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Molecular generation targeting desired electronic
properties via deep generative models†

Qi Yuan, a Alejandro Santana-Bonilla,a Martijn A. Zwijnenburg b and
Kim E. Jelfs *a

As we seek to discover new functional materials, we need ways to explore the vast chemical space of pre-

cursor building blocks, not only generating large numbers of possible building blocks to investigate, but

trying to find non-obvious options, that we might not suggest by chemical experience alone. Artificial

intelligence techniques provide a possible avenue to generate large numbers of organic building blocks

for functional materials, and can even do so from very small initial libraries of known building blocks.

Specifically, we demonstrate the application of deep recurrent neural networks for the exploration of the

chemical space of building blocks for a test case of donor–acceptor oligomers with specific electronic

properties. The recurrent neural network learned how to produce novel donor–acceptor oligomers by

trading off between selected atomic substitutions, such as halogenation or methylation, and molecular

features such as the oligomer’s size. The electronic and structural properties of the generated oligomers

can be tuned by sampling from different subsets of the training database, which enabled us to enrich the

library of donor–acceptors towards desired properties. We generated approximately 1700 new donor–

acceptor oligomers with a recurrent neural network tuned to target oligomers with a HOMO–LUMO gap

<2 eV and a dipole moment <2 Debye, which could have potential application in organic photovoltaics.

Introduction

The successful development of new functional molecules
remains one of the most important challenges to be
addressed, not only due to the vastness of the chemical space
to be explored, but also given the level of specificity required
in the targeted properties for each application. In many cases,
serendipity has played a fundamental role in the discovery and
production of new materials and molecules. Recently, there is
growing interest in applying artificial intelligence (AI) to the
discovery of novel functional molecules, particularly in the
field of drug discovery, with the aim of both exploring larger
chemical space and saving the time and cost involved in the
experimental synthesis and characterisation of such
molecules.1–4

The use of AI in material discovery generally falls into two
categories. Firstly, predictive AI models, based upon supervised
machine learning, are becoming more common in the use for

the computation of material properties, calculating the pro-
perties of interest at reasonable accuracy, but a fraction of the
computational cost compared to widely used electronic struc-
ture calculations. Predictive AI models have been applied widely
for material discovery tasks, including organic photovoltaics,5–8

bioinspired hierarchical composites9 and supercompressible
polymers.10 Secondly, there are generative models, which use
unsupervised machine learning such that a model learns from
a dataset and can then produce data of a similar format. This
can be applied in chemistry to produce novel molecules from
libraries of known molecules. Generative models have been
reported mainly for drug or drug-like molecules,11 with only
limited application for other types of functional molecules, for
example non-fullerene electron acceptors12 and thermally con-
ductive polymers.13 Our study here focuses on developing deep
generative AI models for the discovery of novel donor–acceptor
oligomers with desired electronic properties with potential
application as organic semiconductors.

Development of a deep generative model for material dis-
covery can be divided into several tasks. The first task is to rep-
resent the molecules of interest in a way that is easy to be read
and written by a computer. A standard representation of mole-
cules is the simplified molecular-input line-entry system
(SMILES), which encodes molecular graphs compactly as
human-readable strings. The SMILES representations of mole-
cules highly resemble that of natural language, where long
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range dependencies are crucial for a reasonable representation.
For example, the SMILES of benzene is c1ccccc1, where the two
‘1’s represent the opening and closing of the ring structure in
the molecule and must both be present in the SMILES,
however, the ‘1’s are not neighbours to each other in the repre-
sentation and a generative model needs to ‘remember’ the posi-
tion of the first ‘1’ in the string and close the ring at chemical
plausible positions. The generation of novel SMILES strings
can thus be regarded as natural language generation and a
recurrent neural network (RNN) is a typical tool for such tasks.
An RNN is a class of artificial neural network that has a tem-
poral memory, thus enabling the wcapture of long range depen-
dencies within a message (such as a SMILES representation)
and it has been widely used in many different areas, such as
natural language processing14 and music generation.15 As
reviewed recently by Elton et al., RNNs are also an important
architecture for molecular generation, especially in drug discov-
ery.11 For example, Bjerrum et al. reported an RNN model
trained using the 1.6 million fragment-like and 1.3 million
drug-like SMILES from the ZINC12 database16 of commercially-
available compounds as training sets,17 and they generated
50 000 new SMILES structures from each of the RNN models.

Another key task in the discovery of novel functional
materials is to fine-tune the molecular generation models
towards preferred properties. According to the chemical space
project, there are at least 166.4 billion molecules that contain
at most 17 heavyatoms.18 Therefore, enumerating such a vast
chemical space is almost impossible, and in many cases
unnecessary. One method to attempt to efficiently explore
chemical space using deep generative models for molecular
discovery was defined as inverse molecular design by Sanchez-
Lengeling et al.,19 where existing functional molecules were
used as starting point for the discovery of novel materials. The
tools for optimizing towards target molecules include vari-
ational autoencoders (VAE),4 generative adversarial networks
(GAN),20 reinforcement learning (RL),2 and transfer learning
(TL), all of which can be incorporated with generative RNN
models. TL refers to reusing the machine learning model
developed for one task towards another related task with para-
meter fine-tuning. For the discovery of novel functional mole-
cules from an existing molecular library of limited size, TL can
be applied to fine-tune the parameters of a generative model
trained from larger databases. Waller et al. developed a genera-
tive RNN model using long short-term memory (LSTM) and
fine-tuned the parameters of the RNN model to generate mole-
cules that were believed to target selected bacteria.1 Merk et al.
discovered new chemical entities that are inspired by pharma-
cologically active natural products via fine-tuning the RNN
model trained from ChEMBL database using TL.3

