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Enhancement of the photocatalytic synchronous
removal of Cr(vi) and RhB over RP-modified flower-
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Although photocatalysis is frequently employed to remove various pollutants in water, it still suffers from

low efficiency due to the rapid recombination of photogenerated electrons and holes. In this study, a red
phosphorus/tin disulfide (RP/SnS,) composite photocatalyst is fabricated by loading nano-sized RP on
flower-like SnS, films with a facile hydrothermal method. It is noteworthy that the 2D heterojunction

formed between SnS, and RP provided channels for the rapid transfer of photon-generated carriers and

their effective separation. Furthermore, the separated electrons can react with absorbed O, for the

generation of superoxide radicals ("O,7), thereby impacting the photocatalytic degradation oxidation

reaction. The application of photocatalytic synchronous removal of Cr(vi) and RhB over RP/SnS, was
implemented first. Compared with pristine SnS,, the photocatalytic degradation activity of Cr(v) and RhB
over the RP/SnS, composite was significantly enhanced and the kinetic rate constant reached 8.2, which

Received 15th June 2020
Accepted 28th July 2020

is 10.8 times that of pristine SnS,. Moreover, the hybrid photocatalysts exhibited prominent reusability

and stability. Therefore, a photocatalytic degradation mechanism and pathway of carriers are proposed

DOI: 10.1039/d0na0048%h

rsc.li/nanoscale-advances of wastewater by photocatalysis.

1. Introduction

Currently, various semiconductors as photocatalysts, charac-
terized by low cost, minimum efficiency, less stability and low
toxicity are investigated extensively for water treatment.'”
Under sufficient light energy, electrons and holes are generated
and transferred to undergo oxidation-reduction reactions on
the surfaces of photocatalytic materials.® Consequently, the
energy band gap (E,) and position of the conduction band (CB)
and valence band (VB) critically impact this process. Given the
diversity of contaminants in their surroundings and produc-
tion, photocatalysts are specifically designed for multiple reac-
tions.”® Thus, the photocatalytic activity is dependent on the
REDOX potential of semiconductors. Furthermore, rapid sepa-
ration and migration capabilities result in photocatalytic
performance with higher efficiency.®** Accordingly, nano-sized
semiconductors, especially the two-dimensional (2D) materials
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in the study. Furthermore, it is considered that the present study is a promising method in the treatment

have been recognized as one of the most promising strategies to
synthesize catalysts in a conducive environment exhibiting high
efficiency.**"”

Tin disulfide (SnS,) is a metal sulfide photocatalyst with
response to visible light and band gap of 2.0-2.25 eV."" It also
exhibits good stability in various aqueous solutions, making it
a promising photocatalyst for pollutant degradation.”*® The
practical performance of SnS, materials is associated with
crystallinity, morphology, size, etc. Intensive research has been
performed to regulate the morphology of SnS,, and various
nanostructures were successfully built over the past few
years.”’ In general, photocatalysts with large visible-light
absorbance do not guarantee photocatalytic efficiency. The
development of high performance SnS,-based photocatalysts
remains vital for the application of photocatalysis on large scale
(Table S1t). Red phosphorus (RP) is an earth abundant element
that exhibits high photocatalytic activity with narrow band gap
in the range of 1.4-2.0 eV (ref. 30) and prevails over most of the
traditional metal-based photocatalysts with its good visible light
response.** Fortunately, SnS, and RP have matched band
potentials with both CB and VB potentials of RP being more
negative than those of SnS,, and thereby, thermodynamically
allowing the photogenerated electron transfer from the CB of
RP to the CB of SnS, under visible light irradiation. Moreover,
the reverse transmission of holes occurs from the VB of SnS, to
the VB of RP. Promoted by the photogenerated separation of

This journal is © The Royal Society of Chemistry 2020
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electrons and holes in SnS,, more efficient photocatalytic
reaction can be achieved. It is noteworthy that the 2D/2D het-
erostructure between SnS, and RP shortens the transmission
path, thereby accelerating carrier transportation and limiting
the recombination process.

In this study, the synthesis of RP-modified flower-like SnS,
for the synchronous removal of Cr(vi) and RhB is reported. The
uniform dispersible 2D structure was built by a facile hydro-
thermal method, resulting in effective charge separation and
significantly enhanced photocatalytic activity. Moreover, the
quick e transfer significantly inhibited the electron-hole pair
recombination and facilitated the release of photocatalytic
active groups (‘O, ). The photocatalytic activity of SnS, is
significantly enhanced by the presence of RP. The K,p, of the
RP/SnS, composite for the removal of Cr(vi) and RhB is 8.2 and
10.8 times higher than the degradation kinetic constant of pure
SnS,, as well as 8.6 and 15.7 times higher than that of pure RP.
Overall, the prominent photocatalytic efficiency and stability of
the simultaneous removal of Cr(vi) and RhB with the RP/SnS,
composite makes a significant step toward the application of
photocatalysis in actual water treatment.

2. Materials and methods
2.1 The preparation of RP-modified flower-like SnS, hybrid

All chemicals were of analytical grade and employed without
further purification. Moreover, the RP-modified flower-like SnS,
was generated following the 3 steps below:

(1) The commercial RP was milled with water and sieved to
remove the coarse part. Subsequently, the hydrothermal treat-
ment was conducted at 200 °C for 12 h, the RP was washed, and
centrifugal separation with deionized water was performed
repeatedly to produce nanostructured RP for subsequent use.

(2) Then, 2 mmol SnCl,-5H,0 and 5 mmol CH3;CSNH, (thi-
oacetamide) were adequately dissolved in 60 mL of ethanol to
generate a transparent solution. Different amounts of the
nanostructured RP (i.e. 80 mg, 137 mg, 213 mg, 320 mg and
480 mg) were dispersed in the transparent solution, stirred for
30 min to mix well, then ultrasonic treatment was performed for
2 h.

(3) The suspension was transferred to a high-pressure reactor
and heated at 180 °C for 12 h. After being cooled down to
ambient temperature, the samples were harvested by
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&
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Scheme 1 Schematic illustration of the preparation of RP/SnS,.
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centrifugation, washed with deionized water several times, and
then dried at 60 °C with a drying oven. The obtained samples
were respectively labeled as 20%-RP/SnS,, 30%-RP/SnS,, 40%-
RP/SnS,, 50%-RP/SnS, and 60%-RP/SnS,. The specific prepara-
tion processes of the samples are illustrated in Scheme 1.

2.2 Characterization

The crystalline phases were characterized by a Shimadzu XRD-
6000 powder diffractometer. Under a scanning electron micro-
scope (SEM, Carl Zeiss SIGMA) and a transmission electron
microscope (TEM, Tecnai G2 F20S-TWIN), the morphology and
microstructure of photocatalysts were identified. X-ray photo-
electron spectroscopy (XPS) was performed with a Kratos AXIS
NOVA spectrometer. UV-vis diffuse reflectance spectra were
collected on a Shimadzu UV-3600 UV/vis/NIR spectrophotom-
eter. Photoluminescence (PL) spectra were obtained on
a florescence spectrophotometer (Hitachi F-7000). With a three-
electrode system (CHI-660E, Chenhua Instruments Co.,
Shanghai, China), the photoelectrochemical experiments were
performed. A Pt wire and saturated calomel electrode (SCE)
acted as counter electrode and reference electrode, respectively.
The catalyst powder was deposited on a fluoride tin oxide (FTO)
substrate to serve as the working electrode. A 0.5 M Na,SO,
aqueous solution acted as the electrolyte. A 300 W xenon lamp
(MICROSOLAR300UV, Beijing Perfect light) equipped with
a 420 nm cutoff filter (k > 420 nm) was employed as a visible
light source.

2.3 Photocatalytic activity evaluation

The photocatalytic activity of the as-synthesized x-RP/SnS,
(x = 20, 30, 40, 50 and 60) was examined by the simultaneous
removal of Cr(vi) (K,Cr,O- as the source of Cr(vi)) and RhB. A Xe
lamp (300 W) was used as the irradiation source. Approximately
35 mg of photocatalyst was dispersed in the 100 mL of solution
containing Cr(vi) ions (40 ppm) and RhB (10 ppm). Prior to
irradiation, the suspension was stirred in the dark for 30 min to
reach the adsorption-desorption equilibrium, after which the
process went on for 50 min under light irradiation. 3.5 mL of
the solution was harvested and subsequently centrifuged at
10 000 rpm to separate the photocatalyst. The clear solution was
used to determine the content of Cr(vi) and RhB by UV-vis
spectroscopy, and the absorbance maximum (A.) of Cr(vi)
and RhB was at 356 nm and 554 nm, respectively.

In situ
solvothermal
— —
Ethylalcohol
180°C 12h

-
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3. Results and discussion

3.1 Structural characterization and photocatalytic activity
evaluation

Fig. 1 presents the typical X-ray diffraction (XRD) patterns of the
as-fabricated samples. The pattern of RP features one distinct
peak at 15.19°, which corresponds to the (102) plane of the
amorphous RP. For the SnS, sample, all the peaks can be readily
indexed to hexagonal SnS, (JCPDS 01-1010), in which peaks at
15.0°, 28.3°, 32.1°, 42.2°, 50.1° and 52.551° correspond to the
(001), (100), (101), (102), (110) and (111) planes, respectively. No
difference is identified in the diffraction peaks of SnS, before
and after hydrothermal treatment with RP (Fig. 1(a)). However,
the position of the sample peak at 15.0° shifts from the pure
SnS, sample position to a lower degree, according to Fig. 1(b),
which is probably caused by the formation of a heterojunction
between RP and SnS, and the lattice deformation of SnS,.*?

(a) n (b)
_—.
H Snsy
A | ki ) sns; :
3 A lA AL 20% RPISNSy = AN EORREIENS2
z‘ - S— N - ,,:—.v. — -t z. N— o -
a SoeRERS0S D 40%-RPISNS
S 50%-RPISnS s
2 ] \____50%-RPISnSy
£ 60% -RP/SnS» £ ‘
\_ 60%-RPISnS;
JCPDS: 01-1010 !
4] ¢ gppckosiome
10 20 30 40 50 60 70 80 10 12 14 16 18 20
20(Degree) 20(Degree)

Fig. 1 XRD patterns of (a) full spectra and (b) magnified spectra of
samples RP, SnS,, and x-RP/SnS,.
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Besides, the x-RP/SnS, structural transition can be attributed to
the introduction of RP in the SnS, layered structure (Fig. 3).
To assess the photocatalytic activities, the as-prepared
samples were applied for the simultaneous photocatalytic
removal of Cr(vi) and RhB. Fig. 2 illustrates the removal rate-
time relationship of the samples during 30 min of stirring in the
dark and 50 min illumination, in which only 8.0% and 1.9% of
Cr(vi) and RhB remained after 50 min over 50%-RP/SnS,.
However, pure SnS, and RP exhibited relatively weak capability
toward the reduction of Cr(vi) and the decolorization of RhB; the
residual amounts were nearly 50.2% and 18.5% for SnS,, and
88% and 65.3% for RP, respectively. Fig. S1f presents the
reduction of Cr(vi) (with UV absorption peak at 554 nm) and
decolorization of RhB (with UV absorption peak at 354 nm) by
50%-RP/SnS,, SnS, and RP. As expected, the modification of
SnS, by RP improved the photocatalytic reduction of Cr(vi) and
oxidation of RhB simultaneously. Besides, the reactions were
identified to be in accordance with —In(C/C,) = Kyppt (first-order
kinetic equation), where K,,, denotes the kinetic rate constant,
C, represents the original concentration of solution, ¢ indicates
the reaction time and C is the solution concentration at reaction
time ¢. Fig. 2(c) suggests that the slope value of the fitting lines
are 0.04494 min~ ' and 0.06692 min ", equated with the Ky, of
the 50%-RP/SnS, composite for the removal of Cr(vi) and RhB,
exhibiting 8.2 and 10.8 times higher degradation kinetic
constants than that of pure SnS, (as shown in Fig. S4(a)f) and
8.6 and 15.7 times higher than that of pure RP (as shown in
Fig. S4(b)}). