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Unsupervised feature recognition in single-
molecule break junction data
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Single-molecule break junction measurements deliver a huge number of conductance vs. electrode sep-

aration traces. During such measurements, the target molecules may bind to the electrodes in different

geometries, and the evolution and rupture of the single-molecule junction may also follow distinct trajec-

tories. The unraveling of the various typical trace classes is a prerequisite to the proper physical interpret-

ation of the data. Here we exploit the efficient feature recognition properties of neural networks to auto-

matically find the relevant trace classes. To eliminate the need for manually labeled training data we apply

a combined method, which automatically selects training traces according to the extreme values of prin-

cipal component projections or some auxiliary measured quantities. Then the network captures the fea-

tures of these characteristic traces and generalizes its inference to the entire dataset. The use of a simple

neural network structure also enables a direct insight into the decision-making mechanism. We demon-

strate that this combined machine learning method is efficient in the unsupervised recognition of un-

obvious, but highly relevant trace classes within low and room temperature gold–4,4’ bipyridine–gold

single-molecule break junction data.

Creating electrical circuit elements from single atoms or mole-
cules is one of the main goals of molecular electronics
research.1–3 The investigation of the electronic properties of
single-molecule junctions can be realized utilizing the break
junction technique,4,5 which allows us to establish a statistical
amount of single-molecule nanowires by repeatedly opening
and closing an atomic-sized metallic junction, and by appro-
priately dosing the target molecules. Despite the stochastic
nature of this process, the statistical analysis of the conduc-
tance vs. electrode separation traces usually yields typical,
rather well defined single-molecule junction configurations,
which are reflected by peaks in the conductance histograms.
However, to understand the fine details of the typical junction
formation trajectories, it is not enough to plot simple one
dimensional conductance histograms, rather some more elab-
orate techniques are required. These include two-dimensional
conductance-displacement histograms,6,7 cross-correlation
analysis8–10 or custom feature filtering algorithms,11–16 which
are able to identify targeted motifs of the traces. Although

these methods rely on well-defined computer algorithms
instead of manual data selection, the feature filtering protocols
are usually custom constructed and tuned according to the
researcher’s physical intuition.

Nowadays artificial intelligence methods are widely utilized
in many fields of science and technology providing a rapidly
developing tool to recognize the relevant features in the data
without guidance by human intuition. In molecular elec-
tronics, it was also demonstrated that machine learning proto-
cols, like unsupervised vector-based classification,17 reference-
free clustering method,18 fast data sorting with principal com-
ponent analysis,19 deep auto-encoder based clustering,20 and
neural network based classification21 may become useful tools
for data analysis. In the latter work, we have demonstrated the
successful classification of single-atom and single-molecule
break junction data relying on recurrent neural networks that
were trained either on computer-simulated data or on manu-
ally selected and labeled experimental traces. Though being
successful in the classification of the traces, it is clear that this
approach can be further optimized in various aspects. On one
hand, the rather complex recurrent neural networks were
found to be sensitive to the choice of the network parameters,
excellent classification was only achieved at some specific para-
meter sets. On the other hand, the training method also
requires improvement: whereas training on computer-simu-
lated data is expected to have increasing importance with the
development of the simulations’ predictive power, in case of
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experimental training sets, it would be definitely favorable to
eliminate the need for manual labeling. In this paper, we step
forward towards an unsupervised learning protocol. We apply
a combined method using the simplest possible feed-forward
neural network with a single hidden layer for feature identifi-
cation. The training is either based on the principal com-
ponent (PC) projection of the conductance traces, or on an
additional measured quantity, like force. In both cases, the
two sides of the distributions (i.e. the extreme PC projections
or rupture force values) are used for the training such that the
network first learns from traces with clear features, and then
generalizes for traces with less obvious characters. We demon-
strate that this approach exhibits excellent performance on
break junction data: (i) the classification results are insensitive
to the precise choice of the network parameters; (ii) thanks to
the simple network structure one can extract valuable infor-
mation about the decision-making mechanism; (iii) this unsu-
pervised training protocol provides similar classification
results as the human feature recognition.