Recent development and design of electronic donor–accep-
tors has attracted significant attention due to their application
in organic light emitting diodes (OLEDs),21 organic photovol-
taics (OPVs),22 and non-linear optical (NLO) materials.23 The
donor–acceptor oligomers need to be modified in order to
obtain desired electronic properties.24,25 For example, the
optical gap of donor–acceptor oligomers usually needs to be

lowered towards the long wavelength region for OPVs to
enhance light absorption. Discovery of novel donor–acceptor
oligomers often involves chemical modification of existing
donor and acceptor moieties26 and the combinatorial explora-
tion of donor–acceptor libraries,27 which requires expertise in
synthetic chemistry and careful experimental design.28,29 Such
methodologies, while being robust and effective at producing
a large number of possible oligomers, rely heavily on the exper-
tise of chemists and can limit the accessible chemical space of
the oligomers being generated.1 In addition, the mere combi-
nation of a ‘good’ donor and ‘good’ acceptor is known to miss
potential oligomers using less ‘extreme’ donors and acceptors,
due to the subtlety of the effects on electronic properties.7 The
publication of open access databases for electronic
materials30–32 has enabled the application of AI to the discov-
ery of donor–acceptor oligomers, and indeed material building
blocks in general, offering alternative pathways for exploring
larger chemical diversity, potentially uncovering ‘wild cards’
that would not be found by other routes.

In this work, we developed deep generative models for the
generation of molecular libraries of donor–acceptor oligomers
with preferred electronic properties using an RNN combined
with TL. TL was required as the libraries of existent donor–
acceptor oligomers are not of sufficient magnitude for training
a robust RNN model. We explore whether the structural and
electronic properties of the donor–acceptors can be learned via
TL, and whether the chemical space of the training sets can be
fully explored with the TL models. As a proof of concept, we
targeted the chemical space of donor–acceptor oligomers with
an optical gap, as approximated by the HOMO–LUMO gap,
close to 2 eV and a dipole moment smaller than 2 Debye.
These oligomers can potentially form organic semiconductor
crystals offering alternatives to the traditional families of mole-
cular candidates such as oligoacenes or benzothieno[3,2-b][1]
benzothiophene derivatives. A low HOMO–LUMO gap, and by
extension a low optical gap, ensures the generated oligomers
are promising materials for organic photovoltaics, and a low
dipole moment in the ground state is desired as it has been
shown that this can help with directing self-assembly towards
supramolecular arrangements that promote macroscopic pro-
perties such as charge-carrier mobility.33 Our approach would
be equally applicable to a focus on a different region of prop-
erty space and we would note that for optoelectronic device
applications such as OPVs and OLEDs, it is typical for there to
be multiple material properties and device characteristics con-
tributing to high performance, and these would need to be
considered and appropriately weighted on a case-by-case basis.
We discuss the challenges for further extension of the method
in the discussion.

Methods

We present an overview of our approach for generating novel
donor–acceptor oligomers with targeted electronic properties
in Fig. 1. In the following sections, we will describe the origin
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of our datasets, how we first trained a general RNN and then
used unsupervised cluster detection to uncover different clus-
ters of molecules in a database of donor–acceptor oligomers.
Next, we compared the performance of transfer learning
models built from different transfer databases and finally vali-
dated the performance of the newly generated oligomers.

Datasets

The task for molecular discovery using deep generative models
can be divided into two parts; (i) learning the correct represen-
tation of molecules, for instance the valid SMILES representa-
tion, and (ii) learning the required structural property relation-
ship of the molecules in order to generate novel functional
molecules. To successfully carry out the first stage of the task,
it is necessary to train the model on an extensive and varied
database from which the syntax of valid SMILES can be
learned. For the training of such an RNN model, which will
hereafter be refered to as the ‘General RNN’, we used the
GuacaMol Training SMILES database34 as published by Brown
et al.,35 which contains 1.2 million SMILES string from the
ChEMBL database. And we refer to the training set for the
General RNN hereafter as the ‘General Database’. For the TL
model, the ‘Database of organic donor–acceptor molecules’
from the Computational Materials Repository31 was used and
is referred to hereafter as the ‘Transfer Database’. The Transfer
Database originally contained 5419 molecules, but after remov-
ing candidates that contained characters not present in the
General Database and those for which density functional
theory (DFT) calculations we carried out to characterise the
molecular properties (see below) failed to converge, we were
left with a final Transfer Database of 5024 molecules. The
average length of the SMILES in the General Database is 47.6,
while the average length of SMILES strings in the Transfer
Database is 103.3, so it is of interest how well the General RNN

will be able to be applied to the more complex molecules in
the Transfer Database.

The values of the Kohn–Sham HOMO–LUMO gaps, which
we use to approximate the optical gaps, and dipole moments
in the database of organic donor–acceptor molecules were pre-
viously calculated using the B3LYP functional.36–38 However,
due to the exponentially decaying nature displayed by this
exchange–correlation, instead of the correct r−1 behaviour at
long distances, the excitation energies can be expected to be
underestimated and the polarizability overestimated.39,40 We
therefore performed additional calculations to evaluate the
electronic properties of the oligomers in the Transfer Database
with a long-range corrected DFT functional that does not
suffer from this issue Firstly, we generated 100 conformers of
each oligomer using the RDKit ETKDG method41 and evalu-
ated the conformers’ energies using UFF.42 The lowest energy
conformation was then geometry optimised by using the GFN-
xTB2 method as implemented in xTB.43 The optimisation was
considered complete when a threshold of 8 × 10−4 Hartrees per
atomic unit length in forces and 1 × 10−6 Hartree in energies
was reached, all conformations were confirmed to be true
minima. We opted to optimise the geometry of the molecules
using GFN-XTB2 rather than with DFT calculations due to the
large number of molecules in the Transfer Database. A bench-
mark between geometries optimised using GFN-xTB2 and DFT
(ωB97X-D3/def2-TZVP) is reported in section 5 of the ESI,†
showing that GFN-xTB2 provides reasonable geometries at a
much reduced computational cost. The optical and electronic
features such as the HOMO–LUMO gap and polarizabilities
were then computed by employing the long-range corrected
ωB97X-D3 functional44 as implemented in ORCA.45 The
ground and excited state properties were computed using the
def2-TZVP basis set and by employing the simplified Tamm–

