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Ruthenium-catalysed cyclisation reactions of 1,11-
dien-6-ynes leading to biindenes†

Takanori Matsuda * and Naoto Yonekubo

1,2-Bis(2-allylphenyl)ethynes undergo cycloisomerisation reactions in the presence of Cp*Ru(II) catalysts

to produce 2,2’-dimethyl-3H,3’H-1,1’-biindenes. On the other hand, tandem ring-closing metathesis of

1,2-bis(2-allylphenyl)ethynes using the Hoveyda–Grubbs 2nd generation catalyst led to the formation of

2,2’-unsubstituted biindenes. Various symmetrical and unsymmetrical bicyclic dienes were prepared by

these ruthenium-based cyclisation methods.

Introduction

3H,3′H-1,1′-Biindenes have previously been prepared by the
oxidative homocouplings of (1H-inden-1-yl)lithiums to yield
diastereomeric mixtures of 1H,1′H-1,1′-biindenes, followed by
base-promoted double bond isomerisation.1 There are fewer
than fifty known biindenes, and some of them have been used
as ligands for transition metals,2 while a biindene-derived diol
has been used as a chiral ligand in the titanium(IV)-catalysed
enantioselective additions of diethylzinc to aldehydes.3

Transition-metal-catalysed cycloisomerisation reactions of
enynes are powerful tools for the synthesis of various carbo-
and heterocyclic compounds.4 This method allows for the
rapid atom-economical construction of a complex cyclic struc-
ture from a linear substrate. The ring-closing metathesis
(RCM) of dienes and enynes revolutionised the way in which
cycloalkenes are assembled, and has been extremely useful in
modern organic synthesis.5 Herein, we report that 1,11-dien-6-
ynes can undergo both cycloisomerisation and tandem RCM
reactions catalysed by ruthenium complexes. Notably, these
reactions are used to prepare 1,1′-biindenes from 1,2-bis(2-
allylphenyl)ethynes.

Results and discussion

When 1,2-bis(2-allylphenyl)ethyne (1a)6 was heated at 60 °C in
EtOH in the presence of 5 mol% CpRuCl(PPh3)2 for 24 h, it
cycloisomerised to afford 2,2′-dimethyl-3H,3′H-1,1′-biindene
(2a) in 21% yield (Table 1, entry 1). The use of Cp*RuCl(PPh3)2
improved the yield of 2a to 45% (entry 2), while the reaction in

the presence of Cp*RuCl(cod) afforded 2a in 34% yield (entry
3). The use of a cationic ruthenium catalyst generated in situ
from Cp*RuCl(cod) and NaPF6 gave 2a in 55% yield (entry 4);
indeed, preformed cationic [Cp*Ru(MeCN)3]PF6 exhibited
comparable activity (entry 5). The effect of the phosphine
ligand was next examined; 2a was formed in 38% yield when
the Cp*RuCl(cod)–BINAP catalyst system was used (entry 6);
however, use of P(C6F5)3 increased the yield of 2a to 61%,
together with a 24% yield of the [2 + 2 + 2] cycloadduct 3a
(entry 7).7,8 The reaction performed in MeOH in the presence
of Cp*RuCl(cod)–P(C6F5)3 furnished 2a in 85% isolated yield
without any noticeable amount of 3a (entry 8). A similar result
was obtained when the reaction was performed at 40 °C (entry
9). Interestingly, the reaction delivered cycloadduct 3a as the
major product when performed in i-PrOH (entries 10 and 11).9

With the optimised reaction conditions in hand, various
diallyl diphenylacetylenes 1b–l bearing substituents on their
benzene rings were subjected to the ruthenium-catalysed
cycloisomerisation conditions (Table 2). The reaction of 1,2-bis
(2-allyl-4-methylphenyl)ethyne (1b) afforded tetramethyl-
biindene 2b in 67% yield (entry 1), whereas symmetrical di-
enynes 1c and 1d bearing methyl or methoxy groups the 5 posi-
tions of their benzene rings afforded 2c and 2d, respectively,
in good yields (entries 2 and 3). In contrast, the reactions of
chloro- and trifluoromethyl-substituted dienynes 1e and 1f
formed the [2 + 2 + 2] cycloadducts 3 as major products under
the standard conditions (1e: 2e 24% + 3e 41%; 1f: 3f 87%). The
cycloisomerisation products from 1e and 1f were obtained as
the major products in yields of 44% and 29%, respectively,
when the reaction was performed with [Cp*Ru(MeCN)3]PF6
(entries 4 and 5). The naphthalene derivative 1g was also con-
verted into the corresponding product 2g (entry 6), while
unsymmetrically substituted biindenes 2h–l were similarly pre-
pared by cycloisomerising dienynes 1h–l (entries 7–11).