1. Results and discussion

We analyze the conductance traces of gold–4,4′ bipyridine
(BP)–gold single-molecule junctions that were acquired either
by a room temperature scanning tunneling microscope break
junction setup extended with force measurement22 or by a
mechanically controllable break junction arrangement13 oper-
ated at cryogenic temperatures (T = 4.2 K). In the former case,
BP molecules are evaporated onto a gold-coated mica sub-
strate, whereas in the latter setup an in situ evaporation
method is applied.10 It was shown by previous room tempera-
ture measurements, that BP molecules can attach to gold elec-
trodes in two different binding geometries resulting in double-
step molecular plateaus23–25 (see the sample trace in Fig. 1A).
At a smaller electrode separation, the molecule can bind on
the side of the metallic junction such that both the nitrogen
linker and the aromatic ring is electronically coupled to the
electrode. Upon further pulling, the molecule slides to the
apex and only the linkers couple to the electrodes yielding a
decreased conductance value.23 In the following, we refer to
these two binding geometries as HighG and LowG configur-
ations. In accordance with these configurations, the room
temperature 1D conductance histogram exhibits double peaks
(Fig. 1B), and similarly, the 2D conductance vs. electrode sep-
aration histogram exhibits two plateaus (Fig. 1A). It was also
found that the molecule pick-up rate is ≈100%, i.e. almost all
the conductance traces contain molecular plateaus. Note, that
the single-molecule junction forms after the rupture of a
single-atom gold nanowire, and the latter is reflected by a
sharp peak in the conductance histogram (Fig. 1B) around the
quantum conductance unit (G = 1G0 = 2e2/h).

The cryogenic temperature measurements exhibit three clear
differences compared to the room temperature data: (i) the 1D
histogram exhibits a single peak around the LowG region
(Fig. 1D); (ii) the pick-up rate significantly decreases (≈30–40%);

(iii) the stability of the junction is significantly increased. The
latter two features are clearly reflected by the 2D histogram: due
to the reduced pick-up rate, the traces with molecular plateaus
are mixed with tunneling traces where the exponential decay of
the tunnel current between the metallic apexes is clearly
resolved due to the enhanced stability (see the 2D histogram
and a sample molecular and tunneling trace in Fig. 1C).

In the following, we analyze these datasets using the neural
network illustrated in Fig. 2A. The Ini input vectors of the feed-
forward neural network are simply the histograms of the indi-
vidual conductance traces, Ni(r), the number of data points in
bin i on trace r. This histogram is restricted to the G = 10−5–
101G0 conductance range for the room temperature measure-
ment and G = 10−6–101G0 in the case of the low-temperature
measurement using logarithmic binning. The size of the net-
work’s input vector, and accordingly the M number of bins in
the histogram is an adjustable parameter of the network
together with the number of neurons in the hidden layer (H).
The neurons in the hidden layer sum up the incoming signals
using the weights of the synapses between the input and the
hidden layer and placing a bias offset. Finally, these neurons

Fig. 1 2D conductance vs. electrode separation histograms (left) and
1D conductance histograms (right) of gold–4,4’ bipyridine–gold single-
molecule junctions measured at room temperature (A, B) and at liquid
helium temperature (C, D). The histograms of the room temperature
dataset are constructed from 12 000 traces, while the low temperature
dataset consist of 5500 traces. In the 2D histograms the traces are
aligned at Gref = 5 × 10−5G0 (A) and Gref = 10−5G0 (C) conductance.
Example traces from both datasets are shown as black lines (A, C). In
panel (C) the left/right curves illustrate a double step molecular trace
and a tunneling trace, respectively.
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output the summed signals applying a nonlinear (sigmoid)
activation function. These outputs of the hidden layer are simi-
larly fed to the output layer with a single neuron. The output
value can be interpreted as a result of binary classification, e.g.
the trace is classified as molecular/tunneling trace if the
network output is larger/smaller than 0.5. The network is
trained on a subset of the traces that are labeled according to a
specific criterion (e.g. molecular trace vs. tunneling trace).
Along the training process, the optimized weight and bias
values are found using the backpropagation algorithm
implemented in the TensorFlow machine learning platform.26

Finally, the trained network is ready to classify any conduc-
tance trace, also those that were not used for training.