Dancoff approach (sTDA).46–49 Excited states with an excitation
energy of lower than 10.0 eV were computed, corresponding to

Fig. 1 Our workflow for the discovery of novel donor–acceptor oligomers. An RNN with randomized parameters was built, and the General RNN
was obtained by training the random RNN with the General Database of the ChEMBL library. The specialized RNN was developed by tuning the
General RNN using the Transfer Database that only contains donor–acceptor oligomers, and then used to generated novel donor–acceptor
oligomers.
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approximately 300 singlet states and 300 triplet states. This
methodology has been shown to produce reliable results in the
case of co-polymers where optoelectronic properties have been
computed and employed to train machine learning models.7

Further analysis of the differences can be found in the ESI.†
Our computational approach, using GFN-xTB first for geome-
tries, cut the computational cost of obtaining structures and
properties by a factor of about 3–4, with each molecule on
average taking about 1 day to run on a 24-core node on a uni-
versity supercomputer.

We found that now only 269 of the 5024 molecules in the
‘Database of organic donor–acceptor molecules’ were promis-
ing candidates for our target of an optical gap close to 2.0 eV
and dipole moment smaller than 2.0 Debye, making them
possible candidates for organic semiconductors. These results
highlight the importance and need for TL to explore the
chemical space, with the main objective of generating many
more new molecules with the target properties.

The General RNN model

The RNN architecture used in this paper is adapted from the
work of Olivecrona et al.2 The molecular SMILES were encoded
to numeric vectors suitable for machine learning using ‘one-
hot’ tokenization. In this study, there were 78 unique symbols
in the SMILES strings of the Transfer Database. Two additional
tokens, ‘GO’ and ‘EOS’ were added to each string to denote the
beginning and end of a SMILES sequence. As a result, a
SMILES string with n symbols was represented by an (n × 80)
dimensional vector. The specific RNN type used in this study
was the Gated Recurrent Unit (GRU),50 where each node in the
RNN was designed to learn long range dependency within the
SMILES string by keeping a weighted sum of information each
character in the SMILES string possesses. Three stacked GRU
layers were used to process the vectors generated from the
SMILES strings in this study. The model was trained using the
standard Adam optimizer, which is an extension of the gradi-
ent descent algorithm designed for the training of deep neural
networks.51 The generative RNN model in this work was
implemented using Python 3.6 in combination with the
PyTorch library.52

Unsupervised cluster detection in the transfer database

In order to explore the chemical space of the Transfer
Database, cluster detection within the Transfer Database was
performed based upon their structural similarity. The Transfer
Database was considered as a graph, where each molecule in
the Transfer Database formed a node in the graph. The graph
nodes were represented using the Morgan molecular finger-
prints of the corresponding molecules. A Morgan fingerprint
is a vector that indicates the presence of specific substructures
within a molecule, and was computed here using the RDKit
cheminformatics package.53 The edges in the graph were
defined using the pairwise Tanimoto similarities between the
fingerprints of the molecules, which quantifies how similar a
pair of molecular fingerprints are. In order to reduce the com-
plexity of the graph, a cut-off of 0.25 was applied to the mole-

cular similarities, which means that molecules with similarity
larger than 0.25 were considered ‘connected’ by an edge. The
Louvain method54 was applied to the graph to detect clusters
within the Transfer Database; the method detects clusters by
maximising the density of edges within each cluster compared
to edges connecting different clusters. The Louvain modularity
cluster detection was performed using Python 3.6. After the
clusters were detected, the HOMO–LUMO gaps and dipole
moments of molecules in each of the clusters were analysed to
examine the shared properties of the clusters and determine
the most suitable clusters for TL.

Transfer learning

We wanted to examine whether using subsets of the Transfer
Database that contained clusters of promising candidates with
the desired properties would be a more effective way of gener-
ating new candidates with promising properties than using the
entire Transfer Database for TL. Therefore, we carried out the
cluster detection for the entire Transfer Database (5024 mole-
cules) and separately for the set of ‘promising’ candidates
(269 molecules). As a result, three subsets of both the Transfer
Database and the ‘promising’ candidates were supplied to the
General RNN for parameter fine-tuning, resulting in 6 TL
models. The training sets for Models 1, 2 and 3 were subsets
of the whole Transfer Database, while training sets for Models
4, 5 and 6 were subsets of the 269 ‘promising’ candidates. All
parameters in the General RNN were retrained during TL, with
15 epochs of training performed, which means that each of
the TL models were fine-tuned by passing the corresponding
training sets 15 times through the General RNN. 1024 SMILES
strings were sampled from each epoch during the TL, resulting
in 15 360 strings being generated from each TL model.

