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Machine vision-driven automatic recognition of
particle size and morphology in SEM images†

Hyojin Kim, *a Jinkyu Han b and T. Yong-Jin Han *b

Scanning Electron Microscopy (SEM) images provide a variety of structural and morphological information

of nanomaterials. In the material informatics domain, automatic recognition and quantitative analysis of

SEM images in a high-throughput manner are critical, but challenges still remain due to the complexity

and the diversity of image configurations in both shape and size. In this paper, we present a generally

applicable approach using computer vision and machine learning techniques to quantitatively extract par-

ticle size, size distribution and morphology information in SEM images. The proposed pipeline offers

automatic, high-throughput measurements even when overlapping nanoparticles, rod shapes, and core–

shell nanostructures are present. We demonstrate effectiveness of the proposed approach by performing

experiments on SEM images of nanoscale materials and structures with different shapes and sizes. The

proposed approach shows promising results (Spearman coefficients of 0.91 and 0.99 using fully auto-

mated and semi-automated processes, respectively) when compared with manually measured sizes. The

code is made available as open source software at https://github.com/LLNL/LIST.

1. Introduction

The quantitative analysis of SEM images is one of the most
important tasks to understand nanomaterial characteristics
for a variety of applications. Specifically, visual and structural
information such as the particle size, size distribution and
morphology of nanomaterials, obtained from SEM images is
crucial since desired nanomaterial properties are significantly
affected by these properties. Furthermore, the extracted infor-
mation provides technical and scientific insights into the
process of nanomaterial synthesis, fabrication and
manufacturing.

Despite the importance of the analysis, methods to extract
these types of information from SEM images have not been
extensively developed. A widely used, conventional approach
employs general-purpose image processing tools such as
ImageJ.1 Mondini et al.2 proposed a set of methods to measure
the morphology and diameter as well as to analyze the
extracted information statistically in their user-friendly soft-
ware environment named Pebbles. This software package
allows users to accurately measure nanoparticle diameters
manually or semi-automatically. Phromsuwan et al.3 proposed

an automated method to analyze the size distribution of nano-
particles in transmission electron microscopy (TEM) images
using image processing techniques such as Otsu binarization
and Canny edge detectors. Crouzier et al.19 proposed a method
to estimate nanoparticle diameters using a remarkable point
by varying the electron beam size and profiles. The problems
common to these approaches are as follows. First, the entire
pipeline to analyze and extract such information from SEM/
TEM images requires time-consuming manual intervention,
which makes high-throughput measurements infeasible.
Furthermore, these methods often fail to measure diameters
of overlapping nanoparticles that often appear in most SEM
images. Laramy et al.9 proposed a high-throughput algorithm
to recognize the structure of core-only nanoparticles in SEM
images by estimating heterogeneous nanostructure popu-
lations at the bulk level and by using ensemble measurements
with an individual nanostructure. Yu et al.6 also presented a
high-throughput approach using k-means and computer
vision techniques to measure pore parameters such as porosity
in EM images. Kopanja et al.7 presented a problem-specific
image segmentation method to recognize the shape and
aspect ratio of anisotropic magnetic nanochains in TEM
images. Wang et al.8 proposed an automated method to deter-
mine surface roughness and chemical distribution of nano-
particles from STEM data. The image segmentation method
proposed by Le Guen and Paul20 is based on mean-shift clus-
tering and spatially constrained classification.

With the recent drastic success in machine vision and deep
learning, several papers have reported methods to automati-
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cally recognize morphology and segment region of interest in
SEM/TEM images. Xu et al.4 proposed a machine learning-
based method to identify key microstructure descriptors in
SEM images. Modarres et al.5 introduced a method to employ
pre-trained convolutional neural network (CNN)-based models
to automatically extract morphology information from SEM
images. Ieracitano et al.21 proposed a CNN-based method to
classify homogeneous (HNF) and nonhomogeneous nano-
fibers (NHNF) in SEM images. Azimi et al.22 used a fully convo-
lutional neural network to address the classification of micro-
structural constituents of low carbon steel in SEM and Light
Optical Microscopy (LOM) images. Chen et al.23 proposed to
employ the U-Net framework,25 widely used in medical image
segmentation, to address SEM image segmentation of shale
samples and minerals. CNN-based super-resolution tech-
niques have also been applied to the resolution enhancement
of low-quality SEM images.24

Although a number of algorithms to process SEM/TEM
images have been developed, a generally applicable, robust
measurement of the size and shape of nanomaterials is still a
challenge due to the complexity and diversity of nanoparticles
in SEM/TEM images. For example, existing methods are some-
what application-specific and are limited to be used for
different nanomaterial morphologies such as core/shell and
anisotropic structures such as nanorods and nanowires, which
are also well-known morphologies in nanomaterials due to
their unique material properties. Moreover, an automatic,
rapid extraction end-to-end pipeline with little human inter-
vention is crucial in order to facilitate the process of massive
SEM/TEM image data.

