rf 0.22 (CH₂Cl₂/CH₃OH 96 : 4).

ν_{max/cm⁻¹} (neat): 3320 (N-H), 3070 (C-H), 2920 (C-H), 1650 (C=O), 1600, 1520, 1450, 1370, 1280, 1130, 1030.

δ_H (400 MHz; CDCl₃/CD₃OD 1 : 1): 9.45 (1H, s, C₁₉H₄), 8.19 (4H, s, C₁₁H & C₁₄H), 8.07–8.10 (2H, br s, C₁₇H₃NH or C₁₇H₃NH & C₁₂H₂NHH), 8.04 (1H, s, C₁₃H₂), 8.00 (1H, s, C₁₂H₂), 7.90 (1H, br s, C₁₇H₃NH or C₁₇H₂NHH), 7.84 (2H, br s, C₁₄H₄), 7.81 (1H, s, C₁₂H₂), 7.70 (1H, s, C₁₈H₄), 7.58 (1H, s, C₁₃H₂), 7.24 (2H, s, C₁₈H₂& C₁₁H₄), 6.94 (4H, d, J = 7.9 Hz, C₁₇H₂), 6.74 (4H, d, J = 7.9 Hz, C₁₅H₂), 6.28 (1H, br s, C₁₇H₃NH), 4.99 (2H, s, C₁₄H₄), 4.60–4.65 (2H, m, C₁₃H – diastereotopic), 4.29 (2H, d, J = 10 Hz, C₂₀H – diastereotopic), 4.20–4.25 (2H, m, C₁₅H – diastereotopic), 4.15 (2H, d, J = 5.5 Hz, C₁₄H₂), 4.09 (2H, d, J = 10 Hz, C₂₀H – diastereotopic), 4.01 (6H, m, C₈H, C₁₄H & C₁₃H₂), 3.87 (2H, d, J = 5.5 Hz, C₁₇H₂), 3.56–3.75 (8H, m, C₁₂H₂ & C₁₃H₂), 2.65–2.69 (2H, H, C₁₃H).
app q, C13H), 1.70–1.73 (2H, m, C29H), 1.51 (9H, s, C16H), 1.35 (9H, s, C11H).

\(\delta_c \) (100 MHz; CDCl\textsubscript{3}): 171.9 (C5), 170.7 (C2 or C9), 169.9 (C3), 168.0 (C2 or C9), 166.8 (C25), 166.2 (C25), 164.0 (C28), 158.5 (C15), 156.7 (C1), 142.1 (C31), 138.8 (\textdagger), 137.3 (C16), 136.2 (C3), 136.0 (\textdagger), 135.8 (\textdagger), 131.4 (q, \(\delta_f = 33 \text{ Hz}, \text{C}_2 \text{ or and/or C}_3 \)), 128.8 (C18 \textasteriskcentered), 128.3 (C27 & C26), 124.5 (C2), 123.1 (q, \(\delta_f = 271 \text{ Hz}, \text{C}_3 \text{ or and/or C}_4 \)), 121.6 (C11), 120.3 (br, C14), 117.0 (br, C38), 116.4 (C19), 115.0 (br, C41), 82.7 (C45), 80.1 (C2), 76.3 (C20), 70.8 (C22), 69.5 (C21), 62.0 (C34), 48.6 (C22), 45.0 (C27), 44.5 (C15), 44.3 (C3), 43.7 (C6 or C8), 43.4 (C6 or C8), 42.8 (C43), 37.3 (C29), 28.7 (C30), 28.2 (C1), 28.1 (C46).

\(\delta_c \) (377 MHz; CDCl\textsubscript{3}): –62.5 (C25F\textsubscript{3}), –62.7 (C40F\textsubscript{3}).

Notes and references

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

N. H. E. expresses his appreciation for funding from Lancaster University (Faculty of Science & Technology Research Grant) and the Joy Welch Educational Charitable Trust. We also wish to thank the following colleagues at Lancaster University: Dr Mike Coogan & Dr Nathan Halcovitch for the collecting and processing of X-ray crystallographic data, Dr David Rochester for the recording of mass spectra and Dr Michael Peach for computational advice.

Notes and references

8 C. Clavel, K. Fournel-Marotte and F. Coutrot, Molecules, 2013, 18, 11553–11575.
15 The modest isolated yield of [2]rotaxane 4 is attributed to oxidation of the macrocyclic amino functionality, in particular during chromatographic purification.
21 The DFT structure of [1]rotaxane 6 reveals that all amides in the loop (a and d–g) can be in a trans conformation. Depiction of amide a as cis in Scheme 1 arises from attempting to achieve a 2D depiction of [1]rotaxane 6 without unusual bond lengths or angles.