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Developing stereoselective synthetic routes that are efficient and
cost-effective allows easy access to biologically active molecules.
Our previous syntheses of allele-selective bumped inhibitors of the
Bromo and Extra-Terminal (BET) domain proteins, Brd2, Brd3, Brd4
and BrdT, required a wasteful, late-stage alkylation step and expen-
sive chiral separation. To circumvent these limitations, we devel-
oped a route based on stereocontrolled alkylation of an N-Pf pro-
tected aspartic acid derivative that was used in a divergent, racemi-
sation-free protocol to yield structurally diverse and enantiopure
triazolodiazepines. With this approach, we synthesized bumped
thienodiazepine-based BET inhibitor, ET-JQ1-OMe, in five steps
and 99% ee without the need for chiral chromatography. Exquisite
selectivity of ET-JQ1-OMe for Leu-Ala and Leu-Val mutants over
wild-type bromodomain was established by isothermal titration
calorimetry and X-ray crystallography. Our new approach provides
unambiguous chemical evidence for the absolute stereochemistry
of the active, allele-specific BET inhibitors and a viable route that
will open wider access to this compound class.

Chemical biology and therapeutic development rely on the
design or discovery of biologically active compounds that typi-
cally contain one or more stereocenters. Amongst the different
stereoisomers for a given compound, it is often the case that
only one (so-called eutomer) exhibits the desired biological
activity, while the other(s) (distomers) may be inactive or have
toxic and off-target effects.’ Studying and testing diastereo-
meric or racemic mixtures has limitations and could lead to
unwanted or artefactual results, it is therefore important to
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develop stereoselective routes and processes which yield solely
the desired biologically active molecule.>™

The four Bromo and Extra-Terminal (BET) proteins, Brd2,
Brd3, Brd4 and BrdT, play a crucial role in transcriptional regu-
lation and other processes such as cell proliferation and cell
cycle progression.°® BET proteins have become attractive
therapeutic targets as their misregulation has been linked to
diseases such as cancer, neurological disorders and
inflammation.>'® Association to disease has fuelled great
interest in the field to develop small molecule BET inhibitors,
many of which are in the clinic."*™* Many BET inhibitors
include a triazolodiazepine scaffold, including JQ1 (ref. 15)
and I-BET762 (ref. 16) (Fig. 1). Due to the high conservation of
BET bromodomains at the acetyl-lysine binding pocket, these
inhibitors are pan-selective so do not significantly discrimi-
nate between the bromodomains within and across the BET

9-ME-1: R = Me
9-ET-1: R=Et

Cl ME: R = Me Cl
ET:R=Et

Fig. 1 Pan and allele-selective BET inhibitors. Pan-selective inhibitors
(+)-JQ1 and I-BET762 (top) and allele selective probes ME, ET, 9-ME-1
and 9-ET-1 (bottom).
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family."”'® More recently, compounds have been reported to
show selective binding to the first bromodomains (BD1), or to
the second bromodomains (BD2), of the BET family.'*>?
Although these compounds can discriminate between BD1
and BD2 within a given BET protein, they still cannot discrimi-
nate across the four BET proteins.

To aid individual intra-BET selectivity, we previously devel-
oped a chemical genetics approach to engineer orthogonal
protein/ligand pairs between the BET proteins and selective
inhibitors.>® Our “bump & hole” approach involved the intro-
duction of a single point mutation to the target BET bromo-
domain by replacing a leucine residue that is conserved
across all BET bromodomains, with a smaller residue (e.g.
alanine) to generate a “hole”.** Simultaneously, an alkyl
“bump” is incorporated at a diastereotopic, methylene group
on the parent scaffold based on the I-BET762 inhibitor,
aimed to both complement the size of the “hole” and provide
a steric clash to the wild-type protein. This approach led to
the generation of allele specific chemical probes ET (ref. 24)
and 9-ME-1 (ref. 25) (Fig. 1) targeting the leucine to alanine
(L/A) or the less disruptive, leucine to valine (L/V) mutation,
respectively. We used this new system to dissect individual
roles of BD1 vs. BD2 in Brd4 and the other BET proteins and
showed that while the BD1 is necessary and sufficient for
chromatin binding, the BD2 plays a role in transcriptional
regulation.?**®

Our previous approaches for incorporation of an alkyl
“bump” into the I-BET scaffold involved alkylation of a pot-
assium enolate to afford bumped I-BET derivatives with unde-
sired diastereoselectivity and in low yields (Fig. 2A).
Epimerisation was required to enhance the amount of
desired diastereomer, and further separation by high per-
formance liquid chromatography (HPLC) to isolate the
desired isomer. Due to the use of potassium hexamethyl-
disilazide (KHMDS) for the enolization, and the need of an
epimerisation step at such a late stage of the synthesis, the
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Fig. 2 Synthetic routes to bumped BET inhibitors. (A) Previous synthetic
strategy for bumped I-BET762 derivatives. (B) Retrosynthetic analysis for
enantiopure bumped JQ1 derivatives.
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products are racemic and require chiral separation to isolate
the eutomers.”*® Separation of the enantiomers can be
costly (up to £1000 for <150 mg of racemate) and leads to loss
of material during the separation.

