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Characterisation of the magnetic response of
nanoscale magnetic filaments in applied fields

Deniz Mostarac, *a Pedro A. Sánchez b,c and Sofia Kantorovich a,b

Incorporating magnetic nanoparticles (MNPs) within permanently crosslinked polymer-like structures

opens up the possibility for synthesis of complex, highly magneto-responsive systems. Among such struc-

tures are chains of prealigned magnetic (ferro- or super-paramagnetic) monomers, permanently cross-

linked by means of macromolecules, which we refer to as magnetic filaments (MFs). In this paper, using

molecular dynamics simulations, we encompass filament synthesis scenarios, with a compact set of easily

tuneable computational models, where we consider two distinct crosslinking approaches, for both ferro-

magnetic and super-paramagnetic monomers. We characterise the equilibrium structure, correlations

and magnetic properties of MFs in static magnetic fields. Calculations show that MFs with ferromagnetic

MNPs in crosslinking scenarios where the dipole moment orientations are decoupled from the filament

backbone, have similar properties to MFs with super-paramagnetic monomers. At the same time, mag-

netic properties of MFs with ferromagnetic MNPs are more dependent on the crosslinking approach than

they are for ones with super-paramagnetic monomers. Our results show that, in a strong applied field,

MFs with super-paramagnetic MNPs have similar magnetic properties to ferromagnetic ones, while exhi-

biting higher susceptibility in low fields. We find that MFs with super-paramagnetic MNPs have a tendency

to bend the backbone locally rather than to fully stretch along the field. We explain this behaviour by sup-

plementing Flory theory with an explicit dipole–dipole interaction potential, with which we can take in to

account folded filament configurations. It turns out that the entropy gain obtained through bending com-

pensates an insignificant loss in dipolar energy for the filament lengths considered in the manuscript.

1. Introduction

Stimuli-responsive materials are one of the central research
topics in modern soft mater physics.1,2 There is a broad spec-
trum of stimuli one can use to modify material properties,
spanning temperature and electromagnetic radiation,3 pH,4

ionic strength,5 and specific additives and substances.6

Responsiveness to magnetic fields, however, proves to be of
extraordinary potential, due to the dynamic control of inten-
sity, great spatial resolution achievable with them, and the fact
that magnetic fields do not interfere with biological tissues
and processes.7 In attempts to capitalise on this potential
came the idea to combine magnetic micro- and nanoparticles
(MNPs) into liquids, gels or elastomers, forming a class of so-
called magnetic soft matter. Within the context of magnetic
soft matter, when talking about MNPs, one refers either to
ferromagnetic or super-paramagnetic ones,8 whereas when
micron sized, multi-domain particles are used, one has to dis-

tinguish between magnetically soft and hard ones.9 In
fact, intrinsic magnetisation of micron sized, multi-domain
particles, should be treated via micro-magnetic simulations.10

Over the years, a diverse landscape of magnetic soft mater
systems emerged, based on MNPs and micron-sized
monomers, including ferrofluids,11–14 ferrogels,15,16

elastomers,9,17–20 magnetic gels15,21,22 and magnetic filaments
(MFs).23,24 As a consequence, nowadays there are recipes how
to synthesise many of these systems with a desired macro-
scopic response. MFs, the subject of this manuscript, can
largely be considered as analogous to polymer chains (though
at a supra-colloidal scale) where the MNPs serve as polymer
monomers and the crosslinkers play the part of chemical
bonds between them. From the first attempts to synthesise
MFs in which micron-sized magnetic-filled paramagnetic latex
beads were used to form chains,25,26 the field has come a long
way in both synthesis approaches and theoretical understand-
ing. Permanent chains of DNA crosslinked, micrometre sized,
super-paramagnetic monomers were in fact synthesised more
than one decade ago, with the purpose to work as magnetically
driven microfluidic swimmers.23 Nowadays, there is a plethora
of methods to prepare MFs.24,27–41 Most existing crosslinking
procedures for synthesis of such MFs are based on the functio-
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nalisation of the MNP surface.42 One-dimensional crosslinking
of ferromagnetic MNPs has only been achieved in terms of
rather rigid filaments or nanowires.40,43–48 Semi-flexible fibre
structures of MNPs have been obtained instead by crosslinking
them in bunches.49 Linear, filament-like assemblies of ferro-
magnetic nanoparticles have been made using biological
agents and bio-templates.50,51 Magnetic nanochains have been
made by causing chain-like assembly applying external mag-
netic fields on super-paramagnetic nanoparticle clusters, fixed
by an additional layer of silica.52 In summary, one can divide
available MF systems in two classes: those containing magneti-
sable (or super-paramagnetic) particles and those made of
ferromagnetic particles. Besides that, one can also distinguish
MFs by their rigidity. So far, flexible, nanoscale MFs, which
have a finely controllable micro-structure, remain to be experi-
mentally realised. However, recent advances in synthesis tech-
niques, such as the ones based on programmable DNA–MNP
assembly have shown promising results on route towards
achieving exactly that.53–59 In recent years, MFs have found a
growing range of applications.60–63 MFs with super-paramag-
netic MNPs, albeit rather soft ones, have been experimentally
investigated for artificial swimmer designs.64,65 Furthermore,
they have proven useful in cellular engineering,66,67 and
designs for biomimetic cilia.68,69

Theoretically, the properties of MFs exposed to external
magnetic fields have mostly been explored in bulk.70–77 MFs
with super-paramagnetic MNPs have been theoretically investi-
gated in artificial swimmer designs.78–80 In-field behaviour (i.e.
buckling, coiling and bending) of MFs with super-paramag-
netic MNPs has been investigated under multiple
conditions,81,82 such as having the MFs grafted to a surface,83

or exposed to a rotating or fast precessing magnetic fields.84–86

MFs in general have proven very interesting as a basis for bio-
medical application designs.87–89 Paramagnetic MFs have been
investigated and characterised as potential micro-mixers,90 as
well as for cargo capture and transport purposes.91

In spite of all of the previous studies, to the best of our
knowledge, there are neither models that accurately account
for super-paramagnetic behaviour of MNPs, nor comparative
studies of nanosized MFs, with ferro- and super-paramagnetic
MNPs, placed in multiple crosslinking scenarios, and exposed
to an external magnetic field. We aim to provide a deeper
insight into these questions with this work. In order to do so,
we present four different computational models for MFs,
together with a comparative analysis of their equilibrium mag-
netic and structural properties, in constant, homogeneous
magnetic fields. Rather than making an attempt to explicitly
model any particular crosslinking procedure, we put forward a
simulation approach to model two distinct crosslinking scen-
arios, in a general and easily adaptable way, for both ferro- and
super-paramagnetic MNPs. We achieve this by considering
crosslinking scenarios where we impose mild or severe con-
straints on the translational and/or rotational degrees of
freedom of the MNPs with respect to the filament backbone.