Evaluating the transfer learning models

We evaluated the TL models by examining the validity, unique-
ness and novelty35 of the oligomer database generated by each
model, as well as the ability of generating ‘promising’ mole-
cules. The ‘validity’ measures the ability of the models to gene-
rate valid SMILE strings and was calculated by dividing the
number of valid SMILES strings (as confirmed using the RDKit
package) generated by each model over the total number of
strings sampled by each model. The ‘uniqueness’ measures
the ability of the model to generate unique SMILES that had
not already been sampled and was calculated by dividing the
number of unique SMILES generated over the number of valid
SMILES generated by each model. The ‘novelty’ measures the
models in terms of generating oligomers that were not already
present in the training sets, and was calculated by dividing the
number of valid and unique SMILES strings that were not
already found in the corresponding training set over the total
number of valid and unique SMILES generated by each model.

For each TL model, about 4000 novel molecules were gener-
ated, thus the computational cost of evaluating the electronic
properties of all the 24 000 generated molecules using DFT
was prohibitive. We estimated that this would have required
approximately 24 000 days on 24-core nodes, which even with

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 6744–6758 | 6747

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
M

ar
ch

 2
02

0.
 D

ow
nl

oa
de

d 
on

 2
/1

6/
20

26
 1

2:
33

:1
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9nr10687a


access to massively parallel computer architectures, was not
viable. Instead, to assess the properties of the generated mole-
cules at acceptable computational cost, the HOMO–LUMO
gaps and dipole moments were calculated using supervised
gradient boosted decision tree (GBDT) models trained on the
Transfer Database. The GBDT algorithm uses a weighted
ensemble of decision trees to fulfill regression or classification
tasks. The GBDT model was trained on the Transfer Database,
with the database randomly divided into training (80%,
4019 molecules) and test (20%, 1005 molecules) sets, and the
Morgan fingerprints calculated using RDKit as the molecular
input feature. Morgan fingerprints with varied length (512,
1024, 2048) and radius (2, 4, 6) were used for the molecular
fingerprinting. The GBDT models were optimised so as to
minimise the mean squared error between the predicted
values and the true values in the training set. The GBDT
models were then used upon the generated unique and novel
molecules from TL to predict their HOMO–LUMO gaps and
dipole moments. Those molecules with a HOMO–LUMO gap
less than 2 eV and dipole moment less than 2 Debye were
deemed ‘promising’, as they were the target of our study. In
order to validate the ‘promising’ molecules identified using
the GBDT models, 90 ‘promising’ molecules were randomly
sampled from the ‘promising’ generations and their HOMO–
LUMO gaps and dipole moments were calculated using DFT
calculations with the ωB97X-D3 functional, using the setup as
described above.44

Results and discussion
Supervised machine learning model of electronic properties

Supervised GBDT models were developed to evaluate the
donor–acceptor oligomers generated from the generative
RNNs. It was found in this study that a GBDT model using
Morgan fingerprint with length 1024 and radius 2 had the
lowest error in terms of predicting the properties of the oligo-
mers in the test set. The comparison between the ωB97X-D3-

calculated electronic properties and those predicted using the
GBDT models on the test set (20% of the Transfer Database,
1005 molecules) is shown in Fig. 2. The mean absolute error of
the GBDT prediction for HOMO–LUMO gaps is 0.09 eV and for
dipole moments is 1.31 Debye. While the GBDT model is
therefore reasonably accurately predicting the HOMO–LUMO
gap of the molecules, the accuracy of the prediction for the
dipole moments was significantly lower. Previously, graph
neural network models using molecular graphs as feature
vector inputs, such as the Schnet,55 MEGNet56 were trained to
predict the dipole moments of functional molecules with good
accuracy. However, when we tested these models for our study,
the mean absolute error of the dipole moment predictions was
exceptionally large (over 10 Debye). The poor performance of
the graph neural networks on the Transfer Database was prob-
ably due to the fact that such models were trained and tested
against the QM9 dataset,57 which contains only molecules
with no more than 9 heavy atoms. However, the number of
heavy atoms in molecules in our Transfer Database ranges
from 20 to 180, and application of such graph convolution net-
works was therefore inadequate due to the complexity of mole-
cules in the Transfer Database. We trialled other models, such
as random forest, and other fingerprints, such as Molecular
ACCess System (MACCS) keys,58 but these performed less well
than our selected model.

Here, we aim to discover as many ‘promising’ oligomers as
possible for further validation, thus recall (identifying ‘promis-
ing’ oligomers) was pursued at the sacrifice of precision (label-
ling ‘promising’ oligomers correctly). The mean error of GBDT
prediction for dipole moment was 0 Debye, with a standard
deviation of 1.83 Debye. The molecules generated via TL were
fed into the GBDT models to predict their electronic pro-
perties. Molecules with a GBDT-predicted dipole moment of
lower than 3.66 Debye (corresponding to 0.9 standard devi-
ation above the mean error of 0 Debye) and a HOMO–LUMO
gap lower than 2.0 eV were considered as potential ‘promising’
oligomers. The choice of 3.66 Debye as cutoff for ‘promising’
oligomers implies a higher false positive rate and lower false

Fig. 2 Relationship between the DFT calculated electronic properties and GBDT predictions on the test set of the Transfer Database for (left) the
HOMO–LUMO gap and (right) the dipole moment. The line of y = x is shown in both plots.
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negative rate, which met the requirement of capturing as many
‘promising’ oligomers as possible. The GBDT models for pre-
dicting the HOMO–LUMO gaps and the dipole moments, as
well as the corresponding results obtained from DFT calcu-
lations can be found at github.com/qyuan7/
RNN_RL_molecule/tree/master/gbdt_regressors.

Training the General RNN

The General RNN model was trained on the 1.2 million
SMILES strings from the ChEMBL database. The percentage of
valid SMILES strings and the logarithmic loss (log loss), which
we seek to minimise here to improve the model, are shown in
Fig. S2.† By the final steps, more than 90% of the SMILES
strings generated were valid and the log loss for the maximum
likelihood estimation fluctuated around 24, indicating that the
training for the General RNN is close to convergence and it is
a fairly efficient model in generating valid SMILES strings. The
source code for training the General RNN, as well as the
General RNN trained from this study can be found at github.
com/qyuan7/RNN_RL_molecule.

Training sets for TL

Different subsets of the Transfer Database representing
different structural and electronic properties were used as the
training sets for the TL tasks. Structurally similar oligomers in
the Transfer Database tend to fall into the same cluster
detected by the Louvain algorithm. Four structural clusters
were identified from the Transfer Database, and representative
molecules in the clusters are shown in Fig. S3.† It can be seen
that molecules in clusters 1 and 3 were similar in terms of
structure and size, while molecules in clusters 0 and 2 were in
general larger with either longer chain length (cluster 0) or
possessing complex side chains (cluster 2). The structural simi-
larities of the oligomers can be qualitatively represented using
the distances between their fingerprint vectors. In order to
visualize the high-dimensional distances in two-dimensional
space, the t-Distributed Stochastic Neighbour Embedding
(t-SNE, a dimension reduction technique for data visualisa-
tion)59 with two dimensions was applied to the fingerprints of
the molecules. The distributions of the t-SNE projections of
the molecular fingerprints are shown in Fig. 3, and molecules
with the target properties are shown as blue points. Almost all
of the oligomers with the target properties (255 of 269) were
found in cluster 3, with just 12 in cluster 2. This suggested
that cluster 3 was a ‘promising’ cluster and would form a more
suitable training set for TL to generate ‘promising’ oligomers
with the desired electronic properties. The molecular finger-
prints in cluster 2 differed greatly from those in cluster 3, it is
thus possible to explore different regions of the chemical
space by using cluster 2 for TL. Therefore, we used three
different subsets of the Transfer Database for TL; Model 1
(containing all the molecules), Model 2 (molecules in cluster
3) and Model 3 (molecules in cluster 2).

Cluster detection on only the oligomers with the target pro-
perties was also performed (Fig. S4†). Two major clusters with
120 and 95 molecules respectively were found and on this

basis three additional training sets for TL were determined;
Model 4 (all molecules with target properties), Model 5 (sub
cluster 1) and Model 6 (sub cluster 2). A summary of the train-
ing sets for the six TL models are provided in Table 1, and by
comparing the molecules generated using these different data-
sets, we can explore how to best target molecular properties
with TL.

Performance of the transfer learning models

For all the TL models, 15 360 strings were generated by each
TL model, spread over the 15 epochs of retraining. The per-
formance of the TL models on the six datasets in terms of the
number of valid, unique, novel and ‘promising’ oligomers
from the sampled SMILES strings are shown in Fig. 4 and
Table S1.† The validity of molecules from all six models was
enhanced as the TL progressed, but the number of unique gen-
erations for each epoch did not increase after the 10th epoch.

Table 1 Training set summary for the six TL models. Molecules are
denoted ‘promising’ if they have the target properties

Model
Training
size

No. promising
oligomers Description

Model 1 5024 269 All molecules in transfer
database

Model 2 1568 255 Molecules in cluster 3 of Fig. 2
Model 3 533 12 Molecules in cluster 2 of Fig. 2
Model 4 269 269 All molecules in promising lead

database
Model 5 120 120 Molecules in sub cluster 1 of

Fig. S3†
Model 6 95 95 Molecules in sub cluster 2 of

Fig. S3†

Fig. 3 A visualisation of the different clusters found in molecules of the
Transfer Database, created via a dimensionality reduction technique.
Shown is a hexagonal binning plot of the t-SNE projection of the mole-
cular fingerprints of the molecules, hexagons of different colours rep-
resents different clusters and the depth of the colours shows the density
of the distribution. t-SNE 1 and t-SNE 2 correspond to the first and
second dimensions of the 2-D projection of the fingerprints. The t-SNE
projections of the ’promising’ oligomers in the Transfer Database are
plotted as blue scatter points.
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For Models 1, 2 and 4, the number of novel SMILES dropped
in the later epochs of TL. The fact that the uniqueness and
novelty do not increase despite the increasing validity indi-
cates that the TL models were trying to ‘remember’ certain
valid SMILES strings in the training sets rather than learning
the general rule of the SMILES format, which can be referred
to as overfitting of the training set. This can be rationalised in
terms of the nature of the molecules in the Transfer Database,
which are considerably different from the ones observed in the
ChEMBL database. Therefore, all the parameters in the
General RNN had to be refined during the TL to ‘learn’ the fea-
tures of the SMILES strings in the Transfer Database. Due to
the limited size of the training sets for TL, a certain extent of
overfitting could not be avoided. It can also be observed that
Models 4, 5 and 6, which only used molecules with the target
properties for the TL, were more powerful in generating ‘prom-
ising’ oligomers compared to Models 1, 2 and 3. This is an
indication that the electronic properties of the training sets
were ‘learned’ via TL, which will be discussed in the following
section. According to the trends of performance of the models
in Fig. 4, epochs beyond epoch 10 have not improved the
models in generating more unique novel ‘promising’ oligo-
mers, thus the parameters in the TL RNNs should be frozen
beyond epoch 10 so that the sampling of ‘promising’ SMILES
is more efficient.

Learning structural and electronic properties

It is interesting to assess to what extent the structural pro-
perties of the different training sets were ‘learned’ through TL.
The training molecules with the highest Tanimoto similarities

to the generated molecules were defined as the nearest neigh-
bours of the generated molecules. The distribution of the
neighbour similarities of all generated molecules and the
‘promising’ molecules from the six TL models (those with
target properties) is shown in Fig. 5(a). The mean neighbour
similarity of all the generated ‘oligomers’ and the ‘promising’
oligomers are 0.62 and 0.74, respectively. Examples of pairs of
generated molecules and molecules in the Transfer Database
with different levels of similarities of 0.62 and 0.74 are shown
in Fig. S5,† to allow the reader to visualise what these values
correspond to chemically. It can be seen that the novel oligo-
mers with 0.62 and 0.74 neighbour similarity were generated
by different levels of atom replacement on the corresponding
neighbours, indicating that the molecular structural property
of the training sets were ‘learned’ from the TL process,
especially by the ‘promising’ oligomers. The similarities of the
generated molecules and their neighbours increased as TL pro-
ceeded (Fig. S6†), and the median of the neighbour simi-
larities at epoch 10 were larger than 0.6 for all models
(Fig. 5(b)).

In addition to learning the structural properties of the train-
ing sets, another task for the TL was to learn the electronic
properties of the training molecules. Since the properties of
the generated molecules were evaluated using the GBDT
model and accurate prediction of dipole moment was not
achieved in this study, only the HOMO–LUMO gaps were exam-
ined. The distributions of the HOMO–LUMO gaps of the mole-
cules generated from the TL models at the 10th epoch are
shown in Fig. 5(b) and shown for each epoch in Fig. S7.† For
Models 4, 5 and 6, the HOMO–LUMO gaps of the vast majority

Fig. 4 The number of valid, unique, novel and ‘promising’ oligomers generated for the six TL models along the epochs of TL. An epoch of transfer
learning for a model here refers to passing the corresponding training set through the TL model once.
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of generated molecules are lower than 2.0 eV, and therefore
the chance of obtaining ‘promising’ oligomers increased.
Models 1 through 6 had varied distributions of HOMO–LUMO
gaps and all of these specific distributions were ‘learned’ by
the corresponding TL models. Therefore, the HOMO–LUMO
gaps of the generated molecules can be tuned by sampling
different subsets of the training database of interest.

Chemical space exploration

The ability for deep generative models to sample larger chemi-
cal space while obtaining oligomers with desirable properties
is also important. This is a particular goal of the study here –

to see whether our approach can move beyond traditional sub-
stitution strategies well established in the material chemistry
community, to uncover ‘wild cards’ that might suggest alterna-
tive molecular replacements or a series of fragment alterations.
The training sets of the TL models covered different regions of
the chemical space, and it was expected that each of the
models would cover the corresponding chemical space. In
addition, covering chemical space beyond the training sets
could lead to the discovery of novel donor–acceptor oligomers
that had not been considered. To create a qualitative visualisa-
tion of the chemical space covered by the molecules in this
study, the t-SNE projections of the fingerprints of the mole-
cules generated from the six TL models, together with the fin-
gerprints of the molecules in the corresponding training sets
are shown in Fig. S8.† The chemical space of each training set
has been thoroughly explored by the corresponding TL model,
as well as unexpected regions of the chemical space of the
training sets having also been covered, especially for Models 4,
5, and 6. It was thus possible to generate donor–acceptor oligo-
mers that are not directly related to those in the Transfer
Database from the TL models.

Merely covering more chemical space does not ensure the
discovery of novel ‘promising’ donor–acceptor oligomers; it is
possible that oligomers in the newly explored regions do not
exhibit the preferred electronic properties. To compare the
chemical space covered by the ‘promising’ oligomers, the
t-SNE projections of only the ‘promising’ training and gener-
ated oligomers are shown in Fig. 6. Representative molecules
were sampled from the ‘promising’ oligomers generated from

each TL model, and the structure of such molecules and their
t-SNE projection values are shown in Fig. S9.† It can be seen
from Fig. 6 that ‘promising’ oligomers generated from the TL
explored well the corresponding chemical spaces of their
respective training sets. As demonstrated in Fig. 6 and S9,† the
‘promising’ oligomers generated from Model 3 occupy a
different region of chemical space compared to the other five
models. In addition, oligomers generated from Models 5 and 6
occupied different sub-parts of the chemical space than Model
4. It is thus possible to explore particular regions of interest in
chemical space by tuning the training sets for TL with the
assistance of unsupervised cluster detection. However, the
chemical spaces covered by the ‘promising’ oligomers were
more conservative than that covered by all the generated mole-
cules, as seen by higher neighbour similarity in Fig. 5a. The
distribution of the neighbour similarities of generated mole-
cules with their corresponding training sets for each of the TL
models are shown in Fig. S10,† and the trend of ‘promising’
oligomers having higher neighbour similarities was found for
all six models. Such results indicate that the excessive regions
of chemical space explored by the TL models had limited con-
tributions in terms of providing ‘promising’ oligomers, and
the trade-off between exploring unseen regions of the chemical
spaces and generating a greater percentage of more ‘promis-
ing’ oligomers is something to bear in mind.

The t-SNE projections in this study are the two-dimensional
projection of the 1024-bit molecular fingerprints, allowing one
to visualise the distribution of the high dimensional finger-
prints. The computed neighbours in the t-SNE plots could
result from either structural similarity (as intended) or from a
crowding effect of the low dimensional representation of high
dimensional data. Examples of ‘promising’ generated mole-
cules with high and low similarity with their nearest neighbour
in the training sets are shown in Fig. 7. A ‘promising’ oligomer
with high similarity to a neighbour could be generated by
simple atom replacement, while a ‘promising’ oligomer with a
low similarity to a neighbour less than 0.6 involves multiple
alterations on the neighbour molecule, which would be
difficult to suggest by using traditional experimental functio-
nalisation strategies. We obtained about 1300 ‘promising’ oli-
gomers with similarity to a neighbour lower than 0.6 with the

Fig. 5 (a) Distribution of the neighbour similarities of all the generated oligomers (blue) and the ‘promising’ oligomers (maroon); (b) distribution of
the HOMO–LUMO gaps of the molecules generated from the six TL models on the 10th epoch (red) compared to the corresponding training sets
(green).
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Fig. 6 Hexagonal binning plot of the t-SNE projection of the fingerprints of the ‘promising’ molecules generated from the TL models. Colours of
the hexagons represent the density of generated ‘promising’ oligomers in each hexagon according to the colour bar. The ‘promising’ molecules in
the corresponding training sets are shown as black points. t-SNE 1 and t-SNE 2 correspond to the first and second dimensions of the 2-D projection
of the molecular fingerprints.

Fig. 7 Example of three ‘promising’ oligomers generated from the TL and their nearest neighbour in the training set, as calculated using the
Tanimoto similarity criterion. The Tanimoto similarities between the donor–acceptor oligomers are shown above the arrows. It should be noted that
these 2-dimensional structures do not show the exact 3-dimensional conformation of the molecule used in the calculations.
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TL models, which would be of interest in expanding the
chemical space of the ‘promising’ oligomers. In addition, the
different levels of modification to the neighbour molecules, as
reflected in the generated ‘promising’ oligomers, could
provide valuable insight for manual modification of the mole-
cules in the Transfer Database.

Validation of promising molecules

We randomly selected 15 molecules from the predicted ‘prom-
ising’ oligomers generated from each of the six TL models
(90 molecules in total) for electronic property validation at the
DFT level with the ωB97X-D3 functional.44 Of the 90 selected
molecules, 22 have HOMO–LUMO gaps below 2.0 eV and
dipole moments smaller than 2.0 Debye. The 22 structures of
this subset of ‘promising’ oligomers are shown in Fig. 8. The
distribution of the calculated HOMO–LUMO gaps and dipole
moments of the molecules are shown in Fig. 9(a). The vast
majority of this molecular subset have HOMO–LUMO gaps
below 2.0 eV, while the distribution of dipole moments of the
selected molecules has a larger variance, which can be
ascribed to the lower accuracy of the GBDT models in dipole
moment prediction. The precision of identifying ‘promising’
oligomers was thus 0.24. In total, 7224 novel unique oligomers
were predicted to be ‘promising’ from the six TL models. If we
assume that 0.24 of them would be truly ‘promising’, about
1700 ‘promising’ oligomers as organic semiconductors have
been generated, which is 6-times larger than the original 269
‘promising’ oligomers from a database of 5024 molecules con-
ceptually designed for this task.

A significant issue with generative models is the generation
of molecules that are not synthetically viable, for example due
to the complexity or the cost of potential synthetic routes to
access them. We therefore inspected the 22 ‘promising’ oligo-
mers to compare their ease of synthetic accessibility to that of
oligomers in the original Transfer Database. While the origin
of all the oligomers in the Transfer Database is not clear, there
are many systems in the database that have been previously
synthetically reported. The SA score from Ertl and
Schuffenhauer60 was calculated for each of the ‘promising’ oli-
gomers and their corresponding neighbour oligomers, where
scores can range between 1 (easy to make) and 10 (very
difficult to make). All of our 22 generated molecules have
scores between 3 and 5 and this reassures us that the gener-
ated molecules are not extremely difficult to make and thus
plausible. The scores for each of the generated molecules is
very similar to those of the Transfer database, as shown in
Fig. S11,† with a mean absolute error of 0.13 between a ‘prom-
ising’ oligomer and its nearest neighbour in the Transfer
Database.

A more detailed study of the 22 promising donor–acceptor
oligomers started with a visual inspection of their computed
molecular electrostatic potential (MEP), as shown in Fig. 9 and
S11.† This quantity has been employed as a useful indicator to
identify the electrostatic interaction between molecules, in par-
ticular non-covalent molecular interactions that play an impor-
tant role in the formation of condensed phases.61 The oligo-

mers can be classified into three different categories based on
the distribution of the electron density: oligomers with a
homogeneous electron density distribution, oligomers with a
small accumulation and depletion of electronic charge, and
oligomers with visible regions where charges have been
strongly localised. Differences in the MEP distribution suggest
different underlying mechanisms used by the RNN for redu-
cing the molecular dipole moments. Some molecules achieved
the dipole constraint by creating many different regions where
charge is depleted or localised, creating small local dipole
moments that are cancelled out when the total dipole moment
of the molecule is computed. Alternatively, for some molecules
a more even distribution of charges was observed. Thus, two
alternative strategies have been employed to achieve small
dipole moments with the RNN. In this regard, such character-
istics have been directly inherited from the Transfer database,
generating a set of diverse ‘promising’ molecules without the
limitation of rearranging atoms within the oligomer in a com-
binatorial manner. The deep generative model also provides
different alternatives to fulfill the imposed constraints beyond
atom redistribution, such as using the size of the oligomers as
a mechanism to tune the HOMO–LUMO gaps and dipole
moments.