The cycloisomerisation conditions were successfully
applied to dienyne 1m devoid of o-phenylene tethers, which
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led to the formation of 1,1′-bicyclopentene 2m in 82% yield in
the presence of [Cp*Ru(MeCN)3]PF6 (Scheme 1, (a)). The
alternative cycloisomerisation product 4m was obtained in
55% yield when 1m was reacted at 0 °C (Scheme 1, (b)).10,11

Heating 4m in the presence of the ruthenium catalyst gave 2m
in 49% yield, but no isomerisation was observed in the
absence of the ruthenium catalyst. Based on these results as
well as previous studies, we conclude that 2-methylene-1,1′-bi-
(cyclopentylidene) 4m is the initial cycloisomerisation product,
and that 4m is also catalytically isomerised to 2m by the ruthe-
nium catalyst.

Two possible reaction pathways can be proposed for the
ruthenium-catalysed cycloisomerisation of 1,11-dien-6-yne 1
(Scheme 2). Path (a) involves the formation of a hydroruthe-
nium species from the catalyst and MeOH,12 a Markovnikov
hydroruthenation to the CvC bond of 1 to form A, consecu-
tive carboruthenation (through B to C), β-hydride elimination
that releases 4, and the final double bond isomerisation of 4
to afford product 2. On the other hand, in path (b), dienyne 1
first undergoes oxidative cyclisation on ruthenium to gene-
rate the ruthenacyclopentene species D. The unreacted
alkene moiety in D then inserts into the Ru–C(sp2) bond to
give the ruthenacycloheptene intermediate E. Subsequent
β-hydride elimination (to form F) followed by reductive elim-
ination yields 4, which then isomerises to 2 catalysed by a
hydroruthenium species. Alternatively, β-hydride elimination
from D generates alkenylruthenium hydride G, which also
leads to 4 through intramolecular carboruthenation (to F) or
hydroruthenation (to H). Reductive elimination from inter-
mediate E is possible, which gives rise to the [2 + 2 + 2] cyclo-
adduct 3.

Dienyne 1n or 1o, in which one allyl group is replaced
with a crotyl or a methallyl group, was found to be unreac-

tive toward cycloisomerisation, which reveals that the reac-
tion is limited to dienynes with unsubstituted CvC double
bonds (Chart 1). Moreover, 1,2-bis[2-(vinyloxy)phenyl]
ethyne (1p) also failed to react, and a complex mixture
of products was obtained when unsymmetrical dienyne
1q, bearing malonate and o-phenylene tethers, was
reacted.13

We have been interested in the catalytic syntheses of silole
derivatives14 and the cycloisomerisation of bis-silicon-bridged
1r was envisaged as a method for the synthesis of a bi(1-silain-
dene).15 However, the reaction of 1r under conditions similar
to those described above led to a totally different outcome:
1,1′,2,2′-tetrahydro-4,4′-bi(1-silanaphthalene) 5 was obtained
in 43% yield as the sole product after full conversion of 1r
(Scheme 3). The silanaphthalene 5 may have formed through a
stitching reaction mediated by a hydroruthenium species in a
manner analogous to the path (a) in Scheme 2, but with initial
anti-Markovnikov hydroruthenation.

Tandem ring-closing metathesis (RCM) of 1,11-dien-6-
ynes that form 1,1′-bicyclopentene derivatives has pre-
viously been studied,16 but those of 1,2-bis(2-allylphenyl)
ethynes have, to the best of our knowledge, never been
examined. If allowed, this reaction provides a route to 3,3′H-
1,1′-biindenes that lack substituents at their 2 and 2′ posi-
tions, which is complementary to the cycloisomerisation of
1. Tandem RCM of 1a in the presence of the Hoveyda–
Grubbs 2nd generation catalyst at 100 °C in toluene (0.1 M)
afforded the desired biindene 6a in 60% yield (Table 3,
entry 1). A lower concentration of 1a resulted in an
improved yield of 6a, and 0.02 M was found to be optimal
for the present reaction (entries 2 and 3). Other Grubbs cat-
alysts were not suitable for this transformation (entries 4
and 5), while the reaction with 3 mol% catalyst gave a

Table 1 Ruthenium-catalysed cycloisomerisation of 1,2-bis(2-allylphenyl)ethyne (1a)a

Entry Ru catalyst Ligand (mol%) Additive Solvent Temp. (°C) Time (h) Yieldb (%) of 2a Yieldb (%) of 3a