We sought to address these problems by developing a new
stereoselective synthetic strategy. We hypothesised that incor-
porating the “bump” earlier in the synthesis via a diastereo-
selective alkylation of an aspartic acid derivative would circum-
vent the limitations of the original route (Fig. 2B). Here, we
describe a new synthetic route that allows the preparation of
both novel and previously described bumped BET inhibitors
stereoselectively in 99% ee. We also provide unambiguous
chemical evidence to the absolute stereochemistry of the active
allele-specific ligand, previously only assumed based on co-
crystal structures.>

Our first efforts to alkylate (+)-JQ1 directly proved unsuc-
cessful, likely due to the steric hindrance caused by the tert-
butyl ester. Conversion from the tert-butyl to a methyl ester
was required to allow for the introduction of the bump.
Alkylation with KHMDS and alkyl iodides proceeded with
undesired diastereoselectivity towards the (S,S) diastereomer
over the (S,R) diasterecomer in overall alkylation yields of
approx. 20%. Epimerisation of the major (S,S) isomer with
sodium methoxide allows access to the desired (S,R) isomer in
a 1:1 ratio with the starting (S,S) isomer. However, the use of
strong bases during alkylation and additional epimerisation
steps may lead to complete racemisation of both stereocentres
as previously reported,**® (see Scheme S1 in ESIf). With
enantiopure (+)-JQ1 costing >$750 per gram, and its derivatives
e.g. (+)-JQ1 carboxylic acid being even more expensive, this
wasteful approach is not a viable strategy for the preparation of
enantiopure bumped JQ1.

To efficiently prepare the desired bumped JQ1 derivatives
as single enantiomers, we sought to stereoselectively introduce
the “bump” earlier in the synthesis. Our synthetic method-
ology was based on previously reported stereoselective alkyl-
ation of r-aspartic acid diester derivatives.”’*° We so hypoth-
esized that protection of the amino group with both 9-phenyl-
9-fluorenyl (Pf) and benzyl (Bn) groups could drive diastereo-
selective alkylation, with the Pf group providing strong steric
hindrance of the f-carbon to the nitrogen while also protecting
the a-proton from epimerisation.

L-Aspartic acid derived diester 1 was first treated with benz-
aldehyde in dichloromethane (DCM) and the formation of the
intermediate imine was monitored by '"H-NMR. Reduction of
the imine with sodium borohydride yielded the mono-benzyl
protected amine 2. Amine 2 was treated with 9-phenyl-9-fluore-
nyl bromide, lead(u) nitrate and tribasic potassium phosphate
in acetonitrile to form the N-diprotected diester 3.
Deprotonation of diester 3 with lithium hexamethyldisilazide
(LHMDS) at —78 °C in tetrahydrofuran (THF) afforded the
desired E-lithium enolate, which was reacted with methyl
iodide at —40 °C over 16 h. This yielded methylated diastereo-
mers 4a (S,R) and 4b (S,S) in a 6: 1 ratio respectively. Ethylated
compounds 5a and 5b were prepared in a similar way by
deprotonation of diester 3 with LHMDS at —78 °C in THF fol-
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lowed by addition of ethyl iodide and stirring at —78 °C for
16 h. This was left for a further 24 h at —23 °C to yield diaster-
eomers 5a (S,R) and 5b (S,S) in a 2:1 ratio respectively. The
choice of LHMDS over the respective potassium base, KHMDS,
was motivated by prior findings that switching between these
bases can reverse the diastereoselectivity on a similar aspartate
derived diester to compound 3.>” Using the potassium base
leads to a chelate controlled enolate-ester intermediate which
has the opposite geometry to the non-chelated, ‘open’ lithium
enolate intermediate and influences facial selectivity to attack
by the electrophile (alkyl iodide).

