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Structure–activity prediction networks (SAPNets):
a step beyond Nano-QSAR for effective
implementation of the safe-by-design concept†

Anna Rybińska-Fryca, a Alicja Mikolajczyk a,b and Tomasz Puzyn *a,b

A significant number of experimental studies are supported by computational methods such as quantitat-

ive structure–activity relationship modeling of nanoparticles (Nano-QSAR). This is especially so in research

focused on design and synthesis of new, safer nanomaterials using safe-by-design concepts. However,

Nano-QSAR has a number of important limitations. For example, it is not clear which descriptors that

describe the nanoparticle physicochemical and structural properties are essential and can be adjusted to

alter the target properties. This limitation can be overcome with the use of the Structure–Activity

Prediction Network (SAPNet) presented in this paper. There are three main phases of building the SAPNet.

First, information about the structural characterization of a nanomaterial, its physical and chemical pro-

perties and toxicity is compiled. Then, the most relevant properties (intrinsic/extrinsic) likely to influence

the ENM toxicity are identified by developing “meta-models”. Finally, these “meta-models” describing the

dependencies between the most relevant properties of the ENMs and their adverse biological properties

are developed. In this way, the network is built layer by layer from the endpoint (e.g. toxicity or other pro-

perties of interest) to descriptors that describe the particle structure. Therefore, SAPNets go beyond the

current standards and provide sufficient information on what structural features should be altered to

obtain a material with desired properties.

Introduction

Precise manipulation and control of the structure of matter on
the nanoscale brings an opportunity to design nanomaterials
(ENMs) that are safe for humans and the environment in
addition to obtaining their maximal efficiency in the context
of the required application. This concept is called ‘safe-by-
design’.1 The crucial aspect of ‘safe-by-design’ is gathering
knowledge on the relationships between the nanomaterials’
structure, physicochemical properties and toxicity. Thus, the
designer knows precisely how to modify the structure to get
the expected change in the activity.

The search for the structure–property and/or structure–
activity relationships can be significantly supported by compu-
tational techniques (e.g. quantitative structure–activity/prop-
erty relationship (QSAR/QSPR) modeling). The application of
the QSAR helps in reducing the expenses and the number of

necessary experiments. Moreover, it provides quantitative
description of the relationships, in the form of mathematical
equations. Thus, the developer is able to calculate to what
extent the property/toxicity would increase/decrease in
response to the considered structural change.

The idea of QSAR modeling for nanomaterials (Nano-QSAR)
was introduced by Puzyn et al. in 2009.2 Since then, it has
been used to improve the existing models, to develop descrip-
tors for nanomaterials, and to support experimental studies.
The most important directions of further developments of
Nano-QSAR have been discussed in a joint “EU-US
Nanoinformatics 2030 Roadmap” and such EU Horizon 2020
projects as NanoSolveIT (http://www.nanosolveit.eu) and
NanoInformaTIX (http://www.nanoinformatix.eu) that work on
the introduction of an innovative Integrated Test and
Evaluation Approach (IATA) for environmental health and
nanomaterial safety and promoting the use of Nano-QSAR
methods as a part of the safe-by-design approach.3

To the best of our knowledge, there is a limited number of
Nano-QSAR/QSPR models that directly express toxicity or a
selected property as a function of the structural features
(descriptors expressing structural attributes). Roy et al. pre-
sented a nano-QSTR approach based on periodic table based
descriptors.4 The authors developed a series of linear
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regression models for predicting the toxicity of heterogeneous
TiO2-based NPs towards the Chinese hamster ovary cell line.
However, only one model was based on a descriptor that
directly describes the structure (amount of silver metal). The
other variables (electrochemical equivalent, 2nd ionization
potential, covalent radius, and thermal conductivity) can be
considered as properties that are consequences of the struc-
ture. Another example is the model for the prediction of zeta
potential based on grouping of the NMs according to their
nearest neighbors developed by Varsou et al.5 The model uti-
lizes three variables: the type of the core (metal oxide or pure
metal), the main elongation expressing the lengthening of the
particle, and the pH where the zeta potential was measured.5

There are also models based on quasi-SMILES, which are char-
acter-based representations derived from traditional SMILES.6

They can encode the structural features, the physicochemical
properties, and the exposure conditions such as cell lines.7–11

Another way to take into account factors such as changes in
chemical compositions, assay organisms, or exposure time is
to apply the QSAR-perturbation approach.12,13 All of the men-
tioned models are very useful tools. However, they do not
provide specific information on the dependency between the
structural features and properties of ENMs that subsequently
influences the biological activity.