We can observe the impact of the substitutions carried out
by the deep generative model on the optical properties by
computing the UV-Vis spectra, as shown in Fig. 9(b) for 4
selected oligomers and in Fig. S12† for the remaining 22 oli-
gomers. As a general trend across all oligomers, the first and
most intense bright state can be found in energy regions
between 2–3 eV, suggesting that they are possible candidates
for applications such as photovoltaics. The constraints
imposed on the RNN model’s chemical space therefore had
an impact on other important molecular features such as the
optical properties.

Within the predicted structures, one can find known units,
such as thiophene and furan, which have been previously used
in the construction of donor–acceptor oligomers. The deep
generative model also performed interesting substitutions
such as fluorination or methylation. These strategies are com-
monly found in the literature and can be categorised as tra-
ditional substitutions in donor–acceptor oligomers. Similarly,
completely changed small units such as selenophene (e.g.
Fig. 8o) can be found within the set of suggested molecular
transformations executed by the deep generative model.
Analogously, one can observe frequently employed units for
donor–acceptor molecules such as benzo[1,2-b:4,5-b]dithio-
phene (BDT)62 or pyridal[2,1,3]thiadiazole(PyT).63 However, the
original composition of the molecule is not preserved in all
cases, with the molecules displaying interesting atomic substi-
tutions in the core such as BDT selenium (Fig. 8i) or oxygen
substituted (Fig. 8v). Similar molecules have been experi-
mentally synthesised and characterised as organic semi-
conductor with enhanced charge-carrier mobility as a conse-
quence of such replacements.64 These previous findings
provide an argument in favour of the capability of the deep
generative model not only to offer an effective procedure to
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Fig. 8 The subset of ‘promising’ oligomers validated by DFT calculations.
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explore the chemical space, but also as a tool to provide new
ideas and paths for novel atomic substitutions.

The TL model in this work is not limited to the generation
of novel donor–acceptor oligomers as organic semi-
conductors; with proper tuning of the training sets for TL,
electronic materials for other applications could be obtained.
For example, the power conversion efficiency of organic solar
cells is qualitatively related to HOMO energy of the donor,
LUMO energy of the acceptor, and bandgap of the donor
according to the Scharber model;65 OLED materials require
low singlet–triplet gap and minimized spatial overlap of
HOMO and LUMO.66,67 If such properties can be described
with a supervised learning model from molecular information
contained in the SMILES representation, the TL models can
‘learn’ the relevant properties with corresponding tuning of
the training sets. In addition, when multiple electronic pro-
perties need to be optimized to improve device performance,
the optimization can be assisted with a sampling approach
such as an evolutionary algorithm (EA). In this fashion, we
believe that the low precision and high recall model in disco-
vering novel donor–acceptor oligomers can be used as a new
methodology to discover and enhance selected families of
new materials.

There are challenges in applying this type of approach to
more complex properties beyond simple single molecule pro-
perties, particularly for applications based on combinations of
properties. The first bottleneck to focus on to test expanding
the approach is the generation of further training data for
organic materials, such as to include excited state properties
or, even more challenging, properties or behaviours beyond
the single molecule level. While calculation of these properties
ab initio for the requisite large number of systems is computa-
tionally demanding, it is pleasing to note recent additions to
open-source databases in this area, which will open up new
opportunities.32 Of course, device characteristics that are not
predominantly linked to molecular features, such as prepa-
ration conditions and sample history that influence the device
microstructure, are beyond the scope of what could be
screened for by this approach. However, identification of
promising molecules is still an important starting point.

Conclusions

In attempting to discover new molecular building blocks with
promising properties for materials, a limitation can come

Fig. 9 (a) Distribution of the ωB97X-D3 calculated HOMO–LUMO gaps and dipole moments of 90 randomly selected ‘promising’ oligomers gener-
ated from our trained deep generative model. Each newly produced donor–acceptor oligomer is represented as a white cross in the 2-D distribution,
where darker regions represent a greater density of molecules found. The example molecules are shown with their molecular electrostatic potential,
red represents more electron-rich regions and blue more electron-poor. (b) Computed UV-Vis spectra for the 4 selected oligomers.
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from the ability to truly explore and optimise the vast chemi-
cal space of possibilities. Here we have focused on an
approach using recurrent neural networks (RNN) combined
with transfer learning (TL) to effectively discover novel mole-
cules with targeted properties for donor–acceptor oligomers.
While most previously reported deep generative models for
molecule discovery have focused on drug discovery, we
showed that the generative models trained from a pharma-
ceutical database can be transferred to relatively large and
complex systems such as the donor–acceptor oligomers.
Different chemical and electronic property spaces were
covered using different subsets of molecules as training sets.
Both structural and electronic properties can be ‘learned’
through TL, thus the RNN models suggested in this study can
be used to target different property spaces to fulfill the
requirement of different types of electronic materials. Many of
the molecular transformations learnt mimic those used to
enhance performance in donor–acceptor systems in the litera-
ture. The models developed and the ‘promising’ oligomers
identified are open to future theoretical and experimental
validation.

An ideal generative model for molecular discovery would
enable exploration of wider chemical space while retaining
desired properties. However, it was found in this study that
there is some degree of trade-off between exploration of
chemical space and the optimisation of electronic properties.
‘Wild’ modifications to the training molecules were
observed, likely modifications that would not be proposed by
chemists, but such molecules did not generally exhibit satis-
factory electronic properties. The generated ‘promising’ oli-
gomers, with target properties, were more ‘conservative’
neighbours of the oligomers in the training set. The two
factors need to be balanced in future molecular discovery
tasks, although there is always the possibility that we are
seeking a ‘needle in a hay stack’ – an extreme modification
that still has the desired properties and has truly allowed us
to move out of the region of chemical space that would be
considered by chemists alone.
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