In this paper, we demonstrate the classification perform-
ance of these neural networks using the following scenario: (i)
as an initial test we separate molecular traces from tunneling
traces using the cryogenic temperature data. Relying on the
manual labeling of all traces we first train the network on a
part of the traces and then we evaluate the classification accu-
racy on the entire dataset. Finally, we study the decision-
making mechanism by analyzing the weight-products of the
network. (ii) We perform the same classification by replacing
the manually labeled data with a training set that is automati-
cally generated by principal component projection. (iii) We
further analyze the molecular traces applying an additional
principal component decomposition on the molecular traces
classified in (ii). The results of this analysis explain the differ-
ence between the room and low-temperature conductance his-
tograms. (iv) Finally, we analyze the room temperature traces,
where the conductance data are supplemented with force
measurements. The force data are only used to label the train-
ing traces, demonstrating that afterwards, the network is able
to identify the relevant trace classes using solely the conduc-
tance data. The results of these classification tasks demon-
strate, that our protocol performs well in automatically finding
the relevant parts of the traces, reflecting distinct junction for-
mation trajectories. This would be a challenging and time-con-
suming task by manual data analysis, and therefore our com-
bined classification method provides valuable guidance in
understanding the physical processes in single-molecule
junctions.

1.1. Classification of molecular traces against tunneling
traces using manually labeled training sets

This classification task serves as a reference to test the neural
network’s performance. We have manually labeled all the
traces (5500 curves) using three categories: tunneling trace
(59%), molecular trace (34%) and ill-defined trace (7%). The
accuracy of the classification is measured as the [number of
well-characterized tunneling + molecular traces]/[number of
all molecular and tunneling traces]. In this first approach, we
train the neural network using a subset of the data contain-
ing 320 traces with clear molecular or tunneling character-
istics. Afterward, the neural network classifies all traces, as
demonstrated by the 1D and 2D histograms in Fig. 2B, C
(molecular traces) and Fig. 2D, E (tunneling traces). These
figures do not exhibit any sign of misclassification, no mole-
cular/tunneling signature is visible on the 2D histogram of
the tunneling/molecular traces, respectively. Relying on the
manual labeling of all traces, the network achieves 93%
classification accuracy.

It is important to note, that the manual labeling of most
traces is obvious, but it is a more delicate task to define a
custom filtering algorithm for that. The most obvious filtering
would rely on the number of datapoints within the conduc-
tance region of the molecular plateau assigning molecular/tun-
neling label to the traces with larger/smaller number of points
than a proper threshold. This algorithm provides significantly
worse classification accuracy (≈85–90% depending on the

Fig. 2 (A) Schematic representation of the applied feed-forward neural
network with one hidden layer and a single neuron at the output. The
network takes the 1D conductance histograms of the individual conduc-
tance traces (Ni(r)) as inputs. Each neuron in the network sums up the
incoming signals multiplied by the weights (Wj,i), adds a bias offset and
applies a sigmoid activation function ( f[x] shown in the inset). After the
training (optimization of the weights and bias values of the network), the
neural network classifies all traces measured at low temperature either
as molecular or tunneling trace. Panels (B, C)/(D, E) show the 2D and 1D
histograms of the such classified molecular/tunneling traces, respect-
ively. In the 2D histograms the traces are aligned at Gref = 10−5G0. Panel
(F) shows the summed weight products of the trained neural network as
a function of the conductance (see text). Panel (G) illustrates the net-
work’s classification accuracy as the function of the input bin number,
M. The red dot shows the accuracy using the two customized bins
extracted from the SWP plot in panel (F).
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chosen conductance range) than the neural network.
Furthermore, this simplified method systematically misclassi-
fies around 25–30% of the molecular traces, whereas the
neural network algorithm provides a misclassification rate
below 10%. From this comparison it is clear that such a
simple criterion is insufficient for the proper classification,
rather some combined features should be measured, including
e.g. the slope of the trace within a proper region, or comparing
the number of datapoints in multiple conductance regions.

The neural network algorithm automatically finds a
proper, combined classification criterion. Due to the simple
structure of our neural network, it is also possible to get a
quantitative insight into the network’s decision making
algorithm. As a simple measure, we can calculate the
summed weight products for all the routes between a certain

input and the output, SWPi ¼
XH
j¼1

W 1ð Þ
i;j �W 2ð Þ

j . If SWPi is a

large positive/negative number for a certain input, a large
input value (i.e. a large histogram count) will push the
decision towards the molecular/tunneling label, respectively.
If SWPi is close to zero for a certain input, then this input is
not relevant in the decision making process. For our particu-
lar network, the SWP plot displays large positive values in the
region of the molecular plateau (see the region with light red
background in Fig. 2F), and a large negative region is
observed at lower conductances (see the region with light
blue background in Fig. 2F). In the latter region, the mole-
cular traces display a jump, but the tunneling traces contain
significant counts. It is clear from the SWP plot that the
network checks combined criteria: to give a trace a tunneling
label it is not enough to have a small number of points in the
region of the molecular peak; there should be enough points
at even lower conductance values, where a molecular trace
would exhibit a jump. Checking combined criteria brings
clear improvement in the classification of molecular traces
compared to the above misclassification of the molecular
traces using a single criterion.

For the above analysis, we have used 100 input neurons,
i.e. 100 histogram bins. Next, we check the stability of the
neural network performance against the number of input
bins (M). Fig. 2G demonstrates, that the reduction of the bin
number even slightly increases the classification accuracy
down to ≈10 bins, but below that the accuracy drops.
However, once we know the relevant conductance regions for
the decision making from the SWP plot, we can define custo-
mized bins to focus our analysis on the most relevant
regions. In this particular case, we can reduce the number of
input neurons to two, by calculating the number of data-
points in the two relevant regions of the SWP plot (i.e. the
regions with light red and light blue background). This
highly simplified network also achieves 93% accuracy (see the
red dot in Fig. 2G). We generally use H/M = 1.5 ratio, where H
is the number of neurons on the hidden layer but a broader
region around this value also provides similar classification
results.

1.2. Unsupervised classification of molecular and tunneling
traces using the combination of principal component
decomposition and neural network analysis

Next, we train our network without a manually labeled dataset.
Manual classification is not only against objective data hand-
ling, but in many cases, we also lack the a priori knowledge for
judgement, and therefore we seek computer algorithms to
automatically find the relevant data classes, which would help
us to understand the various possible junction configurations.
To this end, we apply the method of principal component ana-
lysis developed by J. Hamill et al.19 This method relies on the
correlation analysis of the conductance traces introduced in
our previous work.9 The principal components (PCs) are the
eigenvectors of the 2D correlation matrix, the PCs with the
largest eigenvalues identify the most relevant correlations in
the dataset. Fig. 3A demonstrates the 2D correlation plot for

Fig. 3 Classification of the low temperature tunneling/mole-
cular traces using principal component projections. (A) The Ci;j ¼
δNi rð Þ � δNj rð Þr
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½δNi rð Þ�2

D E
r
½δNj rð Þ�2

D E
r

r
correlation plot of the entire

dataset, where i,j represent the conductance bin labels, δNi(r) = Ni(r) −
〈Ni(r)〉r, and the 〈〉r averaging is performed along the r trace index. (B)
Principal components of the correlation matrix corresponding to the
three largest eigenvalues. The light red/blue regions are reproduced
from the SWP plot in Fig. 2F as a reference. (C) Distribution of the PC2
projections for all measured traces (black), manually labeled molecular
(red) and tunnelling (blue) traces. Traces with positive/negative projec-
tion are classified as molecular/tunneling trace. Conductance histo-
grams of the such classified molecular (D, E) and tunneling (F, G) traces.
The encircled region in panel (D) illustrates that a significant portion of
the tunneling traces are misclassified. In the 2D histograms the traces
are aligned at Gref = 10−5G0.
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our low-temperature BP data, whereas Fig. 3B shows the princi-
pal components with the first three largest eigenvalues. The
second principal component (PC2 shown by thick black line)
exhibits a very similar shape to the SWP plot in Fig. 2F (for a
better comparison, the light red/blue regions of the SWP plot
are repeated in Fig. 3B). This suggests, that the projection of

the conductance traces to PC2 (i.e. the
XM
i¼1

PC2i � Ni rð Þ scalar

product) is able to classify molecular traces against tunneling
ones. Indeed, the principal component analysis can alone
perform the classification task giving molecular/tunneling
label to the traces with positive/negative principal component
projection. The 1D and 2D histograms for the such classified
traces are shown in Fig. 3D–G. This classification provides a
basically good result with 90% accuracy, but the 2D histogram
of the traces with molecular label (Fig. 3D) demonstrates that a
significant amount of the tunneling traces are misclassified as
molecular ones (see the encircled region). The reason for this
becomes clear if the histogram of the principal component
projections (black line in Fig. 3C) is decomposed according to
the manual labelling of our traces (see the red/blue lines in
Fig. 3C for the molecular/tunneling traces, respectively). The
zero PC projection (black dashed line) is clearly not the proper
threshold between the two classes, as it cuts the distribution at
a region where the tunneling traces are still highly dominant
(at this line 76% of the traces is tunneling trace, which is well
above the overall 59% ratio of the tunneling traces). Due to
this improper threshold, 11% of the tunneling traces are mis-
classified. Alternatively, one could set the classification
threshold at the maximum of the PC projections’ distribution,
but this choice would further increase the number of misclas-
sified traces and reduce the classification accuracy. Without
the a priori knowledge of the trace labels one does not have
any basis to determine a better threshold.

To solve the above problem of simple PC analysis, we apply
a combined approach. We first take the traces from the two
sides of the principal component projections’ distribution (see
light red and light blue regions in Fig. 4E, where both regions
include 20% of all traces). These traces clearly exhibit the fea-
tures of the two classes showing definite tunneling/molecular
characters, therefore these two trace sets provide an ideal train-
ing set for the neural network illustrated in Fig. 2A. During the
training, the neural network learns the relevant features of
these two trace classes, and then it generalizes these features
for the rest of the traces with less clear character. This com-
bined classification not only resolves the indefinite threshold
problem of the principal component projections, but the
neural network may also recognize more sophisticated fea-
tures, which could not be captured by a simple principal com-
ponent analysis. Performing this combined analysis we
achieve 93% classification accuracy, and the ratio of misclassi-
fied tunneling traces is reduced below 3%. The 2D and 1D his-
tograms of the corresponding traces labeled as molecular/tun-
neling curves are demonstrated in Fig. 4A, B and C, D respect-
ively. Both the 1D and 2D histograms confirm, that the mis-

classification of a significant amount of traces is avoided with
this analysis. The SWP figure (Fig. 4F) exhibits a similar struc-
ture as the SWP plot in our previous analysis using the manu-
ally labeled training set (Fig. 2F).

This analysis demonstrated, that the efficient unsupervised
feature recognition is clearly a mixed effort of principal com-
ponent and neural network analysis: the PC projections are
able to deliver a proper, automatically generated training set,
but without neural network supplement, the PC analysis
would miss the proper classification thresholds.

1.3. Unsupervised recognition of distinct molecular trace
classes

As a further step, we take the traces classified as molecular
curves according to our combined principal component and
neural network analysis (see Fig. 4A and B). On this restricted
trace set (already excluding the tunneling traces) we apply an
additional principal component analysis relying on the first
principal component (thick black line in Fig. 5B) of the corre-
lation matrix in Fig. 5A. Again, we use the two sides of the
principal component projections’ distribution as the training
set for our neural network (see light red and light blue regions
in Fig. 5G including 20–20% of all traces). The SWP figure of
the trained network (area graph in Fig. 5B) shows a similar
structure to the first principal component (thick black line).
The results of the classification are illustrated in Fig. 5C–F as
1D and 2D histograms. These two trace classes exhibit a very
clear difference: whereas the traces of the first class (Fig. 5C
and D) dominantly start from the LowG region (light red area

Fig. 4 Combined principal component and neural network method for
sorting the traces measured at low temperature. 2D and 1D conduc-
tance histograms of the traces classified as molecular (A, B) and tunnel-
ing (C, D) trace. In the 2D histograms the traces are aligned at Gref =
10−5G0. (E) Distribution of the PC2 projections for all measured traces
(black), training traces labeled as molecular/tunneling trace (light red/
blue area), traces classified as molecular/tunneling trace (red/blue line).
(F) SWP plot of the trained neural network (red and blue area). As a
reference, PC2 of the correlation matrix is reproduced from Fig. 3B
(black line).
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in the 2D histogram), the traces of the second class (Fig. 5E
and F) are rather starting in the HighG region (light blue area
in the 2D histogram) and they only reach the LowG region
after further stretching. This clear difference is also confirmed
by the initial configuration histograms, i.e. the histograms
relying on the datapoints within the first 0.1 nm displacement
after the rupture of the gold nanowire (see the black histo-
grams in Fig. 5C and E). According to this distinction, in the
following, we refer to these two trace classes as LowGStart and
HighGStart traces. For both trace sets we fit the 1D histogram
with double Gaussians (see black lines in Fig. 5D and F). For
the LowGStart traces, the 1D histogram (Fig. 5D) is clearly
dominated by a single gaussian positioned in the LowG

region. On the other hand, both gaussian contributions are
significant in the conductance histogram of the HighGStart
traces (Fig. 5F). Accordingly, the HighGStart traces resemble
the room temperature measurements on gold–BP–gold junc-
tions reflecting double molecular plateaus in the HighG and
LowG regions. In contrast, the LowGStart traces represent a
trace class, which is not common in room temperature data.

Both PC1 and the SWP plot exhibit a further remarkable
phenomenon showing large negative weights in the region of
the 1G0 = 2e2/h quantum conductance unit (Fig. 5B). This
means, that a long single-atom plateau with ≈1G0 conductance
would push the classification towards the LowGStart label. To
test this consideration we plot the length distribution of the
1G0 plateaus (i.e. the step length histogram shown by black
line in Fig. 5H), which displays double peaks. This is a clear
indicator of monoatomic chain formation.27 After decompos-
ing the step length histogram according to the two trace
classes, it becomes clear that the second step length histogram
peak is suppressed for the HighGStart traces, which means
that these traces dominantly appear if the gold monoatomic
contact breaks without chain formation. For the LowGStart
traces, however, the first step length histogram peak is sup-
pressed, and the second peak is enhanced. This means, that
these traces dominantly appear if a monoatomic chain was
already pulled before the rupture of the gold wire. In the latter
case, the chain atoms relax back to the electrodes after the
rupture leaving a significantly larger gap between the apexes
than in the former case, when the gold junction breaks
without chain formation. In the case of the HighG molecular
configuration, the aromatic ring also binds to the side of the
electrodes,23 but such a configuration cannot accommodate
larger gaps, i.e. after the rupture of monoatomic gold chains
this configuration is typically missing. Due to the enhanced
mechanical stability at cryogenic temperatures, a sufficiently
large portion of the traces exhibit atomic chain formation,
which also brings the clear dominance of the LowG molecular
peak in the low-temperature 1D conductance histogram in
contrast to the dominance of the HighG peak at room
temperature.

The SWP plot not only highlights the importance of the 1G0

region, but it clearly defines four distinct conductance regions
that significantly contribute to the network’s decision (see
regions R1–R4 in Fig. 5B, where the regions with blue/red area
push the decision towards HighGStart/LowGStart label,
respectively). Similarly to the customized bins in our previous
analysis (see the red dot in Fig. 2G), here we can also reduce
the input dimension of the original network with 100 input
bins by using regions R1–R4 as four customized bins. This
simplified network with four inputs reproduces the classifi-
cation of the original network with 87.5% accuracy. One can
also use R1, R2, R3 or R4 as a single input bin of the network.
In this case, the original network’s classification is reproduced
with 74.9%, 81.5%, 65.4% and 61.7% accuracy, respectively.
This means that R2 is the most important region, the 1G0

region (R1) is a rather good precursor of the molecular trace
classes, whereas R3 and R4 are less significant.

Fig. 5 Unsupervised identification of the relevant trace classes among
the molecular traces (i.e. using the traces with molecular label according
to Fig. 4A and B) (A) correlation matrix of the traces with molecular
label. (B) PC1 (black): principal component corresponding to the largest
eigenvalue. SWP plot of the trained neural network (red and blue area).
(C–F) 2D and 1D conductance histograms of the resulting two trace
classes. To highlight the initial part of the traces Gref = 0.5G0 alignment
is applied in the 2D histograms. The initial configuration histograms of
the two trace classes are shown by black lines in panels (C) and (E),
respectively. For the first, LowGStart trace class (C, D) the molecular
plateau starts in the low conductance region (light red region), wheres
in the second, HighGStart trace class (E, F) the molecular plateau starts
in the high conductance region (light blue region). (G) Distribution of
the PC1 projections: all molecular traces (black line), traces used for
training (light red and blue area), resulting trace classes: LowGStart (red
line), HighGStart (blue line). (H) Step length distribution of the 1G0

plateau: all molecular traces (black line), LowGStart traces (red line),
HighGStart traces (blue line).
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This analysis demonstrated that our combined classifi-
cation algorithm automatically found the two relevant trace
classes of LowGStart and HighGStart traces. Furthermore, the
structure of the principal component/SWP plot gave us a rele-
vant hint that the 1G0 step length acts as a precursor of the
molecular trace classes, and further three regions were high-
lighted as the most relevant conductance intervals for the
decision making. These conclusions did not require any prior
knowledge about the dataset; the classification algorithm
recognized the relevant motifs of the traces in an unsupervised
way.

1.4. Unsupervised classification of the conductance traces
using auxiliary force measurements as training labels

So far the automatically generated training labels were sup-
ported by the extreme values of the principal component pro-
jections. In the following we demonstrate, that additional
measured quantities (like rupture force data) can also be used
to select trace classes according to the distinct values of these
auxiliary measured quantities. Such selected traces can be
used as training sets for the neural network. This training
might empower the network to recognize the typical motifs of
the classes solely in the conductance data such that the auxili-
ary quantity is only required for the training, but not for the
inference. To demonstrate this scheme we use the room temp-
erature BP break junction measurements (Fig. 1A and B),
which are also extended by force data. The black line in Fig. 6A
shows the distribution of the rupture force values calculated

for all traces i.e. the force that is required to rupture the mole-
cular junction.22,25,28 As two classes, we take traces with out-
standingly large/small rupture force. More specifically we take
the traces, for which the rupture force is within the top/bottom
20% of the entire force range of 0–3 nN (see the regions high-
lighted by light red/light blue in Fig. 6A, respectively). In this
special case, the top 20% of the force range contains almost
an order of magnitude fewer traces than the bottom 20%, so
we use the former traces multiple times (10×) to ensure a
balanced training set. 1D conductance histograms of these
traces are used to train the network. The network trained in
this manner classifies all the traces into the two classes
demonstrated by the 2D and 1D histograms in Fig. 6C–F,
respectively. It is clear that the traces in the first class (high
rupture force) break from the HighG configuration (HighG
rupture traces), whereas in the second class (low rupture force)
the traces break from the LowG configuration (LowG rupture
traces). These trace classes are in full agreement with the con-
clusions of Aradhya et al.,25 where this dataset was first ana-
lyzed. Again, we can state that our neural network based ana-
lysis could automatically deliver the relevant trace classes of
the dataset. It is interesting to point out, that the rupture force
distributions of the resulting groups of traces show significant
overlap, meaning that it would not be possible to achieve this
classification by simply setting a threshold for the rupture
force value. However the neural network trained on the traces
with extreme rupture force values was able to identify the
important features in the conductance data and generalize
this on the rest of the conductance traces.

The SWP plot (Fig. 6B) shows that the most relevant part of
the input data comes from the conductance range corres-
ponding to the LowG configuration. Again, one can use the
most relevant conductance intervals highlighted by the SWP
plot (see regions R1 and R2 in Fig. 6B) as customized bins,
and the reduced network with these two inputs reproduces the
decision of the original 100 input network with 83% accuracy.

1.5. Discussion of the benefits and restrictions of our
combined unsupervised classification method

Alternatively to our approach, one may also choose highly
complex and computation intensive machine learning
methods, which also do not require any initial reference data.
One approach is a direct K-means++ clustering within a high
dimensional (28 × 28) conductance vs. displacement parameter
space.18 Alternatively one can use feature extraction by a deep
auto-encoder algorithm, and a subsequent K-means clustering
within the reduced dimension feature space.20 These methods
include both the conductance and displacement information
and can treat multiple data classes, but due to their complexity
it is hard to gain proper insight into the decision making
aspects. Furthermore, the direct K-means clustering may
become unstable if the dimension of the input data becomes
too high, whereas the performance of the deep auto-encoder
may be sensitive to the choice of the network parameters.

In contrast, our method relies on a simple, transparent and
stable algorithm. Through the principal component approach

Fig. 6 Unsupervised classification of room temperature molecular
traces relying on training labels from auxiliary rupture force data. (A)
Distribution of the measured rupture force values: all traces (black line),
training traces with low/high rupture force (light blue/red area), resulting
trace classes (red/blue lines for HighG rupture and LowG rupture traces,
respectively). (B) SWP plot of the trained network. (C–F) Conductance
histograms of the resulting trace classes: molecular junctions rupturing
from HighG (C, D) and LowG (E, F) conductance configuration. The light
red and blue regions reflect the relevant intervals of the SWP plot. In the
2D histograms the traces are aligned at Gref = 5 × 10−5G0.
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it eliminates the need for interpreting complex correlation
matrices,8,9 the neural network supplement significantly
improves the classification accuracy compared to a plain prin-
cipal component analysis,19 the simple network structure elim-
inates the sensitivity to the network parameters, and the SWP
plot (along with the principal component plot) provides a clear
insight to the decision making mechanism. On the other
hand, our approach also has some restrictions, and some pre-
cautions should be taken during its application: (i) our
method uses the histogram bins as inputs, and the displace-
ment information is excluded from our analysis. We find that
in most cases the classification is efficient with this simplified
input due to the monotonic nature of the conductance traces.
However, in some cases, the fine details of the displacement
information may become crucial. (ii) Our method basically
performs binary classification, multiple trace classes can only
be recognized through iterative binary classification steps (see
section 1.3). (iii) In the above analysis, we relied on the most
relevant principal components, but generally, it is essential to
analyze the classification according to all leading principal
component projections (e.g. PC1, PC2 & PC3), and to screen
the relevance of each projection. Furthermore, the improper
preparation of the data, like strong temporal inhomogeneities
in the temporal histograms10 or the unnecessary inclusion of
the background noise level in the data may introduce domi-
nant, but fully irrelevant correlations, which may even domi-
nate the first principal component. In a properly prepared,
temporally homogeneous dataset, however, the leading princi-
pal components typically reflect highly relevant data classes.

According to the above aspects, we consider the choice
between the present method and the more complex methods
in ref. 18 and 20 as a tradeoff between simplicity and transpar-
ency, or complexity and the optional access to further extents
(e.g. multiple trace classes and displacement information).

2. Conclusions

In conclusion, we have analyzed the data of single-molecule
break junction measurements exploiting neural networks,
which are very efficient in feature recognition. The direct appli-
cation of neural networks on break junction data is obviously
restricted by the requirement of training data, which are
already labeled according to the targeted classes. To this end,
we have developed a combined method, which automatically
generates training data according to the extreme values of the
principal component projections or some auxiliary measured
quantities, and then the network captures the features of these
characteristic traces and generalizes its inference to the entire
dataset. This method matched our personal judgment with
93% accuracy in classifying molecular vs. tunneling traces.
More importantly, we have demonstrated that our combined
approach is able to recognize much less obvious, but highly
relevant trace classes in a fully automated and unsupervised
manner. Finally, we have demonstrated that the simplest poss-
ible double-layer feedforward neural networks are not only

enough for the proper classification, but the simple network
structure also enables a direct insight into the decision-
making mechanism through the summed weight product
plots. We believe, that this unsupervised recognition of the
relevant trace classes provides fundamental support to the
final goal of understanding the physical mechanisms in the
ultimate smallest conductors.

3. Methods

The low-temperature measurements were performed by notched
wire mechanically controllable break junctions using 100 μm
diameter high purity gold wires which were fixed to a bending
beam by two drops of stycast epoxy. The cross-section of the
wire was reduced by a notch in the middle. The wire was broken
in situ in the cryogenic vacuum using a coarse mechanical
actuation. The conductance of the junction was recorded by
applying a small (100 mV) bias voltage and measuring the
current with a logarithmic current amplifier.29 To record a stat-
istical amount of conductance traces the junction was opened
and closed many thousands of times with a piezo actuator. The
molecules were evaporated to the junction in situ by heating a
quartz tube inside the tungsten coil of a light bulb.10 The dis-
tance between the neighbor peaks in the 1G0 step length histo-
gram27 was used to calibrate the displacement of the junction.

The room temperature measurements were performed with
a scanning tunneling microscope break junction arrangement
which was supplemented with an AFM cantilever to precisely
measure the force as well.25 In this measurement, molecules
were evaporated onto gold-coated mica substrate.

The one dimensional (1D) histograms were created for each
trace by dividing the conductance axis to small ranges (bins)
and calculating the number of measurement points in each
conductance bin. Then single trace histograms are averaged to
calculate the 1D histogram representing the entire dataset. 2D
histograms are created by aligning each trace at the crossing of
a given conductance level (Gref ) and performing binning along
both the conductance and displacement axes. The neural
network algorithm was implemented using the TensorFlow
machine learning platform.26
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