In this paper, we present a suite of new algorithms to quan-
titatively analyze SEM images by extracting morphology infor-
mation and measuring nanoparticle sizes. The proposed
approach employing computer vision and machine learning
techniques offers fully automated, high-throughput measure-
ments with little user intervention. The distance transform-
based size estimation algorithm allows us to extract size infor-
mation from images containing overlapping regions even
when the images are noisy and complex. The proposed size
estimation algorithm together with automatic morphology
recognition supports core–shell and anisotropic types as well
as general nanoparticle types. The automatic extraction of sca-
lebar and text information using the state-of-the-art scene text
recognition enables us to automatically convert the size infor-
mation into an appropriate scale unit. In the case of slightly
incorrectly measured sizes using the fully automated pipeline,
the proposed approach also offers a semi-automatic process
with minimal user intervention by allowing users to choose
optimal parameter settings. The proposed algorithm and its

implemented GUI software package named Livermore SEM
Image Tools (LIST) are publicly available as an open source
software code at https://github.com/LLNL/LIST. The main
application has been written in C++ with QT.17

The main contribution of this paper is summarized here.
To the best of our knowledge, this proposed work is the first
attempt to integrate multiple SEM image analysis tasks into a
single framework as an open source package. The provided
end-to-end pipeline offers great efficiency and effectiveness in
the SEM image analysis, which makes high-throughput size
and morphology measurement feasible. Unlike the existing
application-specific methods, this approach can be used in a
wide range of SEM image analyzing applications. Furthermore,
the publicly available open source of the proposed work is ben-
eficial to the material science community, where the code can
easily be adopted to different SEM/TEM image analysis tasks.

2. Methods

The whole pipeline of LIST consists of three processes: (1)
morphology recognition; (2) size measurement; and (3) scale-
bar and text recognition for scale conversion. The first process
is to determine the morphology of the nanoparticles in the
input SEM image. We then perform a size measurement
process, depending on the input morphology type. Finally, we
perform scalebar and text recognition to extract the scalebar
and text information embedded on the SEM image to convert
the estimated size in pixels into the one in an appropriate unit
(e.g., μm or nm). Fig. 1 illustrates the overall pipeline of the
proposed approach.

2.1. Morphology recognition

The pipeline begins with morphology recognition to classify
the nanoparticle shape on the input SEM image. This process
enables us to apply each morphology type to its dedicated size
measurement algorithm. Defining the number of morphology
types of nanoparticles depends on the applications, and we
here classify core-only and core–shell nanoparticles. Another
goal of this process is to find the correct binary image of the
input image, that is, the core regions become white in color
where the distance transform can be applied in order to accu-
rately measure the nanoparticle sizes. To accomplish this
process, we leverage computer vision-based segmentation
algorithms together with morphological image processing
techniques. Note that the current version of LIST targets core
types including round shape particles (i.e., spherical and oval
shape), edged shapes (i.e., cubes and truncated polyhedra),
and anisotropic shapes (i.e., rod and needle-like) and their

Fig. 1 The overall pipeline of the proposed algorithm.
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core/shell particles. Triangular edge-shapes and other irregular
shapes (e.g., tetrapods and star shapes), where the sizes that
are somewhat ill-defined are outside the scope of this paper
and the current version of LIST.

