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Harvesting energy from the surrounding environment, particularly from human body motions, is an
effective way to provide sustainable electricity for low-power mobile and portable electronics. To get
adapted to the human body and its motions, we report a new fiber-based triboelectric nanogenerator
(FTNG) with a coaxial double helix structure, which is appropriate for collecting mechanical energy in
different forms. With a small displacement (10 mm at 1.8 Hz), this FTNG could output 850.20 mV voltage
and 0.66 mA m~2 current density in the lateral sliding mode, or 2.15 V voltage and 1.42 mA m~2 current
density in the vertical separating mode. Applications onto the human body are also demonstrated: the
output of 6 V and 600 nA (3 V and 300 nA) could be achieved when the FTNG was attached to a cloth
(wore on a wrist). The output of FTNG was maintained after washing or long-time working. This FTNG is
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DO 10.1039/d0na00536¢ highly adaptable to the human body and has the potential to be a promising mobile and portable power
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Introduction

Nowadays, mobile and portable electronics have been widely
applied in communication, monitoring personal health care,
monitoring environmental safety, and so on.*® For powering
mobile and portable electronics, numerous batteries or super-
capacitors have been utilized, but their lifetime is usually
limited, resulting in some problems, such as the problem of
frequent charging, which greatly hinders their applications.****
An effective way to solve such issues is the harvesting and
utilization of the widely existing energy from the surrounding
environment. In our ambient environment, numerous energy
sources could be harvested and utilized, such as solar energy,
mechanical energy, thermal energy, and chemical energy. As
a kind of mechanical energy, human body motion energy is
closely related to human activities, which make it ubiquitously
available in the applicable environment for mobile and portable
devices. Thus, it is important to collect and convert the human
body motion energy into electricity as a mobile energy source
for mobile and portable electronics.
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supply for wearable electronic devices.

Aimed at harvesting the widely existing mechanical energy,
triboelectric nanogenerators (TENGs) were invented based on
triboelectrification and electrostatic induction.”®*™* Using this
technology, many groups have developed lots of wearable
TENGS to harvest and convert human body motion energy into
electricity,”** which makes the body motion energy a feasible
and available power source for mobile and portable electronics.
Because of fiber's merits of being small, lightweight, bendable,
and washable property, the fiber-based wearable TENGs have
been widely studied.*** Zhong et al. fabricated a fiber-based
TENG to convert the biomechanical motions/vibration energy
into electricity using one CNT-coated cotton fiber, and one PTFE
and CNT-coated cotton fiber in an entangled structure.** Kim
et al. fabricated a fabric-based TENG for powering wearable
electronics by weaving fibers consisting of Al fibers and PDMS
tubes.** Zhao et al. developed a wearable TENG by directly
weaving Cu-coated PE fibers and polyimide-coated Cu-PET
fibers in two vertical directions.** Dong et al. developed a 3-
dimensional TENG for harvesting biomechanical energy using
three types of fibers: blended fiber consisting of stainless steel
fiber and polyester fiber, PDMS-coated energy-harvesting fiber,
and binding fibers in three directions.”” Wen et al. demon-
strated a TENG built using a Cu-coated-EVA tube along with
PDMS and Cu-coated EVA tube to collect random body motion
energies.*® After that, He et al. fabricated a fiber-based TENG
with a silicone rubber fiber, in which the CNT layer and the
copper fiber function as two electrodes.** Chen et al. reported
a wearable TENG from commercial PTFE, carbon, and cotton
fibers with the traditional shuttle weaving technology.*> By
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choosing and processing materials together with designing
a flexible structure, the fiber-based TENGs in all the above-
mentioned studies can effectively scavenge mechanical energy
in different forms. However, the complexity and fragility of the
hybrid composites composed of cotton thread, carbon nano-
tube, PDMS, etc. could reduce their robustness and lead to
disconnection or short-circuits, and further affect the output
performance. Being an important factor in affecting the TENG's
capacity in practical applications, it is attractive to implement
a highly robust fiber-based TENG with cost-effective materials
and flexible structure.

Herein, we report a fiber-based triboelectric nanogenerator
(FTNG) with high robustness that can effectively scavenge
biomechanical energy from both weak physiological motions
and vigorous behavior. In FTNG, the positive and negative
triboelectric layers (Nylon and PTFE fibers) were first wrapped
with their electrodes to form the two core-shell parts of FTING,
and then these two core-shell structure fibers were twined into
a coaxial double helix structure FTNG. The FTNG can be worn
on the human wrist or attached to the cloth to harvest the gentle
energy of body motion. Besides, it could also be used to harvest
the spinning energy from a rapid rotation.