1 CpRuCl(PPh3)2 — — EtOH 60 24 21
2 Cp*RuCl(PPh3)2 — — EtOH 60 4 45
3 Cp*RuCl(cod) — — EtOH 60 24 34
4 Cp*RuCl(cod) — NaPF6 EtOH 60 24 55
5 [Cp*Ru(MeCN)3]PF6 — — EtOH 60 12 56
6 Cp*RuCl(cod) rac-BINAP (5) — EtOH 60 24 38
7 Cp*RuCl(cod) P(C6F5)3 (10) — EtOH 60 24 61 24
8 Cp*RuCl(cod) P(C6F5)3 (10) — MeOH 60 24 85
9 Cp*RuCl(cod) P(C6F5)3 (10) — MeOH 40 24 87
10 Cp*RuCl(cod) P(C6F5)3 (10) — i-PrOH 60 24 11 55
11 Cp*RuCl(cod) P(C6F5)3 (10) i-PrOH 40 24 14 75

a Reaction conditions: 1a (0.050 mmol), ruthenium catalyst (2.5 µmol, 5 mol%), ligand (Ru : P = 1 : 2), solvent (0.5 mL, 0.1 M). b Isolated yield.
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similar result (entry 6). As for the reaction temperature,
100 °C was found to be the best among those examined for
the RCM of 1 (entries 6–8).

Various diallyl diphenylacetylenes 1b–l, which were success-
fully cycloisomerised (vide supra), were examined under the
RCM conditions (Table 4). Symmetrical (1b–g) and unsymme-

Table 2 Cycloisomerisation of dienynes 1

Entry Dienyne 1 Product 2 Yielda (%)

1 67

2 1c (R = Me) 2c 72
3 1d (R = OMe) 2d 63
4b,c,d 1e (R = Cl) 2e 44
5b,d 1f (R = CF3) 2f 29
6e 39

7 90

8 1i (R = Me) 2i 86
9 1j (R = OMe) 2j 84
10d 1k (R = Cl) 2k 55
11d 1l (R = CF3) 2l 45

a Isolated yield (average of two runs). b 5 mol% [Cp*Ru(MeCN)3]PF6
was used as catalyst. c Reaction was performed at 60 °C. d The crude
reaction mixtures contained byproducts such as 3. e Reaction was per-
formed at 80 °C in MeOH (0.05 M).

Scheme 1 Cycloisomerisation of 1m.

Scheme 2 Possible reaction pathways for the cycloisomerisation of 1m
(X = C(CO2Me)2).

Chart 1 Dienynes that failed to undergo ruthenium-catalysed
cycloisomerisation.
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trical (1h–l) dienynes were converted through tandem RCM
into biindenes 6b–l in yields ranging from 63% to 96%.
Furthermore, dienynes 1o–q, which failed to cycloisomerise,
also reacted to afford the corresponding metathesis products
4o–q, respectively, in good yields. However, the attempted
tandem RCM of the bis-silicon-bridged 1r resulted in no con-
version under various metathesis conditions.

Conclusions

In conclusion, we developed ruthenium-catalysed cycloisome-
risation and tandem-RCM methods for the synthesis of bicyc-
lic conjugated dienes, in which two rings (cycloalkenes) are
constructed. Cycloisomerisation of 1,11-dien-6-ynes afforded
2,2′-dimethyl-[1,1′-bi(cyclopentene)] derivatives catalysed by
Cp*Ru. On the other hand, 2,2′-unsubsituted bicyclopentenes
were prepared through the tandem RCM of 1,11-dien-6-ynes
with the Hoveyda–Grubbs catalyst.17

Scheme 3 Cycloisomerisation of 1r.

Table 4 Tandem RCM of dienynes 1

Entry Dienyne 1 Product 6 Yielda (%)

1 74

2 1c (R = Me) 6c 86
3 1d (R = OMe) 6d 63
4 1e (R = Cl) 6e 96
5 1f (R = CF3) 6f 83
6 68

7 90

8 1i (R = Me) 6i 77
9 1j (R = OMe) 6j 74
10 1k (R = Cl) 6k 80
11 1l (R = CF3) 6l 85

Table 3 Tandem RCM of 1a

Entry
Grubbs catalyst
(mol%)

Conc.
(M)

Temp.
(°C)

Time
(h)

Yielda

(%)

1 Hoveyda–Grubbs 2nd cat. (5) 0.1 100 0.5 60
2 Hoveyda–Grubbs 2nd cat. (5) 0.04 100 1 67
3 Hoveyda–Grubbs 2nd cat. (5) 0.02 100 3 77
4 Grubbs 2nd cat. (5) 0.02 100 6 44
5 Stewart–Grubbs cat. (5) 0.02 100 6 26
6 Hoveyda–Grubbs cat. 2nd (3) 0.02 100 6 82
7 Hoveyda–Grubbs cat. 2nd (3) 0.02 90 6 67
8 Hoveyda–Grubbs cat. 2nd (3) 0.02 110 6 74

a Isolated yield.
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