To find the correct binary image, we first apply contrast
limited adaptive histogram equalization26 to enhance low con-
trast between the background and the particle cores or shell
regions. This step also makes the dynamic range consistent
over the input images. Then, we binarize the image by per-
forming Otsu’s image thresholding14 to adaptively divide the
image into foreground and background regions. To obtain the
correct binary image, we perform two binarization steps, each
of which is done with and without inverting the input image.
In each binary image, we perform multiple erosion processes
to separate nanoparticle cores as much as possible. This step
allows us not only to effectively separate core regions but also
to precisely extract particle centers, even when they are heavily
adjacent or cluttered. Then, we find isolated core regions and
their center locations, that is, any region that has a single adja-
cency to another segment region. Among the isolated regions,
we down-select valid core regions by checking the solidity
between the region and its convex hull region, that is, any core
region that is close to its convex hull is marked as a valid
region. Between two binary images, we pick the correct binary
image that has more valid core regions. The core centers are
also extracted by computing the centroid of each valid core
region. To examine the existence of the shell regions in the
binary image, we check whether (1) the aspect ratios between
the core and the outer region are similar and (2) the centroid
of the outer region of each core is located inside the core
region. The detailed algorithm description is shown in
Algorithm 1 in the ESI.†

Alternatively, we propose to leverage a convolutional neural
network (CNN)-driven image classifier to automatically deter-
mine the morphology type. In the case of a small variation in
training sample size and image distribution, the state-of-the-
art deep CNN models trained on a large number of natural
images are known to provide a more distinctive feature repre-
sentation, compared to shallow CNNs directly trained on the
target dataset from scratch. Furthermore, collecting a large
number of labeled SEM images for training is almost infeas-
ible. For these reasons, the proposed classifier employs deep

features using a pre-trained deep residual network known as
the Google inception network.15 In the case of more complex
or sequential images (e.g., 3D medical CT images), one can
apply more advanced CNN architectures (e.g., DenseNet28 and
ENAS29) or Recurrent Neural Network (RNN).30–32 Having said
that, we observed that the residual inception network is
sufficient to accomplish our morphology recognition task.

The features extracted from the pre-trained inception model
are trained by the second neural network model comprising 4
fully connected layers, as shown in Fig. 2. Given an input SEM
image, we first run the inception model to extract its feature,
which is then fed into the second neural network for training.
Note that this approach was separately implemented using
python and tensorflow16 as an alternative solution since we
observed that the method described above is sufficient for our
task to separate core-only and core–shell nanoparticles with
the correct binary image extraction.

2.2. Size measurements

We present two different algorithms to measure the nano-
particle sizes in the input SEM image, depending on the mor-
phology type. In the case of the core–shell type, the shell sizes
need to be measured in addition to the core sizes. To this end,
we perform an additional process to measure the shell sizes
for core–shell nanoparticles.

Core-only. The morphology recognition process provides a
set of valid core regions with their core centers, as described
in Algorithm 1. If the process detects core-only nanoparticles
in the input image, we perform a process to measure the sizes
of the detected core regions regardless of the core shape and
the particle distribution. Given the core regions with their
centers, we compute M line segments, each of which crosses
the region by passing through the center. M was empirically
chosen (M = 36 or every 5 degrees). We then find the shortest
and longest distances among all line segments, denoted by dS
and dL. These two sizes are also useful to estimate the shape
information and size distribution, especially for rod-type nano-
particles. Note that we use a non-eroded binary image for this
size measurement. Fig. 3(A) shows the examples of measuring
core sizes (dS and dL) of core-only nanoparticles.

Core–shell. The process for measuring the core and shell
sizes of core–shell nanoparticles differs from the one for

Fig. 2 Deep CNN-based morphology classification of SEM images.
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measuring core-only nanoparticles. In the core–shell nano-
particles, no morphological erosion process is performed as
most core regions are separated from each other. Given the
correct binarization from Algorithm 1 in the ESI,† we generate
a binary image without any erosion. We then extract core
regions with their center positions by finding isolated white
regions on the binary image. The segment adjacent to each
core region is marked as an initial shell region. We perform
the size measurement for the core regions which is identical to
the one described above. We now describe the shell region
detection and their size measurement. Finding a precise
boundary of each shell region is a non-trivial task especially
when multiple shell regions are adjacent. To this end, we
employ the watershed-based segmentation10 with the extracted
core region information. We first generate a marker image,
where the core regions and initially detected shell regions are
marked as sure foreground and unknown, respectively. The
remaining region on the image is marked as sure background.
To properly extract the shell boundary, we generate an input
image for the watershed algorithm by generating a binary
image where the core and shell regions are merged together.
This binary image with properly assigned sure foreground
regions makes the watershed segmentation yield correct shell
boundaries. Given the watershed segmentation output, we
measure the shell region sizes by using line segments passing
through the core center. Similar to the core size measurement
process, we find the shortest and longest distance. Fig. 3(B)
shows an example of core–shell size measurement. Algorithm
2 in the ESI† provides the detailed procedure of the proposed
size measurement for core–shell nanoparticles.

2.3. Scalebar and text recognition

This subsection describes the scalebar and text recognition to
identify a scalebar together with a scale number and a unit
embedded on the SEM images. The goal of this process is to
convert the measured core and shell sizes in pixels into a
proper unit (μm or nm) to acquire the physical sizes of the
nanoparticles. To localize and extract the scale information,
we first perform a scalebar detection process. The scalebar
detection is accomplished by a threshold-based segmentation
to segment the input image into multiple small segments,

each of which is then examined to identify out whether it is a
scalebar, i.e., whether the segment is a horizontal-shaped rec-
tangle. To determine whether a segment is a scalebar, we
examine its shape feature such as length, size, location and
completeness.

Once candidate scalebar segments are collected, their
neighboring regions are examined to find out whether there is
text within each region. This step allows us to detect and loca-
lize the text region more efficiently than detecting the entire
image region. For precise text region detection, we propose to
use a deep CNN-driven algorithm known as an efficient and
accurate scene text detector (EAST).11 The EAST algorithm uses
a fully convolutional network-based pipeline trained on ICDAR
2015 images12 to make dense per-pixel predictions. The non-
maximum suppression is then used to yield possible text
regions. We observed that incorporating the EAST detector
into the following text recognition process clearly outperforms
a naïve text recognition method with randomly selected candi-
date text regions since performance of the text recognition
algorithm is heavily affected by the accuracy of the input text
region. Fig. 4 shows a detected scalebar from the segmentation
and text regions surrounding the scalebar, detected by the
EAST algorithm.

Given candidate text regions, we now perform text reco-
gnition to check if there is a text to present a scale number
with a scale unit. For this, we employ an open source optical
character recognition (OCR) algorithm known as Tesseract.13 If
the text contains numbers followed by a distance unit (μm or
nm), we extract the scale number and the unit. With the width
of the scalebar region in pixels with the number and the actual
unit, we finally convert all the detected core and shell sizes in
pixels to a proper unit.

2.4. High-throughput processes and interactive user
interfaces

We aim for two different directions in the implementation of
the proposed approach. First, the size measurement process
can be performed in a high-throughput manner with little
user intervention. In this case, all of the processes including
the measurement of nanoparticle shapes and sizes are per-
formed through batch processing with default or user-defined

Fig. 3 Size measurement of core-only (A) and core–shell (B) nanoparticles. The cyan and blue colors correspond to core and shell sizes,
respectively.
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parameter settings. This high-throughput measurement
enables the automatic processing of a large collection of SEM
images. The second direction is to provide a user-friendly
interface for more sophisticated manual intervention and visu-
alization, as shown in Fig. 5. This graphical user interface
(GUI) based interactive framework enables users to improve
the size measurement by changing the thresholds or removing
outliers, especially when the nanoparticle sizes appear to be
incorrectly measured using the current parameter settings.
Moreover, the proposed GUI provides visual results and
summary of the size statistics interactively. Through the GUI,
users are allowed to perform the following manual interven-
tion tasks: (a) editing scale bar and text information; (b) nano-
particle shape selection; (c) core detection outlier removal by

mouse selection or size statistics; (d) intermediate result visu-
alization and other parameter settings; (e) individual nano-
particle information and size statistics visualization. The main
code was implemented using C++ and QT,17 together with
EAST,11 Tesseract13 and OpenCV.18

3. Results and discussion

We first report performance evaluation of the CNN-based mor-
phology classification algorithm proposed as an alternative
method, described in section 2.1. Note that the main size
measurement pipeline uses its own shape recognition to dis-
tinguish between core only and core–shell types. Although the

Fig. 4 A detected scalebar region and several text regions detected by EAST.11

Fig. 5 The proposed user-friendly LIST interface for manual intervention and visualization.
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shape recognition in the main pipeline is sufficient for the fol-
lowing nanoparticle size measurement task, this deep feature-
based CNN method can be used as an alternative solution for
improved shape recognition in future implementation. For
this experiment, we used 4 different morphology types: circu-
lar-shaped core-only, cube-shaped core-only, rod-shaped core-
only and core–shell. We split 274 SEM images containing all 4
types into 191 samples for training and the remaining samples
for testing. Due to the small number of images to be trained,
we augmented data samples by cropping each image into mul-
tiple 128 × 128 image patches. The numbers of training and
testing image patches are 4488 and 1688, respectively. We
compared the proposed deep feature-based deep network with
a baseline method, similar to AlexNet,27 composed of a typical
CNN architecture without using pre-trained deep features (4
convolutional layers with 3 max pooling layers followed by 4
fully connected layers). We used the standard multi-class
cross-entropy as the main loss, a learning rate of 0.004 with
the Adam optimizer. The number of epochs and the mini-
batch size are 20 and 50, respectively. The accuracy, precision,
recall and f1-score of the proposed method are 87%, 0.88,
0.87, 0.87, respectively. Compared to the results of the baseline
approach (56%, 0.55, 0.56, 0.54), the deep features extracted
from the pre-trained CNNs significantly improve the overall
performance.

We herein report performance evaluation of the main size
measurement pipeline using a SEM image dataset containing
both our custom and publicly available images. The image set
has 66 SEM images in total, consisting of 20 core-only circular,
6 core-only rod, 32 core–shell circular and 8 core–shell rod
types. Fig. 6 shows several examples of size measured images
of core-only, rod-shape, and their core/shell particles and there
are more successful examples shown in Fig. S1.†

Due to the lack of ground truth size information, we com-
pared our results with manually measured sizes using the
scale bars to show general performance and effectiveness of
the proposed automatic and semi-automatic processes with
minimal manual intervention. In the case of rod shapes, we
report both nanoparticle sizes (dS and dL) to compute the
error between the proposed and the manual measurement,
whereas the averaged sizes (dM) of the two sizes were used in
the circular shapes. The automatic process refers to the pro-
posed pipeline with a pre-defined parameter setting (no user

intervention), while the semi-automatic process refers to the
same pipeline with a minimal user intervened parameter selec-
tion. The user intervention includes (1) changing the mor-
phology type (when the structure is incorrectly classified), (2)
selecting different segmentation parameters (when the
measured sizes appear to be somewhat incorrect), and (3)
removing outliers by visually selecting them on the image or
by using the size histograms (when the outliers are not prop-
erly removed).

Table 1 summarizes the overall performance of the pro-
posed automatic (auto) and semi-automatic processes (semi).
We report the accuracy between the manually measured sizes
and the algorithm generated sizes using the binary logistic
regression-based accuracy (Logit-Acc) and Spearman coeffi-
cients to evaluate the overall performance. Note that the per-
formance results in Table 1 do not include the cases where the
automatic process failed to extract scalebar information (3
failure cases out of 66 images). Fig. 7 shows the scatter plots
between the manually measured sizes and sizes using two pro-
posed approaches.

First, we estimate the accuracy by computing the number of
correctly measured images as a binary logistic regression
problem. The cut-off criterion for the logistic regression is
based on the standard deviation of the measured sizes of the
nanoparticle structure in each SEM image, thus, 1 if |siM − siP|
≤ σi, 0 otherwise, where siM, siP and σi are the mean of the
manually measured sizes, the mean of the proposed sizes and
the standard deviation of the proposed sizes of image i,

Fig. 6 Examples of successfully measured nanoparticles with different shapes. (A) Nanoparticles; (B) rod-shape; (C) core–shell; and (D) rod-shaped
core–shell structures.

Table 1 Overall performance of the proposed fully automatic pipeline
and the semi-automatic process for the size measurement of the nano-
structures. For the rod types, two nanoparticle sizes are reported
independently

Morphology type

Logit-Acc Spearman

auto semi auto semi

Core-only 13/18 17/18 0.97 0.99
Core-only rod 6/10 9/10 0.89 0.96
Core–shell : core 18/32 32/32 0.60 0.97
Core–shell : shell 30/32 29/32 0.98 0.95
Core–shell rod : core 13/16 14/16 0.86 0.90
Core–shell rod : shell 14/16 14/16 0.98 0.98
Total 94/124 115/124 0.91 0.99
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respectively. Note that we count two nanoparticle sizes inde-
pendently for the rod types. As expected, the semi-automatic
process shows improved accuracy compared to the fully auto-
mated process. More specifically, the average percentage to
meet the above criteria is around 76% (94 out of 124) when the
automatic process is used, while the semi-automatic process
yields 93% (115 out of 124), as shown in Table 1. Since this
logistic accuracy heavily depends on the cut-off value, only
exhibiting true (1) or false (0), this evaluation is not sufficient
to represent the actual performance of the proposed method.
For example, the standard deviation of the manually measured
sizes are not taken into consideration and it is likely to be cate-
gorized into false cases when the particles have a smaller stan-
dard deviation.