Results and discussion

As shown in Fig. 1a, FING consists of one Nylon fiber-wrapped
Cu fiber, and one PTFE fiber-wrapped Cu fiber, and they are

(a)
PTFE fiber
Cu wire
Nylon fiber
Composite fiber
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twined into a double helix structure. Nylon and PTFE act as the
frictional surfaces and the Cu fibers present inside work as the
positive and negative electrodes, respectively. The fabrication
process of FING is illustrated in Fig. Slat and the experimental
section in detail. The optical photo of the as-fabricated FTNG
shown in Fig. 1b indicates the high flexibility of this structure.
An enlarged view of the part in the red square is shown in
Fig. 1c, in which the Nylon/Cu fiber and PTFE/Cu fiber were
interwoven at regular intervals along the axial direction. The
lateral image and the cross-sectional image of FTNG are shown
in Fig. S1b and c,f respectively. FTNG weighs only 0.58 g, as
shown in Fig. S1d,t which demonstrates that it is light enough
to be used as the wearable power source with little discomfort.
Since the tensile operation is a common motion in daily activ-
ities, a tensile-loading test was essential to examine the ability
of FTNG to endure mechanical operations. As shown in Fig. 1d,
the composite fiber exhibits a strength of 200 MPa with
a tension strain of 150%, which is a little higher than that of the
Nylon-wrapped Cu fiber (~150 MPa) and PTFE-wrapped Cu
fiber (~95 MPa). Moreover, a weight of 500 g can be steadily
hung on the composite fiber, as shown in the inset of Fig. 1d. It
can be found that the double helix structure improves the
tensile property, which is beneficial for the robustness of FTNG,
thereby enabling its characteristics feature of harvesting
mechanical energy from violent activities.

To test the output performance of FTNG, it was tensioned by
fixing its two ends, and a sewing polyester thread of 0.20 mm in
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Fig. 1

(a) The structure of the FTNG. (b) Digital photography of the FTNG. (c) An enlarged view of the part marked in red square of (b). (d) Stress—

strain curves of the Nylon-wrapped Cu fiber, PTFE-wrapped Cu fiber, and the composite FTNG fiber. The inset is a digital photography of the

FTNG hanging a 500 g weight.
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diameter as a contact object was rubbed against FTNG, as
shown in Fig. Sle.t When sliding and contacting occurred,
FTNG starts to work and generates electricity. Fig. 2a shows
a full working cycle of the FTNG's operation in the sliding mode.
When the polyester fiber moves towards the Nylon fiber, the
surfaces of the two fibers come in contact and rub against each
other. On the basis of the frictional series, the gaining electron's
ability of polyester was relatively stronger than that of Nylon due
to which electrons migrated from the Nylon surface to the
polyester surface, resulting in polyester and Nylon with negative
and positive charges, respectively. As displayed in Stage I, when
the polyester fiber moves to the right, the contact surface
between polyester and PTFE rubs against each other, and then
the electrons migrate from polyester to PTFE, making the PTFE
fiber a negatively charged surface. Meanwhile, the net reduced
electric field drives electrons from the PTFE's electrode to the
Nylon's electrode until the net electric field gets shielded by the
induced charges moving from two electrodes. As shown in Stage
II, when the polyester wire continues sliding to the right, the
contact stage comes to the aligned position, where the positive
and negative triboelectric charges were completely balanced. In
the case of polyester wire sliding towards left, the contact
position goes back to the misaligned condition, with the free
electrons being driven from the Nylon's electrode to the PTFE's
electrode, as presented in Stage III, leading to the backflow of
induced free electrons. This process continues until the
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polyester wire keeps sliding towards the left in an aligned
position (Stage IV). However, when the leftward sliding
continues in a misaligned position, a reversed flow of induced
electrons was observed (Stage V). Consequently, the power
generation process of FTNG in one cycle was completed. By
sliding the polyester fiber back and forth along the FTNG,
charges got alternately transferred between the two electrodes
of Nylon and PTFE. Under a 10 mm displacement at 1.8 Hz,
FTNG generates an output voltage and output current of
850.20 mV and 19.52 nA, as shown in Fig. S1f and g, respec-
tively. An enlarged view of the output voltage peak in one cycle is
shown in Fig. 2b, from which the four working stages could be
observed clearly. As demonstrated in Fig. 2c, the current density
could reach 0.66 mA m™2, which is the ratio of the output
current value and the sliding contact area. The actual contact
area, here in the sliding process, was about 29.41 mm?, which is
demonstrated in detail in Table 1 in ESL T Fig. 2d is the integral
curve of the output current curve from which the accumulative
charge quantity reaches 16.73 nC, and the charging rate reaches
1.67 nC s '. Here, the charging rate is an average electric
quantity in one second calculated from the integral value of the
current curves.

The moving speed and frictional area can largely affect the
TENG's output performance. As shown in Fig. 3a and b, with
a constant 10 mm sliding displacement, both the FING's
output voltage and its output current increase with an increase
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Fig. 2

(a) Working mechanism of the FTNG under a lateral sliding mode. (b) Enlarged output voltage of the FTNG a under frequency of 1.8 Hz

with the displacement of 10 mm. (c) The current density of FTNG via dividing the output current in Fig. Slet by the contact area. (d) The
accumulative charge quantity via integrating the output current in Fig. Sle.f
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(a) Output voltage and (b) output current of FTNG under different lateral sliding frequencies. (c) Output voltage and (d) output current of

FTNG under different lateral sliding displacements. (e) Output current before and after washing operation. (f) Output current when continually

working for 3 hours.

in the frequency. With the increase in the sliding frequency, the
sliding speed becomes larger, which shortens one working cycle
time and further increases the working cycle number in a fixed
time. Consequently, the peak value of the open-circuit voltage
increased from 140.53 mV at 0.3 Hz to 688.27 mV at 1.5 Hz
(Fig. 3a). As shown in Fig. 3b, the current peak value increases
from 3.13 nA at 0.3 Hz to 14.43 nA at 1.5 Hz, which means that
the peak current density increases from 0.11 mA m™~> at 0.3 Hz
to 0.48 mA m ™2 at 1.5 Hz. During the relative sliding process,
the actual frictional area between the FTNG and polyester fiber
will increase with the increase in the sliding displacement. To
investigate this aspect, FTNG was made to work at different
sliding displacements at a fixed sliding frequency of 1 Hz. When
the sliding displacement varied between 3 mm and 7 mm, the
voltage peak value increased from 70.56 mV to 441.02 mV
(Fig. 3c). Moreover, the current peak value increased from 0.77
nA to 6.45 nA (Fig. 3d). When divided by the contact area of
29.41 mm?, the peak current density increased from 0.03 mA
m ™2 at 3 mm to 0.22 mA m > at 7 mm. It can be explained by
stating that the larger contact area leads to increased
displacement. This measurement exhibits the FTNG's ability to
scavenge mechanical energy from low frequency and small
amplitude motion widely existing in daily activities of humans.

As shown in Fig. 3e and ESI Video S1,7 FING was immersed
in water and stirred by a glass rod to test if FTNG can be washed
like the clothes without a reduction in the performance. The
comparison of the output currents before and after the washing
process (Fig. 3e) shows no obvious reduction, which indicates

This journal is © The Royal Society of Chemistry 2020

that FTNG possesses good washing durability. Further, the
robustness of FTNG was tested by continuously working for 3 h
(~10 000 times) at 1 Hz sliding frequency and 10 mm sliding
displacement. As shown in Fig. 3f, after the charge accumula-
tion process, the output current remains stable, which indicates
the high robustness and long-term stability of FTNG.

Aside from harvesting the sliding mechanical energy along
the fiber's length direction in the above sliding mode, FING
could also harvest the mechanical energy when it contacts and
separates with other fabrics such as polyester fabric, as shown
in Fig. S2at in a contact-separating TENG working mode. As
FTNG contacts and separates with the fabric, the electrons flow
back-and-forth between the two electrodes in an external
circuit, generating an alternating current output. Here, the
polyester fabric, having fibers of 0.20 mm in diameter, was used
to contact and separate with FTNG. At 1.8 Hz frequency and
20 mm displacement, the output voltage of 2.15 V and output
current of 69.3 nA were achieved (Fig. S2b and ct). The corre-
sponding peak output current density was 1.42 mA m™ > The
actual contact area, here in the vertical separating process, was
about 48.80 mm?, which is demonstrated in detail in Table 2 in
the ESL.T The effect of the separation frequency on the FTNG's
output performance was investigated with the separating
distance being set at 10 mm. As shown in Fig. S2d and e, when
the frequency increases from 0.3 to 1.5 Hz, the output voltage
and current increase from 436.78 mV, 4.97 nA to 1291.83 mV,
22.05 nA, respectively. Also, the corresponding current density,
which can be obtained by dividing with the contact area of 48.80

Nanoscale Adv., 2020, 2, 4482-4490 | 4485
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mm?, increases from 0.10 mA m~? at 0.3 Hz to 0.47 mA m > at
1.5 Hz.

To test the ability of harvesting energy from the human
activity, 3 FTNGs were woven into a bracelet in a parallel
manner, and placed on one experimenter's wrist, as presented
in Fig. 4a and ESI Video S2.f In this case, the friction occurs
between FTNG and the wrist from shaking hands. Fig. 4b and ¢
show the corresponding output voltage and output current
generated by the experimenter's hand shaking motion. The
output signals easily reach to 3 V and 200 nA (the enlarged view
of output signals is shown in Fig. S3t). Then, 7 FTNGs were
attached to the waist of one experimenter in parallel, as shown
in Fig. 4d and ESI Video S3.1 When the experimenter swings his
arm alternately along the lateral direction and vertical direction,
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the friction occurs between FING and clothes. Fig. 4e and f
show the output voltage and output current generated by the
swing-arm movements, respectively. The output signals easily
reach to 6 V and 600 nA, and every wave packet in them corre-
sponds to one arm swing. The enlarged view of the output
signals can be found in Fig. S4.1 Therefore, this FTNG has the
potential to act as a mobile and portable power supply for
wearable devices.

To further test the adaptability of FING for versatile
mechanical energy harvesting, a whirligig is used to drive FTNG.
The whirligig is a circular disc that spins when pulling on
strings passes through its center (radius of the central disc was
~35 mm). As shown in Fig. 5a, two FTNGs are inserted into the
two center holes, respectively. The one cycle movement of the
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(a) Demonstration of the application of FTNG to harvest the wrist motion energy. (b) Output voltage and (c) output current of FTNG driven

by the wrist's motion. (d) Photograph showing the application of FTNG attached on the cloth to harvest the body motion energy in walking or
jogging. (e) Output voltage and (f) output current of FTNG attached on the cloth.
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(a) Schematic of the application of FTNG on harvesting the spinning energy. (b) Output voltage and (c) output current of FTNG driven by

the spinning movement. The corresponding enlarged view for one wave packet of the output voltage (d) and output current (e).

circular disc consists of two processes of forward and backward
windings (ESI Video S4+1). During the forward winding process,
the input stretching force on FING (exerted by the human
hands) accelerates the circular disc to its maximum rotating
speed. Simultaneously, the two FTNGs begin to come in contact
with each other and reach a tightly coiled state. Then, in the
back winding process, no input force was on the FING due to
which the disc rotates in the reverse direction. Consequently,
the two FTNGs separate from each other and get into a parallel
state. After this position, the inward force was applied again,
and the two FTNGs begin to come in contact with each other
again. This cycle of winding and unwinding of the FTNGs
repeats itself, in which electricity is generated by the two
FTNGs. Fig. 5b and c show the output voltage and current driven

This journal is © The Royal Society of Chemistry 2020

by the spinning of the circular disc. The corresponding voltage
and current were 1.2 V and 40 nA, respectively. The enlarged
view of one wave packet of the output voltage and current is
shown in Fig. 5d and e, respectively, which corresponds to
a winding or unwinding process. This demonstration implies
that such a tough FTNG can also be extended to harvest the
motion energy from the high-speed and vigorous movements.

Conclusions

In summary, we developed a FTNG with a coaxial double helix
structure that utilizes the general Nylon/Cu fiber and PTFE/Cu
fiber for effectively harvesting the mechanical energy from the
human body. Under a small displacement (10 mm, 1.8 Hz), this

Nanoscale Adv, 2020, 2, 4482-4490 | 4487
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FTNG could output voltage of 850.20 mV and current density of
0.66 mA m~? in the lateral sliding mode, and 2.15 V and 1.42
mA m~? in the vertical separating mode. Even after a washing
process or a 3 hours continuous working (~10 000 cycles), no
observable output performance's degradation was found. The
large output of FTNG and its properties of being flexible, light-
weighted, and robust structure make it suitable for continuous
power harvesting. When the FTNG was worn on a human wrist,
it delivered an output of 3 V voltage and 200 nA current via
shaking hands. It can also harvest the energy in swing arms
during walking and generates an output of 6 V voltage and 600
nA current when attached to the cloth. Furthermore, this FTNG
is highly adaptable for harvesting the rotating mechanical
energy. These features make this FTNG a promising mobile and
portable power supply for wearable electronic devices.

Methods
Fabrication of the FTNG

Here, an enameled Cu wire (0.14 mm in diameter) was chosen
as the inner electrode, and Nylon fibers (0.15 mm in diameter)
and PTFE fibers (0.25 mm in diameter) were chosen as the
frictional surface materials. At first, the Cu wire was fixed in the
middle and then was wrapped by Nylon fibers to fabricate the
Nylon-coated Cu fiber in the core-shell structure using
a homemade rotating support. The diameter of this core-shell
composite fiber was about 0.65 mm. Further, using the same
method, PTFE fibers were twined around the central Cu wire to
fabricate the PTFE-wrapped Cu fiber with the core-shell struc-
ture. The diameter of this fabricated fiber was about 0.72 mm.
At last, the Nylon-wrapped Cu fiber and PTFE-wrapped Cu fiber
were twinned with each other to form a composite fiber with
a double helix structure. At last, a FTNG of 1.22 mm in diameter
was formed.

Measurement of FING

During the output performance test of FTNG, a commercial
linear motor was used to apply the external force through
stretching and releasing operations. The low-noise current
preamplifier SR570 was used to measure the FTNG's output
current, and the low-noise preamplifier SR560 was used to
measure the FTNG's output voltage.
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