Majority of the contributions present the predictions of
ENMs’ biological activity based on the intrinsic physico-chemi-
cal properties (i.e. features independent of the environments
that characterize the nanoparticle as an effect of having a
given structure).14–16 The intrinsic properties applied as tox-
icity predictors allow us to explain the toxicity mode of action,
but do not provide knowledge about the influence of the struc-
tural features on the toxic effect. As a consequence, such
models are insufficient from a “designer” point of view (i.e. a
designer does not know how to modify the structure to obtain
the expected effect). On the other hand, in many discussions
nanotoxicologists raise an issue that the influence of the
environment (e.g. solvent and pH) on the toxicity is of high
importance. Therefore, it might be impossible to predict the
toxicity directly from the structure. Instead, the toxicity can be
predicted from the system-dependent and/or intrinsic pro-
perties and such properties can be linked to the purely struc-
tural features.

Here, we propose to replace the traditional Nano-QSAR
modeling practice with the use of Structure–Activity Prediction
Networks (SAPNets) – an approach that effectively links the
description of ENMs’ structure with their toxicity through a
series of layers built from nodes that correspond to predictive
“meta-models” developed with machine learning techniques
as well as Artificial Intelligence (AI) (Fig. 1).

Idea of structure activity prediction
networks (SAPNets)

The first step of building a network is to gather information
about structural characterization of a nanomaterial, its physi-

cal and chemical properties and toxicity. In the case of chemi-
cally diverse ENMs, their properties can be derived from
experimental as well as computational studies. The advantage
of the theoretical/computational approach is the possibility of
retrieving characterization for a larger number of ENMs than
in the case of experimental studies.

The second step is the identification of relevant properties
directly influencing the ENMs’ toxicity by developing “meta-
models”. However, these models should not be limited to the
Nano-QSAR or more precisely quantitative property–activity
relationship (Nano-QPAR) approach. One should consider
other methods like read-across, knowledge-based decision
rules, models based on omics data, and other types of models
based on AI and machine learning techniques.

The subsequent steps are to build the next layers of “meta-
models” that describe the relationships between the selected
properties of the studied ENMs and their structural features
(descriptors that express structural attributes). In this way, the
network is built layer by layer from the endpoint (e.g. toxicity
or other properties of interest) to the structure. It is worth
noting that SAPNets can be used not only for predicting
adverse effects (toxicity) but also for optimizing the desired
properties of the newly designed ENMs, such as photocatalytic
activity, higher electrical conductivity, etc.

Although the development of structure–activity prediction
networks requires extensive knowledge and experience in com-
putational nanotoxicology, SAPNets may be further easily
applied for predicting the toxicity and properties of ENMs by
non-specialists. This is because they are based on descriptors
that are understandable for non-specialists (e.g. size, shape,
aspect-ratio, and type of coating) and do not require additional
computational calculations – the user provides only the values
of such descriptors and then the predictions are made.

Fig. 1 The schematic representation of the structure–activity predic-
tion networks for modeling of ENMs’ toxic activity; x – descriptor that
describes either structural attributes (D) or properties (P) of ENMs, M –

meta-model (meta-models of the 1st layer – indicated in green, and
meta-models of the 2nd layer – indicated in blue).
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Moreover, the user can see precisely how the modification of
the descriptor values (e.g. size) will influence the predicted
endpoint.

We do believe that the proposed new approach responds to
the needs of the scientific community focused on research on
nanomaterials. Here, we present three case studies in which
the structure–activity prediction networks methodology is used
to estimate the photocatalytic activity as well as the biological
activity of ENMs.

Materials and methods
Case study details: predicting the properties of ENMs with
SAPNets with the example of the phenol degradation efficiency

The presented case study was based on the publicly available
data.17 To assure the reliability of the model, we split the
studied data into the training (T, 15 samples) and external vali-
dation (V, 6 samples) sets. First, the samples were sorted based
on the increasing endpoint value (percentage of phenol degra-
dation, τOH). Then, the ones with the highest and the lowest
value were arbitrarily assigned to the training set. The rest of
the samples were randomly assigned to the validation set.
Therefore, the points from the validation set were evenly dis-
tributed within the range of the endpoint of the training set.
Details can be found in Table 1S in the ESI.† The training set
was used to find an equation that links the properties of
samples with phenol degradation (τOH) by titanium dioxide.
The considered properties were the efficiency of charge carrier
trapping, migration, and transfer expressed as the intensity of
photoluminescence, and the band gap reduction described
through UV-Vis absorption spectra (Tables 2S and 3S in the
ESI†). The relationship between the categorical (τOH) and inde-
pendent variables was described by the logistic regression
model. The stepwise selection approach was used to find an
optimal combination of descriptors. The quality of the model
was determined on the basis of parameters such as accuracy,
sensitivity, specificity, precision, and misclassification error,
calculated for both the training and validation set. Therefore,
we were able to verify the goodness-of-fit of the model and
ability to predict the endpoint value for external samples.
Additionally, the internal validation of the model (leave-one-
out cross-validation) was performed to measure its robustness.

accuracy ¼ TPþ TN=TPþ TNþ FPþ FN

sensitivity ¼ TP=TPþ FN

specificity ¼ TN=TNþ FP

misclassification ¼ FPþ FN=TPþ TNþ FPþ FN

TP, TN, FP, and FN stand for true positive, true negative,
false positive, false negative respectively. The borders of the
applicability domain (AD) of the model are defined by the
minimal and maximal values of descriptors characterizing
samples from the training set. Moreover, the developed model
should be applied only to TiO2-based nanophotocatalysts syn-

thesized in the presence of ionic liquids according to the pro-
tocol described in the source publication.17

All of the analyses in the case study were carried out using
packages available in the R statistical program (R version
3.6.2).

Examples of implementation of the
SAPNet methodology
Predicting the properties of ENMs with SAPNets with the
example of the phenol degradation efficiency

According to the proposed workflow, the developed SAPNet
should finally correlate the structure of a nanomaterial to the
selected endpoint. Here, we present an example of how the
photodegradation of phenol (τOH) by titanium dioxide can be
determined in line with the SAPNet methodology (Fig. 2). In
this case study, for developing SAPNets, we used experimental
data from our previous publication.17 The analyzed dataset
contains experimental characterization of 23 samples of tita-
nium dioxide synthesized in the presence of ionic liquids (IL)
and information about the photocatalytic degradation of
phenol for each sample (Table 1S in the ESI†). Since the values
of photoluminescence (PL) had been unavailable for two
samples, the dataset used in this case was reduced to 21
observations.

The last node of the network defines the relationship
between the photocatalytic activity of the TiO2-IL semi-
conductors and experimentally measured properties.
Photocatalytic degradation of phenol (τOH) was determined in
a model reaction of the compound decomposition in an
aqueous solution under visible irradiation and expressed on a
continuous scale in the range from 0 to 100%. Since phenol
degradation in the case of typical TiO2-based semiconductors
is around 30%, the samples were assigned to one of the cat-
egories: with high photoactivity or with low photoactivity
(percent of degradation less than 35%).18,19 Then, the dataset
was divided into training and validation sets. Finally, several
machine learning techniques were used to find a property

Fig. 2 Determination of photodegradation of phenol by titanium
dioxide (τOH) in line with the SAPNet methodology (BET – Brunauer–
Emmett–Teller surface area analysis; N, C – the amount of nitrogen and
carbon atoms; xratio – molar ratio (IL : TiO2 precursor); ΔIL – decompo-
sition of the ionic liquid during the solvothermal reaction; cation – the
type of cation in the IL; anion – type of anion in IL; PL398 – the intensity
of the photoluminescence signal at 398 nm).
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based on which the level of photoactivity can be estimated.
The best model was obtained by using logistic regression with
one property (intensity of photoluminescence at 398 nm) as an
independent variable (predictor). The quality of the model was
determined on the basis of parameters such as accuracy, sensi-
tivity, specificity, precision, and misclassification error, calcu-
lated for the training and validation sets.20 Details can be
found in Table 1 and the Materials and Methods section.

In the second step, we have been trying to find the depen-
dency between the property used in the first model and the
structure of nanomaterials (meta-model). Each sample is
described by surface area, the amount of nitrogen and carbon
atoms, ionic liquid decomposition rate (ΔIL), molar ratio and
the type of cations and anions. We decided to use Principal
Component Analysis (PCA) to visualize the TiO2-IL samples in
the multidimensional space of predictors describing the struc-
ture of nanomaterials (Fig. 3). The first two principal com-
ponents explain 59.66% of the variance. Based on the load-
ing’s values (coefficients of the linear combination of the orig-
inal variables which construct the PCs) we were able to esti-
mate how much each predictor contributes to a particular
principal component. These are surface area and the amount
of nitrogen and carbon atoms for PC1 and molar ratio and the
type of ions for PC2 (Table 4S in the ESI†). To identify the
possible hidden patterns and relationships the information
about photoluminescence intensity at 398 nm was added to
the PCA plot. Unfortunately, after visual analysis, we couldn’t
distinguish groups of samples that are similar in terms of
experimental characterization, as well as property. We can
assume that available experimental characterization is not
sufficient and should be extended to find relevant variables.

Nevertheless, the presented case study highlights one of the
most crucial issues related to the Nano-QSAR method – the
comprehensive characterization of physical and chemical pro-
perties of nanoparticles. Building a model based on structure
information that can be easily interpreted requires access to a
suitably prepared data set. Each experimental study that pro-
vides publicly available data, subsequently used for model
development, should meet the standards of findability, acces-

sibility, interoperability, and reusability (FAIR idea).21,22 Thus,
collecting additional data from various sources and filling the
gaps in developed datasets will be possible. Moreover, the pre-
sented SAPNet includes a meta-model that links phenol degra-
dation with experimentally measured photoluminescence.
Hence, the predictive potential of the network is limited. This
issue can be overcome by adding a node dedicated to the
theoretical simulation of signal intensity at a certain
wavelength.

Predicting the toxicity of ENMs in line with the SAPNet
methodology

The modern approach to the introduction of new ENMs
should involve synthesis targeted to the specific structure,
morphology, and physical and chemical properties, as well as
procedure of safety assessment. The evaluation of possible
adverse outcomes toward humans and the environment can be
supported by computational methods such as Nano-QSAR.
Unfortunately, the majority of available models are based on
the predictors that require knowledge and experience in com-
putational chemistry. For example, one of the first Nano-QSAR
models links the cytotoxicity effect towards E. coli with theore-
tical predictors for 17 metal oxide nanoparticles derived from
molecular models that were optimized at the semiempirical
level of theory (PM6). However, the theoretical predictors can
be derived from calculations conducted at different levels of
theory, i.e. (i) electronic level; (ii) atomistic level; (iii) meso-
scopic level; or (iv) continuum level.14,23 The theoretical predic-
tors have been widely applied in the development of different
types of Nano-QSAR models.24–28 Unfortunately, their appli-
cation in toxicity prediction requires time-consuming compu-
tational resources and specialized knowledge.

Table 1 Quality measures of model connecting ability of photocatalytic
degradation of phenol with experimentally derived properties

Intercept and coefficient × predictor

Model type: logistic regression

4.32(±2.10) – 0.051(±0.03)(PL398)

Calibration
Internal
validation

External
validation

Accuracy 0.80 0.80 0.83
Sensitivity 0.91 — 1
Specificity 0.5 — 0.5
Precision 0.83 — 0.83
Misclassification error 0.20 0.20 0.17
AUC 0.91 — 0.75
PL398 − emission intensity at 398 nm (photoluminescence signal)

Fig. 3 TiO2-IL samples in the space of the experimental predictors.
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In 2019, Mikolajczyk et al.29 used a set of 29 TiO2-based
nanomaterials modified with Au, Ag, Pt and Pd nanoclusters
(Memix-TiO2) to develop a model capable of predicting toxicity
towards the CHO-K1 cell line (epithelial cells obtained from
the Chinese hamster ovary, ATCC® CCL-61™).29 The published
Nano-QSAR model utilized only one descriptor, which rep-
resents additive electronegativity (χmix):

pEC50 ¼ 6:37ð+0:07Þ þ 0:56ð+0:02Þ � χmix

It may seem that the calculation of this particular predictor
requires experience in the Nano-QSAR methodology and com-
putational chemistry. Nevertheless, it is strictly related to the
designed and synthesized nanostructure. The type and concen-
tration of a certain metal in the mixture (%molMe) as well as
electronegativity of a particular metal (χMe) are necessary to
estimate the additive electronegativity:

χmix ¼ %molMe1 � χMe1 þ � � � þ%molMenÞ � χMen

Therefore, information about the structure can be used to
calculate a property that is relevant for a selected biological
activity. However, to emphasize these relations, the developed
model should be presented according to the SAPNet scheme
(Fig. 4).

Incorporation of the existing models into SAPNets

The presented approach is not limited to building new predic-
tive models for nanomaterials. It can be used to combine
already published models into a network that will be useful in
the context of designing new advanced materials to be “tai-
lored” for specific needs. One of the most important character-
istics of a nanoparticle is its stability in different media. The
ability to form agglomerates is one of the physical factors that
affect the environmental fate and behavior of ENMs.30,31 For
example, agglomeration can change the sedimentation
process; therefore, it indirectly influences the effective doses
responsible for potential toxicity towards living organisms.30,31

The agglomerate formation is linked with surface charge;
however, it cannot be measured directly. Hence, the zeta
potential (ζ) in a given medium is a commonly used parameter
to express the surface charge.

In 2015 Mikolajczyk et al.32 published a Nano-QSPR model
for predicting the zeta potential (ζ) of metal oxide nano-
particles (NPs) in a medium. The authors collected the experi-
mental values of zeta potentials of selected 15 MeOx NPs.
Every nanoparticle was described by 11 image-based descrip-
tors and 17 properties calculated with quantum-mechanical

methods (at the level of semi-empirical theory). The best com-
bination of the most relevant input variables was selected with
use of the Genetic Algorithm (GA). Finally, the authors used
multiple linear regression and obtained the following model:

ζ ¼ �11:26� 4:46ψ � 2:39 εHOMO=nMe

where ψ is the spherical size of nanoparticles derived from
analysis of Transmission Electron Microscopy (TEM) images
and εHOMO/nMe is the energy of the highest occupied mole-
cular orbital per metal atom calculated at the semiempirical
level of theory (PM6 method). The developed model utilizes
the information about the structure of NPs. However, experi-
ence in TEM image analysis and theoretical chemistry is still
necessary to use the model to predict the ζ of new
nanoparticles.

Another model was presented by Toropov et al. in 2018.33 In
this case, the dataset contained 87 data points of zeta potential
measurements in aqueous solutions (ζH20) for nanomaterials
made of silica and metal oxides having various sizes. Each
nanoparticle was described by a modified version of the sim-
plified molecular input line entry system (quasi-SMILES) that
represents all available information on the structure.34

Moreover, the nominal sizes of NPs, as well as sizes in water,
were used as input variables. Nano-QSPR models were con-
structed by using the Monte Carlo approach.

The values of zeta potential in water (ζH20) for different
nanoparticles obtained by the application of the mentioned
model can be used as the input to the model proposed by
Wyrzykowska et al.:

ζKCl ¼ 3:98þ 21:68 ζH2O þ 7:88 PN

where ζKCl is the zeta potential in potassium chloride; ζH20 is
the zeta potential in water and PN is the periodic number that
reflects the number of electron shells in the metal of the
oxide.35 Based on the presented equation we are able to calcu-
late the zeta potential in the ionized environment (here in KCl,
ζKCl). The described models create the network, in which the
first layer consists of a meta-model linking the structure with
zeta potential in aqueous solution (ζH20), whereas the second
layer consists of a meta-model that allows estimating the value
of zeta potential in the ionized environment (ζKCl) by using
output from the first layer. Thus, the presented SAPNet takes
into account the changes in the environment in which the
nanoparticle is located. It is an excellent example of how to
exploit the potential of tools distributed in the public space
(Fig. 5).

Fig. 4 Example of presenting a model according to the SAPNet
scheme; χMe is the electronegativity of a particular metal.

Fig. 5 Example of incorporation of two existing models for predicting
zeta potential in different environmental conditions developed by
Toropov et al.33 and Wyrzykowska et al.35 into the SAPNet scheme.
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Discussion and conclusions

The three presented case studies illustrate the high potential
of SAPNets to serve as a valuable tool for developing new nano-
particles in line with the idea of safe-by-design. This is
because the user obtains precise information on which struc-
tural features of the studied nanoparticles should be modified
to acquire the material with desired properties and/or low tox-
icity. In addition, the designing process can be done fully vir-
tually, without the necessity to synthesize the particle first and
measure the experimental predictors, formerly used as input
variables to Nano-QSAR models. Moreover, in the case of pre-
dicting toxicity, SAPNets may include a series of meta-models
that allow considering the influence of the environment (such
conditions as different pHs, solvents, etc.) on the nano-
materials’ property and behavior. This was an important limit-
ation of simple Nano-QSARs in cases where it may be related
to system-dependent properties.36–38

The concept of the SAPNets can be described as a “series of
mutually dependent predictive models”. A similar approach
can be noticed in the case of toxicity-toxicity relationship
studies (QTTR). For example, Roy et al. developed several QSTR
models for both rat and mouse oral toxicity of carbamate
derivatives. Then, the QTTR models were developed by taking
each of the predicted responses as independent variables.39

Therefore, the specific information about the structure
(expressed by descriptors) can be used to estimate the toxicity
towards a particular organism. Then, the predicted value can
be used as an input in the QTTR model to fill the data gaps for
another species. The approach was used in the cases of
various types of chemicals including ionic liquids and metal
oxide nanoparticles.40,41

An important aspect of using networks of predictive models
is possible propagation of uncertainty, along the network. This
is a well-known phenomenon in statistics42 and may affect
SAPNets, in which the output variables from one model are
used as input variables to the next one. The importance of the
uncertainty propagation in the endpoint prediction should be
further investigated.

Among the challenges of building classic Nano-QSAR
models, one is especially often raised by authors: the limited
number of observations in the data set. The issue can be over-
come by the development of new modeling algorithms dedi-
cated to small training sets. In 2017, Gajewicz et al. presented
the read-across algorithm (Nano-QRA) that can be used to fill
data gaps in a quantitative manner.43 The predictions are
based on interpolation and extrapolation approaches: one-
point-slope, two-point formula, or the equation of a plane
passing through three points to predict a particular activity for
an unknown chemical(s). Such prediction models as Nano-
QRA can be easily implemented as nodes in SAPNets.

As mentioned, the development of nanoinformatics tools
should be in line with published guidelines and standards
established by the scientific community; especially, the out-
comes from projects focused on the regulations are significant
for this matter. A recent contribution by Giusti et al.36 sum-

maries existing approaches for nanomaterial grouping and
provides a new approach with further recommendations. The
authors suggest that risk assessment should be based on three
crucial statements: “what they are”, “where they go” and “what
they do”. Thus, one should gather information about (i)
physico-chemical characterization of pristine materials (as syn-
thesized); (ii) changes of properties in various conditions
(system-dependent properties), toxicokinetics, and fate; (iii)
physical hazards, human toxicity, and ecotoxicity. The pre-
sented “NanoReg2 approach” requires a more detailed descrip-
tion of nanoforms. However, the difference between descrip-
tors (that describe the structure/morphology) of ENMs and the
properties (that result from the structure) was not clearly dis-
tinguished. Thus, a precise analysis of the relationship
between the structure of ENMs and their properties may be
challenging. Building the structure–activity prediction net-
works that include various methods, such as the presented
NanoReg2 approach, could be a way to extract all crucial infor-
mation and point out dependencies between the structure of a
NM and its properties and biological activity.

Finally, it is worth mentioning that the additional benefits
of using structure–activity prediction networks are more
effective incorporation of the computational safety assessment
at the stage of design of new materials and better collaboration
between experts focused on different aspects of research on
nanomaterials. This is especially important in the context of
extending the SAPNet with layers related to the synthesis stage.
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