Due to the continuous values in the size measurement, we
evaluate Spearman coefficients between the manually
measured sizes and the algorithm generated sizes, as shown in
Table 1. The coefficients show that both automatic and semi-
automatic methods are highly correlated with the manual
measurement, except for the core–shell : core cases with the
automated pipeline (coefficient of 0.6). The averaged coeffi-
cients of the automatic and semi-automatic processes are 0.91
and 0.99, respectively. We observed that several outliers in the
results of the automatic approach are due to the incorrect
shape recognition or improper segmentation thresholds which
degrades the performance of the particle size estimation,
especially for core–shell : core cases and some core-only par-
ticles. Note that the failure or poorly measured cases are
related to (1) incorrect morphology recognition due to ambigu-
ity of the core or shell structures, (2) incorrect segmentation
thresholds for less contrast of the SEM images, and (3) scale-
bar and text detection error, e.g., the scale bar or text was
unable to be detected due to blurriness or noise. See several of
the failure cases in the ESI (Fig. S2 and S3†). To address such
cases, the semi-automatic method with a minimum level of
user intervention is applied to improve the accuracy. The
results show that the semi-automatic method marginally out-
performs the fully automated one. The coefficients of all mor-
phology types using the semi-automatic approach are in the
range of 0.9 to 0.99.

We also report the particle size distribution between the
proposed automatic pipeline and the semi-automatic

process, known as poly-dispersity (i.e. standard deviation/
average size) in Fig. 8. This evaluation provides another criti-
cal nanomaterial characteristic obtained from SEM images,
to comprehensively evaluate the different sizes and units of
nanoparticles in the entire SEM image dataset. As shown in
Fig. 8, both processes yield reasonably accurate poly-disper-
sity, while the semi-automatic process improves the overall
accuracy, compared to the fully automatic pipeline. The
execution time of the entire size measurement process
depends on the size of the image and the number of
detected nanoparticles. Typically, the execution time for a
single SEM image is 1–3 s when the fully automatic pipeline
is used, thereby enabling us to handle over 3500 images in
an hour. For SEM images where there is a need for user
intervention, additional time is required to select correct
thresholds and other parameters for the segmentation
process and outlier removal.

Fig. 7 Scatter plots between manually measured sizes and sizes using the proposed automatic pipeline (A and B) and the semi-automatic process
(C and D). Each dot with its error bar corresponds to the averaged size and standard deviation of the nanoparticles in a SEM image.

Fig. 8 Poly-dispersity plot between the proposed automatic pipeline
and the semi-automatic process.
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4. Conclusions

This paper presented a novel approach to measure the sizes
and shapes of the nanoparticles in SEM images in a high-
throughput manner. The proposed algorithm is widely appli-
cable to different morphology types including core–shell and
rod nanostructures. The automatic size measurement pipeline
in a high-throughput manner will also enable the processing
of a large number of SEM images with little manual interven-
tion. In the case of failure or poorly measured sizes, the pro-
posed approach offers a semi-automatic process which allows
users to interactively intervene the measurement process to
improve the accuracy. The experimental results show that both
approaches yield reasonably accurate sizes, while the semi-
automatic approach slightly outperforms the fully automated
one. These two methods are complementary; the automatic
pipeline offers rapid size measurements without user interven-
tion and the semi-automatic process enables flexibility with
marginally improved accuracy. The proposed approach also
offers quantitative analysis of size information such as
detailed size information and histograms. We believe that the
proposed system will be a powerful software tool especially for
material science and chemistry researchers and their commu-
nities to effectively accelerate and improve nanoscale size and
morphology estimation, thereby potentially characterizing
their desired properties. The proposed algorithm has been
implemented in a GUI software package, which is publicly
available as open source software known as LIST.
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