The paper is structured as follows: in section 2 we present
the details of our coarse-grained bead-spring modelling

approach, magnetic properties of MNPs, magnetic inter-
actions, and the simulation method. We introduce two distinct
crosslinking approaches, both for ferromagnetic and MFs with
super-paramagnetic MNPs. We proceed to discuss our Results
in section 3. We present how a choice of crosslinking approach
and/or the magnetic nature of the monomers, affects the struc-
tural properties of the filament in subsection 3.1. We present a
comprehensive analysis of the magnetic properties of MFs in
subsection 3.2. In section 4, we provide analytical estimations
of the free energy of MFs in order to explain simulation results
previously reported in section 3.1 and 3.2. In section 4, we
provide a short summary and prospects of our study.

2. Magnetic filaments in silico
2.1. Main interactions

In this work, we consider MFs formed by mono-disperse, mag-
netic particles – monomers, modelled as identical, spherical
particles with a characteristic diameter σ. The soft core inter-
action between the monomers is given by the Weeks–
Chandler–Andersen pair potential (WCA):92

UWCAðrÞ ¼ ULJðrÞ � ULJ rcutð Þ; r , rcut
0; r � rcut

�
ð1Þ

where ULJ(r) is the conventional Lennard–Jones potential:

ULJðrÞ ¼ 4εfðσ=rÞ12 � ðσ=rÞ6g ð2Þ
and the cutoff value is rcut = 21/6σ. Parameter ε defines the
energy scale of the repulsion when the inter-particle distance r
decreases.

Monomers within our models can be either ferro- or super-
paramagnetic. For ferromagnetic MNPs, we introduce point mag-
netic dipole moments~μ of fixed length ~μj j ¼ μ, located at particle
centres. We account for the long-range magnetic inter-particle
interaction by means of the standard dipole–dipole pair potential:

Udd ~rij;~μi;~μj
� �

¼~μi �~μj
r3

�
3 ~μi �~rij
� �

~μj �~rij
� �

r5
; ð3Þ

where the inter-particle distance is r ¼ ~rij
�� ��, and ~rij ¼~ri �~rj is

the displacement vector connecting the centres of monomers i
and j with dipole moments ~μi and ~μj , respectively.
Furthermore, we consider Zeeman interactions coming from
the presence of an external magnetic field ~H :

UH ~H;~μi
� � ¼ �

XN
i¼0

~H �~μi: ð4Þ

In order to model super-paramagnetic MNPs, one needs to
accurately calculate the total field ~Htot in each point of the system.
The total magnetic field is the sum of ~H and the dipolar field ~Hd.
The latter field, created by particle j, at position~r0 is given by:

~Hd ¼ 3~r0j �~μj
r50j

~r0j �
~μj
r30j

: ð5Þ

Paper Nanoscale

13934 | Nanoscale, 2020, 12, 13933–13947 This journal is © The Royal Society of Chemistry 2020

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ay
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

0/
27

/2
02

5 
11

:5
1:

43
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0nr01646b


The study of the response of a filament to fields of arbitrary
strength requires to one define the dipole moment, ~μsi , of an
i-th super-paramagnetic particle at a given temperature T, as:

~μsi ¼ μmaxL
μmax

~Htot
�� ��

kBT

 !
~Htot

Htot
; ð6Þ

where μmax ¼ ~μmaxj j denotes the modulus of the maximal mag-
netic moment of the particle, ~μmax. Here, kB is the Boltzmann
constant and L(α) is the Langevin function:

LðαÞ ¼ cothðαÞ � 1
α
: ð7Þ

This approach allows us to consider nonlinear effects, in
contrast to work.83 In fact, expression (6) is a generalisation of
mean-field approaches, such as the modified mean field
approach,93 with the difference that no assumptions were
made when calculating ~Htot. This approach is also verified by
the analytical calculations for super-paramagnetic particle
magnetisation.94 The long range magnetic interaction and the
Zeeman coupling for super-paramagnetic monomers are
accounted for just as they are for ferromagnetic monomers,
see eqn (3) and (4), respectively.

2.2. Crosslinking

In this subsection, we present two crosslinking approaches
both for ferro- and super-paramagnetic MNPs, in order to
realise MFs, distinct in terms of stiffness and inter-particle
correlations. These models are shown in Fig. 1. Firstly, we
introduce models for MFs with ferro- or super-paramagnetic
monomers, that have a very flexible backbone, as only the
translational degrees of freedom of monomers are restricted.
In these models, depicted in Fig. 1(a), monomers are con-
nected by finitely extendable springs, attached to monomer
centres. In Fig. 1(b) we depict a crosslinking model for MFs
with ferromagnetic monomers, in which the finitely extend-
able springs are attached to anchoring sites with permanently
fixed positions on the surface of MNPs. Such crosslinking, in

comparison to the aforementioned models aimed to represent
MFs with a more flexible backbone, introduces extra corre-
lations between the orientations of the magnetic moments of
ferromagnetic monomers with the MF backbone, thus leading
to a stiffer filament. Finally, in Fig. 1(c), we show a model for
MFs with super-paramagnetic monomers, with enhanced
backbone rigidity compared to the models aimed to represent
MFs with a flexible backbone, realised via explicit three-par-
ticle bending potentials (for each consequent three particle
set). For a detailed discussion of the models see sections 2.2.1
and 2.2.2 correspondingly.

2.2.1. Plain model: freely rotating dipoles with transla-
tional constraints. In the first crosslinking approach (see
Fig. 1(a)), we implement the filament backbone with finitely
extensible nonlinear elastic potentials (FENE). When defined
as a function of the centre-to-centre distance r, the FENE
potential takes the form:

UFENEðrÞ ¼ �Kfr2f
2

ln 1� r
rf

� 	2� 

; ð8Þ

where rf and Kf are the maximum extension and the rigidity of
a FENE bond, respectively.

By having all monomers in a line and connected centre-to-
centre with FENE bonds, for each two adjacent monomers, we
ensure close contact, without introducing any energetic
penalty on rotation of the monomers. Therefore, the head-to-
tail arrangement of the dipole moments, will be achieved
purely trough the cooperative influence of the magnetic
dipolar field generated by neighbouring monomers and the
external magnetic field (if applied). Throughout the paper we
will refer to this modelling approach of crosslinking effects as
the plain model, for both ferromagnetic and MFs with super-
paramagnetic MNPs.

2.2.2. Constrained model: energy penalties on rotation and
translation. The constrained crosslinking model, for both
ferromagnetic and super-paramagnetic monomers, is aimed to
allow us to investigate the effects of increased (relative to plain
crosslinking) stiffness and inter-particle correlations on the
equilibrium properties of MFs. In order to achieve this for MFs
with ferromagnetic monomers, we couple the relative orien-
tations of the monomers and the filament backbone, by intro-
ducing anchoring sites for the FENE bonds (8) (see Fig. 1(b)).
These anchoring sites have fixed positions corresponding to
the projection of the head and the tail of the magnetic
moments on the surface of the MNPs, similarly to work.89,95,96

In case of super-paramagnetic monomers, whose dipole
moments are zero in the absence of an applied magnetic field,
the anchoring point positions can not be defined. We intro-
duce additional inter-particle correlations between the mono-
mers and stiffness against bending, by adding an isotropic
bending pair potential between first-nearest neighbours (see
Fig. 1(c)):

UbendðϕÞ ¼ Kb

2
ðϕ� ϕ0Þ2; ð9Þ

Fig. 1 Schematic representations of three different bead-spring models
of MFs. Dipole moments are depicted as arrows. The connectivity
mechanisms are depicted as springs attached to either filament centres
(black dots) or to anchoring sites with permanently fixed positions on
the surface of MNPs (yellow dots). (a) Plain crosslinking model; (b) con-
strained crosslinking model for ferromagnetic MNPs; (c) constrained
crosslinking model for super-paramagnetic MNPs.
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where ϕ is the angle between the vectors spanning from par-
ticle i to its nearest neighbour particle pair (i − 1, i + 1), i ∈ [2,
N − 1]. Kb is the bending constant, while ϕ0 = π is the equili-
brium bond angle. The expression in eqn (9) is a harmonic,
angle dependent potential, included in the sketch shown in
Fig. 1(c).

Throughout this paper, we will refer to the two crosslinking
models presented in this subsection as constrained model,
where it is implicit that for MFs with ferromagnetic MNPs we
are referring to the model with anchoring sites, while for MFs
with super-paramagnetic MNPs we are talking about direct
crosslinking via the FENE potential with an additional
bending potential.

2.3. Simulation method

In this subsection we introduce and explain the general form-
alism and approach we used to computationally investigate
magnetic filaments.

Using the ESPResSo software package,97 we perform exten-
sive molecular dynamics simulations for each of our cross-
linking models, for different values of μmax and dimensionless
applied field strength H ; ~H

�� ��, where ~H is always directed
along the z-axis. Due to the relatively modest size of our simu-
lation box and no apparent periodicity in the system, we
account for the long range dipole–dipole interactions using
direct summation, which calculates energies and forces
between dipoles by explicitly summing over all pairs.
Simulation of the effects of the background fluid were handled
implicitly, via the Langevin thermostat.98

For MFs with ferromagnetic monomers, the dipole
moments of each colloid ~μ ¼~μmax are initially directed along
the filament backbone. Since we are discussing equilibrium
properties, our filaments have no preferred orientation with
respect to the direction of ~H, initially. Moreover, in order to
make sure that there is no directional bias introduced by the
starting alignment of the MF, initial orientations in our simu-
lations are uniformly distributed on the surface of a sphere.
This is particularly important in the low applied magnetic
field region.

For super-paramagnetic monomers, the following protocol
is implemented. After every integration of the Langevin
equations, using forces and torques obtained from the pre-
vious integration step, we recalculate the total magnetic field
~Htot, and based on the non-linear magnetisation law (6), reset
the dipole moments of the monomers in the system.

We run twenty parallel, model specific simulations, each of
which for a different H and/or μmax. We firstly make sure that
system relaxes into an equilibrium field-free configuration, by
running an integration cycle for 108 integration steps. Next we
switch on the external magnetic field and start measuring.
During the equilibration procedure, we increase the equations
of motion integration timestep from 10−8 (which is the
numerical precision limit) to 10−2 (which is the timestep we
use for the measurement run), and the effective dipole
moment of ferromagnetic monomers assigned to each of the
monomers from 10−8 up to the value μmax. In case of super-

paramagnetic filaments, since there is no H applied during
equilibration, there are no dipole moments assigned to the
monomers. In order to obtain statistically significant results,
we make sure that the snapshots we use for “measuring” are
sufficiently far apart from each other to minimise correlations,
by performing 1 050 000 integrations, sampling at intervals
separated by 3000 integrations each.

2.4. Reduced units and mapping to physical parameters

In this subsection we give a detailed overview of the reduced
units used in our simulations, that have been chosen to be
representative of possible material choices and experimental
conditions. We also provide a mapping of these units to corres-
ponding physical parameters.

All distances in our simulations are measured in units of σ
(introduced earlier as the monomer diameter). We set the
reduced temperature of the Langevin thermostat to be kBT = 1,
which determines the energy scale in our simulations. Since
we also set the depth of the Leonard–Jones to ε = 1, this means
that the energy in our simulations is measured in units of kBT.
We consider two values of the reduced saturated magnetic
moment μmax

2 ¼ j~μmaxj2 ¼ 1 and μ2max = 3, for a range of
reduced external magnetic fields H ≤ 6. Given a choice of a
particular magnetic nanoparticle, such as using magnetite
nanoparticles coated with a thin layer of stabilising agent (i.e.
oleic acid coating, 2 nm thick), these values of μ2max correspond
to dipole moments of 2.51 × 10−19 and 5.52 × 10−19 A m2, for
nanoparticles with core diameters of 10 and 13 nm, respect-
ively. This also means that the maximum of the applied mag-
netic field range we explored represents moderate fields of
only 0.11 T, for MNPs with μ2max = 1 and 0.135 T, for MNPs with
μ2max = 3. We chose magnetite as a reference as it is one of the
most commonly used magnetic materials in magnetic soft
matter. The field in the chosen range spans from initially weak
magnetic response to the saturation. The reduced character-
istic mass of the monomers is taken m = 1, and given that we
are only interested in equilibrium properties of these systems,
this value does not affect the results. The factor Kf of the
potential given in eqn (8) is set to Kf = 2.5. The maximum
extension of the FENE bond rf, is set to rf = 2σ. Experimentally,
plain crosslinking could be representative of ferromagnetic
and/or super-paramagnetic monomers enclosed into semi-flex-
ible steric cages within a multiple-cage chain structure.99 This
would correspond to an effective crosslinking scenario, since
the MNPs would not be physically bonded to the cages, rather
trapped inside. This crosslinking mechanism, as described, is
however, more appropriate for representing crosslinking of
super-paramagnetic MNPs. One can interpret the free rotation
of the MNP as equivalent to free dipole moment rotation
within the colloid. We will elaborate more on why it is a more
appropriate model for MFs with super-paramagnetic MNPs
later in section 3.

The bending constant Kb of the harmonic angle dependent
potential given in eqn (9), is set to Kb = 3.2. Note that these
parameters have been chosen so that the end-to-end distance
of MFs in our constrained model with ferromagnetic mono-
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mers is equal to its counterpart of MFs with super-paramag-
netic monomers at H = 0. Experimentally, our constrained
models should be representative of ferromagnetic and/or
super-paramagnetic MNPs, bonded directly with semi-flexible
polymer crosslinkers. This model should also generalise quite
well to MFs realised with DNA origami techniques, where
orientations of functionalized MNPs are rendered permanent
with respect to the filament backbone, by attaching the MNPs
to DNA patches inside steric DNA origami cages. The cages
subsequently assemble and bond among themselves in to
linear conformations, by means of complementary binding
vertices.99

3. Results and discussion

We split this part in three subsections, where we, in subsection
3.1, discuss structural properties of MFs, in subsection 3.2,
discuss magnetic properties of MFs and in subsection 3.3,
present an analytical estimation of the free energy of a plainly
crosslinked filament in a strong magnetic field. It should be
noted that throughout this paper, results which are plotted
with hollow symbols correspond to MFs, whose crosslinking is
realised using the plain model, while filled symbols corres-
pond to those, whose crosslinking is realised using con-
strained models.

3.1. Structural properties

In this subsection, we use measures adapted for polymer
science,100 such as gyration radius, end-to-end distance, and
positional and orientational correlations between monomers,
to communicate how the magnetic nature of monomers of
MFs, backbone stiffens and inter-particle correlations translate
to experimentally measurable quantities, representative of
structural properties of filaments.

We define the normalised end-to-end distance, R*
ee, (the dis-

tance between the centres of the first and the N-th monomer)
as

R*
ee ¼

~r1 �~rNj j
dN

;

where N = 20 is the number of monomers within a filament
and d is the equilibrium distance between the monomers in a
filament. The latter depends H and is calculated separately for
each crosslinking approach, as the mean value of all nearest-
neighbour distances inside a filament. The square of the
radius of gyration R2

g, is defined as

R2
g ¼

1
2N

XN
i;j

ð~ri �~rjÞ2=N:

Here,~ri is the position vector of the i-th filament monomer
in the lab coordinate frame.

Let us firstly consider results we obtained for the plain
crosslinking model. As it can be seen in Fig. 2(a) and (b), for
plain crosslinking and μ2max = 1, both R*

ee and R2
g remain mostly

flat as H increases, regardless of the magnetic nature of the

monomers. Clearly, in this case magnetic interactions are
weak and get dominated by entropy. For μ2max = 3 we can
observe an increase in R*

ee and R2
g with H. In fact, this increase

is particularly pronounced for MFs with super-paramagnetic
monomers (here and below plotted with triangles), in the low
field region (H < 1). For H > 1, both for R*

ee and R2
g, we see

largely flat profiles with equal values for MFs with ferro- (here
and below plotted with circles) and super-paramagnetic mono-
mers. Observing a higher degree of stretching for MFs with
super-paramagnetic monomers can be explained by the local
orientation of dipole moments along the field direction. Such
a local orientation is supported by dipolar interactions and
leads to a head-to-tail alignment of the dipole moments and
therefore, stretching of the filament backbone. In the case of
MFs with ferromagnetic monomers and μ2max = 3, the dipolar
field is not necessarily coaligned with the external magnetic
field. Thus, for low-fields, MNPs are distributed in order to
optimise dipolar forces. For global reorientation and stretch-
ing of a filament with ferromagnetic monomers to take place,
higher H fields are needed. For high values of H, the nature of
monomers becomes unimportant, and the MFs reach a state
when its R*

ee is approximately 20% lower than that of a straight
rod.

Once we look at R*
ee and R2

g for MFs within the constrained
crosslinking model, plotted in Fig. 2(c) and (d), we note that
the degree of stretching in this case is much higher for all μ2max

and monomer types. Looking at Fig. 2(c), we observe substan-
tial differences between R*

ee and R2
g for MFs with ferromagnetic

and super-paramagnetic monomers, particularly for μ2max = 1.
In the low field region, similar to Fig. 2(a) and (b), local
stretching of MFs with super-paramagnetic monomers, within
the constrained crosslinking model, with μ2max = 1, is still more
pronounced than that of their counterparts with ferromagnetic
monomers. However, at H ∼ 0.8 and for higher fields, MFs
with ferromagnetic monomers are notably more straight.
Qualitatively, for μ2max = 3 and constrained crosslinking, the
behaviour of R*

ee and R2
g is the same as for MFs with plane

crosslinking, discussed above: MFs with super-paramagnetic
monomers stretch more in low fields than those with ferro-
magnetic ones. This difference disappears, however, once H
grows higher.

The analysis of R*
ee and R2

g curves reveals an important fact.
Within the plain crosslinking model, structural properties of
MFs with ferromagnetic monomers become the same as for
MFs super-paramagnetic ones.

In summary, based on the analysis of R*
ee and R2

g curves, if
one had to recognise a singular distinguishing factor between
MFs, the most appropriate one would not be the magnetic
nature of the monomers, but rather the crosslinking approach.
Constrained crosslinking not only increases the overall values
of R*

ee and R2
g, but is necessary in order to be able to obtain a

significant difference between field-induced stretching, both
for MFs with ferromagnetic and super-paramagnetic mono-
mers. The dipolar strength has a larger impact on R*

ee and R2
g

in the case of the plain crosslinking: the value of R*
ee for μ

2
max =

1 is almost two times smaller than that for μ2max = 3 at high
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H values, whereas the same measure for constrained cross-
linking differs at most 15%. Finally, none of the MFs studied
here stretches to its full length under the influence of H.

In order to deepen our understanding of the local structure
of different MFs, we measured the angle θ between two bonds
within a filament with μ2max = 3, separated by a given amount
of bonds, l, as shown in Fig. 3(a). Here, if the segments are
“touching”, like in the case of segments between monomers
1–2 and 2–3, which are sharing a common monomer 2, l = 0
and the measured angle is addressed as θ0. If the segments are
immediately next to each other, but do not share a common
monomer, therefore separated by a single bond, as is the case
between segments formed by monomers 1–2 and 3–4, l = 1
and correspondingly define an angle θ1. Analogously, θ2 is the
angle between segments 1–2 and 4–5, which are separated by
two bond lengths. We measure the inter-segment correlations
by calculating the cosine of the angle θl, 〈cos θl〉. The averaging
is done first over all segments separated by l bonds, then over
all snapshots for a particular simulation, and, finally, over all
runs.

Regardless of crosslinking and magnetic nature of the
monomers, the more separated the segments are, the less they

are correlated. However, MFs with constrained crosslinking
(middle two columns in each bar plot) are more correlated
then their plainly crosslinked counterparts and the value of
〈cos θl〉 decays only weakly with increasing l. With growing H
inter-segment correlations strengthen.

Comparing the left most and the right most columns in
each bar plot for 〈cos θ0〉 shown in Fig. 3(b), one can notice
that for weak fields, neighbouring segments of plainly cross-
linked MFs with super-paramagnetic monomers (right most
columns) are more correlated than in case of ferromagnetic
monomers (left most columns). The difference decreases and
basically vanishes with growing H. This behaviour explains
why radii of gyration and end-to-end distances for plain cross-
linking model are found to be higher for super-paramagnetic
monomers in low fields (see Fig. 2(a) and (b)), but as H
increases, this difference disappears.

Similarly, within the constrained crosslinking model,
spatial correlations for MFs with super-paramagnetic mono-
mers (right middle column in each bar plot), coincide with
those of MFs with ferromagnetic monomers (left middle
columns) only for the highest H value. For lower H, segments
in MFs with constrained crosslinking and super-paramagnetic

Fig. 2 Normalised end-to-end distance, R*
ee, and the radius of gyration squared, R2

g, normalised by (dN/2)2, plotted against the applied external
magnetic field H. (a) and (b) MFs with plain crosslinking; (c) and (d) MFs with constrained crosslinking. (a) and (c) R*

ee; (b) and (d) R2
g. Colour coding

for different μ2max is explained in the legends. SP stays for super-paramagnetic monomers; FP – for ferromagnetic ones. The maximum line for R*
ee is

the fully stretched MF, in units of dN. The maximum line forT> R2
g is determined as the normalised R2

g for a static rod, fully aligned with ~H. Errorbars
are calculated as the standard deviation of the measure in question (R*

ee and R2
g, respectively), across 20 independent simulations.
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monomers turn out to be more spatially correlated than their
counterparts with ferromagnetic monomers. The difference in
correlations grows with l. So, MFs with super-paramagnetic
monomers and constrained crosslinking exhibit spatial corre-
lations that remain non-negligible further along the filament
backbone. This observation explains why in Fig. 2(c) and (d)
the values of R*

ee and R2
g for constrained model are significantly

higher for MFs with super-paramagnetic than those with ferro-
magnetic monomers, especially for H < 2.

3.2. Magnetic response

The main appeal of MFs lies in their responsiveness to external
magnetic fields. Investigating different crosslinking scenarios
of MFs is interesting because soft matter systems with a micro-
structure defined via crosslinking have been shown to have
much improved responsiveness to external magnetic fields
compared to conventional ferrofluids.101 However, the intricate
relationship between the magnetic nature of monomers within
a filament and crosslinking can result in notably different
structural properties and responsiveness of MFs to external
magnetic fields. In this subsection, we relate our results on the

structural properties of MFs to their response to external mag-
netic fields and compare it to the magnetic response of non-
crosslinked magnetic soft matter systems, such as convention-
al ferrofluids.93,100

In order to understand how spatial correlations between
filament segments are related to the overall magnetic response
of MFs, we analyse the average value of the normalised projec-
tion of filament magnetic moment m̄, on to the direction of ~H,
shown in Fig. 4. We normalise m̄ curves by the factor Nμmax,
where N is the number of MNPs within the filament, and μmax

is their maximum dipole moment magnitude. For MFs with
non-interacting monomers, corresponding field dependence
of normalised m̄ would follow the Langevin function of α =
μmaxH, given in eqn (7), that is plotted in each subfigure of
Fig. 4 with a black, solid line. It is clear that even for μ2max = 1
and plain crosslinking, shown in Fig. 4(a), filament inter-par-
ticle correlations manifest themselves, as the actual magnetisa-
tion is above the Langevin curve. As we saw above, structural
properties of MFs with plain crosslinking and μ2max = 1, are
almost independent from H. In order to confirm that the mag-
netic response of a filament in this case is equivalent to the
response that non-crosslinked monomers would have, we con-
sider the magnetisation calculated via modified mean-field
theory of the second order (MMFT2).93 MMFT2 is known to
describe static magnetic properties of relatively concentrated
ferrofluids well, as long as dipolar forces do not lead to cluster
formation.102 In the framework of MMFT2, the magnetisation
of a monodisperse system has the form:

μ ¼ ρ*μmaxL μmaxHeð Þ;
He ¼H þ 1

3
μmaxρ*L μmaxHð Þ

þ 1
48

μmaxρ*ð Þ2L μmaxHð ÞdL μmaxHð Þ
dH

:

ð10Þ

Here, ρ* is the magnetic particle number density. In order
to define ρ* for a filament, we assume that for a given value of
H, all MNPs are constrained to a volume V = 4πRg3/3, so ρ* = N/
V. The results of eqn (10) are plotted in all subfigures of Fig. 4
with a solid grey line. It can be seen in Fig. 4(a) that for μ2max =
1 and plain crosslinking, MMFT2 describes the magnetisation
of MFs well. Clearly, in this case the crosslinking does not
affect the magnetic response of the individual monomers. For
all other parameter sets however, the crosslinking enhances
the magnetisation, especially in the low-H region: simulation
data is well above the MMFT2 curve. Looking at the magnetisa-
tion of MFs with μ2max = 1 and constrained crosslinking, shown
in Fig. 4(c), one can see that the magnetisation is lower for
MFs with super-paramagnetic monomers. This fact is in agree-
ment with the field-dependence of R*

ee, plotted in Fig. 2(a),
showing that MFs with μ2max = 1 and constrained crosslinking
can be stretched and magnetised more efficiently if the mono-
mers are ferromagnetic. This changes, however, if μ2max = 3, as
it can be seen in Fig. 4(b) and (d). Independently from cross-
linking, magnetisation of a filament with super-paramagnetic
monomers is higher than for MFs with ferromagnetic ones, as
is shown above in Fig. 2. This is rather similar to what we have

Fig. 3 Inter-segment correlations 〈cos θl〉, for four different values of
H. (a) 〈cos θ0〉; (b) 〈cos θ1〉; (c) 〈cos θ2〉. Each bar shows a particular com-
bination of magnetic nature of monomers and crosslinking approach, as
explained in the legend provided outside the plots. Results are shown
for μ2max = 3. Errorbars are calculated as the standard deviation of the
measure in question (〈cos θ0〉, 〈cos θ1〉, 〈cos θ2〉, respectively), across 20
independent simulations.
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previously discussed for R*
ee and R2

g. Comparing the results
from Fig. 4(b) and (d) to correlation plots in Fig. 3, one can
notice that for constrained crosslinking models, MFs with
super-paramagnetic monomers, that are comparatively more
correlated, exhibit higher magnetisation.

Summarising what we have obtained so far, one can say
that for μ2max = 1, the highest magnetisation is observed for
MFs with ferromagnetic monomers and constrained cross-
linking. Furthermore, such MFs stretch more in applied fields
and their m̄ grows faster with H, than for MFs with super-para-
magnetic monomers. The end-to-end distance of such MFs in
the region of magnetic saturation is comparable to that of fila-
ments with μ2max = 3. In general, for μ2max = 3, we observe the
highest m̄, R*

ee, R
2
g and spatial correlations in high H fields for

MFs with constrained crosslinking and super-paramagnetic
monomers. This is in contrast to what we have seen for μ2max =
1. Additionally, for μ2max = 3, plainly crosslinked filaments
exhibit lower spatial correlations, which results in lower values
of m̄, R*

ee and R2
g for the complete range of the applied fields

that we explored. However, looking at the magnetisation of
each monomer within a filament, plotted in Fig. 5, one cannot
see any significant difference between MFs with μ2max = 3,
regardless of the crosslinking model. Empty bars are used to

show the magnetisation of a particular monomer in a filament
within the plain crosslinking model, whose position along the
filament backbone is given on the x-axis; filled bars are used to
plot magnetisation for monomers in MFs within the con-
strained crosslinking model. The colour-coding corresponding
to the values of μ2max is analogous to Fig. 2–4. From the top to
the bottom of Fig. 5, strength of the applied magnetic field is
growing: H = 0.2, 1.4 and 6. The first two columns on the left
are plotted for MFs with ferromagnetic monomers, whereas the
last two columns depict data for MFs with super-paramagnetic
monomers. It is exactly in Fig. 5(e)–(l), where one can notice
that even though previously reported values of R*

ee and R2
g for

MFs with plain crosslinking and μ2max = 3, are lower than their
counterparts with constrained crosslinking, empty blue and
green bars turn out to be of the same height as filled blue and
green bars. This is also a feature that is independent from the
position of the monomer. In other words, for relatively strong
fields and high values of μ2max, each monomer inside a plainly
crosslinked filament, exhibits the same magnetisation as if it
was a filament with constrained crosslinking, independently
from the magnetic nature of the monomers. At the same time,
plainly crosslinked MFs are not as stretched as their counter-
parts with constrained crosslinking. This can only be the case

Fig. 4 Projection of the total MF magnetic moment, normalised by Nμmax, on ~H versus with dimensionless magnetic field strength H. (a) and (b)
MFs with plain crosslinking; (c) and (d) correspond to MFs with constrained crosslinking. In (a) and (c) μ2max = 1; in (b) and (d) μ2max = 3. Each subplot
shows four curves, representing results for MFs with either ferro- or super-paramagnetic NPs, Langevin magnetisation law from eqn (7) and MMFT2
from eqn (10) (see the legend). Errorbars are comparable to symbol size and are as such not shown.
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if the conformations of MFs are drastically different from each
other, depending on the crosslinking model.

In Fig. 6 we depict the differences between typical confor-
mations of MFs with plain and constrained crosslinking, for
two different values of H: in Fig. 6(a)–(d) H = 0.4; in Fig. 6(e)–
(h) H = 2. All simulation snapshots were obtained for MFs with
μ2max = 3.

It can be seen that expected additional rigidity manifests
itself at low fields, by causing an overall unravelling of MFs.
However, at high fields, where one can assume that minimis-
ation of dipolar (eqn (3)) and Zeeman (eqn (5)) energies
should necessarily lead to the chain stretching independently
from crosslinking model, we instead see bending of plainly
crosslinked MFs as shown in Fig. 6(e) and (f).

This kind of bending is visually similar to the behaviour of
polymer chains in nematic fields, observed in ref. 103, or the

bending of ferromagnetic micron-sized filaments reported in ref.
69. However, none of the two scenarios can be realised in our
systems: instead of a quadrupolar nematic field,103 MFs with
magnetic nanoparticles experience Zeeman linear coupling and
the interaction between monomers is quadratic. As a result,
instead of stretching, at high fields, we observe chain bending;
instead of dynamic bending found in ref. 69, here, we find equi-
librium conformations of plainly crosslinked MFs in a strong
static homogeneous, as shown in Fig. 6(e). In order to shed light
on the mechanism leading to bending in plainly crosslinked
MFs, we put forward a simplified analytical model below.

3.3. Free energy of a plainly crosslinked MF in a strong
magnetic field

In this subsection we introduce an idealised theoretical
approach that encompasses the competition between entropy

Fig. 5 Bar-Plot comparison of per-particle magnetisation m̄# of MFs. Each bar corresponds to a colloid within the respective filament. Subplots (a),
(b), (e), (f ), (i) and ( j) depict results for MFs with ferromagnetic MNPs, while subplots (c), (d), (g), (h), (k) and (l) depict results for MFs with super-para-
magnetic MNPs. Out of the subplots showing results for MFs with ferromagnetic MNPs, subplots (a), (e) and (i) represent MFs with plain crosslinking,
while subplots (b), (e) and ( j) represent MFs with constrained crosslinking. Out of the subplots showing results for MFs with super-paramagnetic
MNPs, subplots (c), (g) and (k) represent MFs with plain crosslinking, while subplots (d), (h) and (l) represent MFs with constrained crosslinking.
Column groups of subplots show filament m̄# results for the same value of H, where subplots (a)–(d) show results for H = 0.2, (e)–(h) show results
for H = 1.4 and subplots (i)–(l) show results for H = 6.0. All subplots contain m̄# results for both μ2max = 1 and μ2max = 3 (see subplot legends, respect-
ively). Errorbars are not shown as they are small enough to hardly be legible.
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gain of a filament through bending and the corresponding
energy loss. The model is based on the combination of Flory
approach and direct calculations of dipolar interactions in a
folded filament.

Let us assume that the Zeeman coupling is strong enough, so
that all dipoles in a filament consisting of Nmonomers, are point-
ing in the same direction, as shown in Fig. 7. We also assume
that all MNPs magnetic moments are saturated and μ ¼ ~μmaxj j,
independently from the magnetic nature of the monomers.

We expect a competition between three contributions to the
free energy of a filament: entropy, that favours a non-stretched

configuration, Zeeman energy, constant in our assumptions,
and dipolar interactions, that favour a head-to-tail orientation
of dipoles. The way we deal with dipolar contributions to the
free energy, is by splitting them into head-to-tail terms, Uhtt,
and diagonal terms, Udia: Udip = Uhtt + Udia. Both terms depend
on the folding, characterised in our model by the number of
monomers in the shorter arm of the folded filament, k ≤ ⌊N/2⌋,
as shown in Fig. 7. In order to simplify the calculations, we
assume that the two parts of a folded filament are touching
and the separation between all touching monomers is identi-
cal, σ. Uhtt and Udia are the sums of pair dipole–dipole inter-
actions Udd ~rij;~μi;~μj

� �
, given by eqn (3), where the distances

between monomers do not fluctuate and can be exactly calcu-
lated. In the approximation where monomer positions and
dipolar orientations are fixed to r0

! and Ω0
�!

respectively, we can
get rid of the integration in the partition function over coordi-
nates,~r and orientations, ~Ω, using the delta-function property

Fhtt= kBTð Þ ¼ ln
1
A

ð
d~rd~Ω exp Uhtt ~r; ~Ω

� �
= kBTð Þ� 


δ ~r ¼ r0
!; ~Ω ¼ Ω0

�!� �
:

ð11Þ

Up to the normalisation constant A, this brings us to a
rough estimate of Fhtt(kBT ) = Uhtt/(kBT ):

Fhtt k; μ; σ;Nð Þ
kBT

¼ �2μ2

σ3kBT

XN�k

i¼1

N � k � i
i3

þ
Xk
j¼1

k � j
j3

 !
: ð12Þ

This expression is identical to the chain ground state
energy,104 and it was successfully used to estimate chain free
energies at low temperature.105 Note, we assume that sum-
mation from zero to one, or from one to one provides a zero.
Following the same approach and using the same set of
approximations as in eqn (11), Udia that contains the sum of all

Fig. 6 Typical conformations of MFs obtained from simulations for μ2max = 3. (a) and (e) MFs realised with plain crosslinking and super-paramagnetic
monomers; (b) and (f ) MFs realised with plain crosslinking and ferromagnetic monomers; (c) and (g) MFs realised with constrained crosslinking and
super-paramagnetic monomers; (d) and (h) MFs realised with constrained crosslinking and ferromagnetic monomers.

Fig. 7 Schematic depiction of a folded MF, where the segments of the
folded chain are at σ distance one from another. All dipole moments are
aligned with the applied external magnetic field H, and set in magnitude,
to the saturation value of their respective magnetisation curves. Length
of the shorter segment k, changes as the filament folds further or
attempts to unfold completely.
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monomer interactions not belonging to the same fold, contrib-
utes to the free energy of a filament as Fdia/(kBT ) = Udia/(kBT ):

Fdia k; μ; σ;Nð Þ
kBT

¼ �
μ2

σ3kBT

PN1 k;Nð Þ

i¼0

I i;k;Nð Þ
r3i

9
4r2i

� 2
� �

Kcr � k

μ2

σ3kBT

PN2 k;Nð Þ

i¼0

I i;k;Nð Þ
r3i

9
4r2i

� 2
� �

otherwise

8>>><
>>>: :

ð13Þ
Here, ri in the denominators is

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iþ i2

p
:

Sum upper limits are defined as

N1ðk;NÞ ¼ k þ ðN � 2k � 1þ jN � 2k � 1jÞ=2
and

N2ðk;NÞ ¼ N � k � 2:

The prefactor I(i,k,N) shows how many pairs of monomers
are having the same interaction energy. It turns out that the
calculation of I(i,k,N) for arbitrary values of k and N is a non-
trivial task which results in the following expression:

I i; k;Nð Þ ¼

k k � i � N � 2k � 1
2k � i i , k
N � k � i� 1 otherwise

8<
: KcrðNÞ � k

2k � i i � N � 2k � 1
N � 2i� 1 N � 2k � 1 � i � k
N � k � i� 1 otherwise

8<
: otherwise

8>>>>>><
>>>>>>:

:

ð14Þ
In its turn, Kcr depends only on filament length, N:

Kcr Nð Þ ¼
N
3 N mod 3 = 0
N
3 � 1 otherwise :

�
ð15Þ

Thus, the total dipolar contribution to the free energy of a
folded filament can be written as:

FD k; μ; σ;Nð Þ
kBT

¼ Fhtt k;N; σ; μð Þ þ Fdia k;N; σ; μð Þ
kBT

: ð16Þ

The total Zeeman energy of a filament, UH = −NμH, does
not depend on k, so its contribution to the free energy of a fila-
ment, after getting rid of the integral and logarithm, simplifies
to FH/(kBT ) = −UH/(kBT ). Finally, following the Flory approxi-
mation for a polymer in a good solvent,100 entropic and steric
terms, Fent and Fs respectively, of the free energy without mag-
netic interactions, FNM, can be written as:

FNM k; σ;Nð Þ
kBT

¼ Fent k; σ;Nð Þ þ Fs k; σ;Nð Þ
kBT

¼ R2
ee k; σ;Nð Þ
Nσ2

þ π

6
σ3

N2

R3
ee k; σ;Nð Þ :

ð17Þ

Here, we use end-to-end distance Ree, as a function of k, σ
and N, which, by using the cosine theorem, can be obtained in
the following form:

Ree ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2kð Þ N � 2k � 1ð Þ þ 1

p
:

Summing all terms up, assuming σ = 1, one can obtain the
free energy of an “ideally” folded filament, as a function of k,
N and μ:

Fðk; μ;NÞ ¼ FNMðk;NÞ þ FDðk; μ;NÞ þ FHðμ;NÞ: ð18Þ

We want to depict the dependence of FD on k, for different
values of N. In order to compare FD values corresponding to a
straight chain FD(0, μ, N), to the one a folded chain would
have, in Fig. 8(a), we plot the μ-independent dimensionless
ratio:

ΔFD ¼ FD k; μ;Nð Þ � FD 0; μ;Nð Þ
N FD 0; μ;Nð Þj j : ð19Þ

Fig. 8 (a) ΔFD from eqn (19) versus k, for different values of MF length
N as indicated in the legend. (b) Colour map of ΔFT in simulation units
from eqn (20) for different values of k and μ. Contour lines indicate con-
stant values of ΔFT; vertical white lines show k = const cuts, whereas
dashed horizontal lines show μ = const sections. Colour coding is pro-
vided in the legend on the right.
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In this way, all curves collapse to zero at k = 0, and the posi-
tive values of ΔFD correspond to the region of parameters
where the free energy of a folded chain is higher than that of a
straight one. One can see that, for MFs with less than N =
28 monomers, it is magnetically more advantageous to assume
a straight conformation. However, along with the minimum at
k = 0, the increase of N leads to the development of the second-
ary minimum at k ∼ N/2 − 1, separated from the first one by a
barrier. In fact, for N > 28, we see that ΔFD becomes negative
instead for k > 12, revealing that the folded state becomes
more advantageous than the straight one.

In this manuscript, however, we observed the folding also
for MFs with N = 20: eqn (19) shows that considering only
dipolar contribution, such MFs should have remained
unfolded. Thus, in Fig. 8(b), we plot the total free energy differ-
ence between a straight N = 20-monomer MF and a folded one
for different values of μ and k:

ΔFTðk; μÞ ¼ F k; μ; 20ð Þ � F 0; μ; 20ð Þ
20

: ð20Þ

The lighter is the colour in the colour map of ΔFT, the
higher is the value of ΔFT(k, μ). In our case, the total free
energy difference can be positive, only if the straight confor-
mation is more advantageous than the bent one. Then, ΔFT
will be negative if a bent conformation is more advantageous
than a straight one. Vertical lines correspond to a given k,
contour lines show regions of constant ΔFT. One can see that
for small values of μ (bottom part of Fig. 8(b)), the minimum
of ΔFT is around k = 6–7, and basically any folding is leading
to the decrease of the free energy in comparison to the k = 0
situation. The picture changes dramatically if μ grows: a
maximum of ΔFT starts developing at k ∼ 1–2, whereas the
minimum corresponding to a folded state shallows, but never
disappears. In other words, for a straight MF with plain cross-
linking to bend, it needs to overcome a barrier introduced by
the dipole–dipole interaction. Once folded, however, it reaches
its global minimum of the free energy. Note that if we now
compute R*

ee, defined in section 3.1, corresponding to the
values of k ∼ 6–7 in which ΔFT reaches its minimum, we will
obtain R*

ee � 0:4� 0:5 that is in a good agreement with
Fig. 2(a).

To summarise this section, one should underline that
bending has not only entropic but also energetic advantages,
especially if the number of monomers in the MF is large (N ∼
30). The length considered in this manuscript, however,
corresponds to the case, when bending corresponds to the
local energy minimum, but is favoured by entropy at finite
temperature.

4. Conclusions

In this study, we develop models that efficiently and accurately
encompass the effects of crosslinking in terms of inter-particle
correlations and backbone stiffness, and monomer magnetic
nature, on the equilibrium properties of MFs. Single domain,

ferromagnetic monomers are modelled as point dipolar
spheres, whereas the magnetisation of super-paramagnetic
monomers is taken into account in an accurate manner,
inclusive of non-linear contributions. We compare coarse-
grained representations of two distinct crosslinking mecha-
nisms – plain and constrained – for both ferro- and super-para-
magnetic monomers. In this work, with plain crosslinking, we
address MFs with monomers that can freely rotate. This cross-
linking is modelled via centre-to-centre bonds for both ferro-
and super-paramagnetic monomers. Other case of crosslinking
we address, classified in this work as constrained crosslinking,
is the type of bonding, in which additional inter-particle or
particle-backbone correlations stiffen the chain. In this work,
constrained crosslinking for ferromagnetic monomers results
in penalising the rotation of particle magnetisation away from
the backbone. For super-paramagnetic monomers, additional
inter-particle correlations and stiffness against bending is
realised via a three-particle bending potential.

Thorough investigation of MFs with different crosslinking
and monomer types reveal that the crosslinking mechanism is
of major importance, strongly affecting both magnetic and
structural properties of MFs. The highest response of MFs to
an applied magnetic field, quantified by a change in equili-
brium magnetic and/or structural properties, is exhibited by
MFs with constrained crosslinking and super-paramagnetic
monomers with high susceptibility. Such MFs rapidly magne-
tise and stretch almost completely, even in a weak applied
field. Due to the strict coupling between the orientation of the
dipoles and the applied external field, MFs with super-para-
magnetic monomers outperform their counterparts with ferro-
magnetic monomers. In the case of MFs with ferromagnetic
monomers, if the monomers are strongly magnetic, in weak
fields, dipolar interaction is competing with Zeeman coupling,
while in the case of MFs with super-paramagnetic monomers,
external field assists the dipolar interactions. On the other
hand, even if the monomers are not highly magnetic, con-
strained crosslinking facilitates equally pronounced stretching
in strong fields for MFs with ferro- and super-paramagnetic
monomers.

Qualitatively different behaviour was revealed for MFs with
plain crosslinking. MFs with ferromagnetic monomers and
plain crosslinking are basically indistinguishable from their
counterparts with super-paramagnetic monomers in range of
applied fields we considered. In low fields, the correlations
between super-paramagnetic monomers are enhanced by the
alignment of their magnetisation with the external field, while
the ferromagnetic monomer magnetisation direction can fluc-
tuate strongly. In high fields, instead, even though each super-
paramagnetic monomer in a plainly crosslinked MF is also
eagerly magnetised almost to the saturation, it turns out that
the interplay between entropy and dipolar interactions pre-
vents such MFs from stretching and leads to bending instead.
This bending is observed for MFs with plain crosslinking inde-
pendently from the magnetic nature of monomers. We
propose a simple analytical model that explains the nature of
bending and quantifies the influence of dipolar forces and
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chain length on the equilibrium conformations of plainly
crosslinked MFs.

Currently, we are investigating longer MFs, together with
their bending dynamics in the presence of an explicit solvent.
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