Nanoscale

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Nanoscale, 2020, 12, 12177

Correction: Stabilization of negative capacitance in ferroelectric capacitors with and without a metal interlayer

T. Rollo, (10 *a F. Blanchini, (10 b G. Giordano, (10 c R. Specogna (10 a and D. Esseni (10 *a

DOI: 10.1039/d0nr90122a

rsc.li/nanoscale

Correction for 'Stabilization of negative capacitance in ferroelectric capacitors with and without a metal interlayer' by T. Rollo, et al., Nanoscale, 2020, **12**, 6121–6129, DOI: 10.1039/C9NR09470A.

The authors regret that the value of β in the caption of Fig. 4 was incorrectly given as 4.5×10^9 m⁵ C⁻² F⁻¹. The correct value of β is 2.25×10^{10} m⁵ C⁻² F⁻¹. Fig. 4, along with the full corrected caption, is displayed below.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDPIA, University of Udine, Via delle Scienze 206, 33100 Udine, Italy. E-mail: david.esseni@uniud.it

^bDMIF, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

^cDII, University of Trento, via Sommarive 9, 38123 Povo, TN, Italy

Correction Nanoscale

Fig. 4 Comparison between simulations and experiments. Measurements (symbols) and simulations (lines) for the MFIM structures in ref. 12 and 13. For the $Hf_{0.5}Zr_{0.5}O_2-Ta_2O_5$ capacitor the simulation parameters are $\varepsilon_F=33$, $\varepsilon_D=23.48$, $t_F=11.6$ nm, $t_D=13.5$ nm, $\alpha=-4.6\times10^8$ m F^{-1} , and $\beta=9.8\times10^9$ m⁵ C^{-2} F^{-1} , while for the $Hf_{0.5}Zr_{0.5}O_2-Al_2O_3$ system the parameters are $\varepsilon_D=8$, $t_F=7.7$ nm, $t_D=4$ nm, $\alpha=-9.45\times10^8$ m F^{-1} and $\beta=2.25\times10^{10}$ m⁵ C^{-2} F^{-1} , 12,13 for both capacitors we used $\rho=0.5$ m Ω m and $k=2\times10^{-9}$ m³ F^{-1} m⁻¹. (a) Reversibly stored and released charge, Q, versus the top value V_{MAX} of the trapezoidal voltage waveform across the capacitor. (b) Simulated ferroelectric field and charge versus time produced by a trapezoidal input V_T with a pulse width of 1 μ s and for different V_T amplitudes. (c) Polarisation versus ferroelectric electric field for the $Hf_{0.5}Zr_{0.5}O_2-Al_2O_3$ capacitor. (d) Polarisation versus ferroelectric electric field for the $Hf_{0.5}Zr_{0.5}O_2-Al_2O_3$ capacitor. (e) Sketch of the band structure of the MFIM device with representation of the emission and capture mechanisms. (f) Simulated charge versus ferroelectric E_F curves for different pulse widths of the input signal and fixed density $N_T=7.5^{12}$ eV⁻¹ cm⁻² of acceptor type interface traps with a uniform energy distribution. In these simulations the emission rate is $e_{n0}=5\times10^4$ s⁻¹, the metal gate work-function is $\Phi_M=4.05$ eV, and the electron affinity is $\chi_F=2.2$ eV for $Hf_{0.5}Zr_{0.5}O_2$ and $\chi_D=3.2$ eV for Ta_2O_5 .