Removal of both Pf and Bn groups were performed by
hydrogenation of alkylated diesters 4a and 5a with a suspen-
sion of 10% palladium on carbon (Pd/C) in acetic acid to give
free amines 6 and 7 in high yields. The resulting free amines
were dissolved in a 1:1 mixture of trifluoroacetic acid (TFA)
and dichloromethane to achieve the tert-butyl ester de-
protection and leave the free amino acid as a TFA salt. The
TFA salts were then dissolved in 2 M HCI and freeze-dried to
obtain the amino acids 8 and 9 as HCI salts. Conversion of
salts proved crucial for the next step as any TFA present led to
the formation of trifluoroacetamide by-products. Amino acids
8 and 9 (HCI salts) were treated with triphosgene in THF over
16 h to yield the key N-carboxyanhydrides (NCAs) 10 and 11, as
precursors of the alkylated sidechain fragment. These were
used in the next steps without the need for further purification
(Scheme 1).

Next, thienodiazepines 13 and 14 were formed in a conden-
sation reaction between NCAs 10 and 11 and amino ketone 12
by heating in the presence of TFA and subsequently triethyl-
amine (TEA) in toluene as reported by Fier et al.’" The use of
this methodology for the benzodiazepine ring formation was
crucial in our synthetic strategy as it was found to retain the
stereochemistry of the amino acid derived NCA. Deprotonation
of the lactam in both 13 and 14 with potassium tert-butoxide
and addition of diethyl chlorophosphate, as described,** gave
the activated phosphorylimidate intermediate which was not
isolated. This was subsequently reacted with acetylhydrazine
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which led to the formation of the triazole ring in the final
compounds 15 (ME-JQ1-OMe) and 16 (ET-JQ1-OMe) with 99%
ee determined with supercritical fluid chiral chromatography
(Scheme 2, see ESIT for analytical details). Overall, we were
able to achieve ~40 mg of enantiopure product in just five,
yield limiting, steps from <£100 worth of starting materials. In
comparison, our previous approach required six steps, includ-
ing expensive chiral purification (~£1000) and 1 g of JQ1
($750) to achieve the same amount of pure product.

Quantitative conversion to carboxylic acids 17 (ME-JQ1-OH)
and 18 (ET-JQ1-OH) was achieved by treating esters 15 and 16
in a 4:1 mixture of THF to either a 0.54 M or 0.65 M lithium
hydroxide (LiOH) solution respectfully. Heating to 45 °C was
required for ethyl bumped compound 16 due to the conversion
being much slower in comparison to the methyl bumped com-
pound 15. These very mild conditions were essential to avoid
epimerisation of the alkylated stereocenter adjacent to the car-
bonyl group. Using higher concentrations of LiOH and/or
higher temperatures resulted in an increased rate of hydrolysis
but led to substantial epimerisation to the undesired (S,S) dia-
stereomer. Access to these free acids allows the possibility for
further functionalisation (e.g. via amide or ester bond
formation).

Having achieved the novel bumped JQ1 derivatives, we next
sought to demonstrate the versatility and scope of our new
route by attempting to synthesise the I-BET-based bumped
probes, 9-ME-1 and 9-ET-1.>° By using NCA precursors 10 and
11, and treating them with aminobenzophenone 19 in the
same condensation reaction as described previously, yielded
benzodiazepines 20 and 21. Subsequent triazole ring for-
mation via a similar phosphorylimidate intermediate as
described above yielded the final ligands, 22 (9-ME-1) and 23
(9-ET-1), with 99% ee determined with supercritical fluid
chiral chromatography (see ESIt for analytical details). We
have also demonstrated the accessibility for the (S,S) diastereo-
mer (reported as 16* in the ESIf) of 16 using the minor ethy-
lated diastereomer 5b as the starting point. Stereoselective
access to ‘inactive’ stereoisomers provides important negative

- OMe tBuO)L(mOMe
N _N._ O
6:1dr pr~Ngn P "Bn
REP % 4aR=Me 4b:R=Me
' 5a: R= Et 5b: R= Et

Z = Pf=
NH O quant. @H2 o) quant quant.
o) HCI O.
10: R=Me 8:R=Me 6: R=Me Q
11: R=Et 9: R=Et 7:R=Et

Scheme 1 Stereoselective synthesis of N-carboxyanhydrides 10 and 11. Conditions: (a) (i) Na,COs, EtOAc, H,O, (i) PhCHO, DCM, 2 h, r.t., (iii)
NaBH,4, MeOH, 1 h, 0 °C-r.t. (66%); (b) PfBr, KsPO,4, Pb(NO3),, MeCN, r.t., 4 h (98%); (c) (i) LHMDS, THF, —78 °C, 1 h, (ii) Mel/Etl, —78 °C to -23 °C,
48 h/96 h (65%/48%); (d) H,, Pd/C, AcOH, r.t., 24 h (quant.); (e) (i) TFA, DCM, r.t., 2 h, (i) 2 M HCl, freeze dry (quant.); (f) triphosgene, THF, r.t., 16 h

(quant.).
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OH

R = Me: 39%
R = Et: 35%

15: ME-JQ1-OMe: R = Me
16: ET-JQ1-OMe: R = Et
99% ee

17: ME-JQ1-OH: R = Me
18: ET-JQ1-OH: R =Et

99% ee

R =Me: 11%
R =Et: 8%

22: 9-ME-1: R = Me
23: 9-ET-1: R=Et

99% ee

Scheme 2 Formation of thienodiazepines 15-18 and benzodiazepine derivatives 22 and 23. Conditions: (a) (i) TFA, toluene, 60 °C, 0.5 h, (ii) TEA,
80 °C, 16 h (30-51%); (b) (i) KO'Bu, THF, =78 °C to —10 °C, 0.5 h, (ii) (OEt),P(O)Cl, —78 °C to —10 °C, 0.75 h, (iii) AcNHNH,, r.t., 1 h, (iv) n-butanol,
90 °C, 1 h (8-39%); (c) LIOH, THF: H,O 4: 1, R = Me; r.t,, 1 to 3 days; R = Et: 45 °C, 1 week (quant.).

controls to increase validity and robustness of findings in both
biophysical and biological assays.

To further characterise our novel bumped compound, we
studied the binding of 16 to Brd4(2) L387A, L387V and wild-
type using isothermal titration calorimetry (ITC). We found
undetectable/no binding of 16 to the wild-type protein
(Fig. 3A, see also ESI Fig. S57), consistent with ethyl bumped
compounds reported previously.>** Crucially, 16 demon-
strated very high binding affinity to both L/A and L/V mutants
with equipotent K4 values of 65 nM (Fig. 3A, see also ESI
Fig. S3 and S4f). To validate the binding mode, we solved a
high resolution (1.56 A) X-ray structure of Brd2(2)***V co-crys-
tallised with 16 (Fig. 3B, see also ESI Fig. S2 and Table S17).
We found that 16 adopts a similar binding mode to 9-ME-1
and 9-ET-1 (see ESI Fig. S1f), positioning the ethyl “bump”
towards the “hole” formed by the L/V mutation.

In summary, we describe a versatile stereoselective
approach to successfully synthesise bumped BET inhibitors.
We demonstrate scope by synthesizing both novel JQ1 deriva-
tives and previously described I-BET762 derivatives, all in 99%
ee. Compared to the previous method, our new route achieves
enantiopure products in one less step, from widely available
and relatively inexpensive starting materials, while avoiding
wasteful, late-stage alkylation steps and chiral separation. We
qualified the remarkable allele-selectivity of ET-JQ1-OMe over
wild-type and provided unambiguous chemical evidence to the
absolute stereochemistry of the eutomer. Access to carboxylic
acid derivatives retaining enantiomeric purity enables functio-
nalisation into conjugates such as biotinylated and fluorescent
probes and PROTACs,*® which will further expand the scope
and utility of this new synthetic strategy for chemical biology
investigation.
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Fig. 3 Biophysical and structural characterization of novel JQl-based
bumped inhibitor. (A) ITC titrations of ET-JQ1-OMe (16) against wild-
type (W.T.) (maroon), L387A (blue) and L387V (red) constructs of Brd4(2).
Table shows values taken as a mean and standard deviation from three
replicates. (B) Co-crystal structure of 16 (pink carbons) with Fo-Fc omit
map (grey mesh, contour: 3s) bound to Brd2(2)-*®*V mutant (green,
cartoon representation; green carbons, binding site side chains) (PDB
code: 6YTM). Bump and hole residue Val 383 is highlighted.
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Abbreviations

AcNHNH, Acetyl hydrazine

AcOH Acetic acid

BD1 First bromodomain

BD2 Second bromodomain

BET Bromo and extra-terminal

Brd Bromodomain

DCM Dichloromethane

ITC Isothermal titration calorimetry
KHMDS Potassium hexamethyldisilazide
LHMDS Lithium hexamethyldisilazide
NCA N-Carboxyanhydride

PfBr Phenylfluorenyl bromide
PROTACs  Proteolysis targeting chimeras
TFA Trifluoroacetic acid

THF Tetrahydrofuran
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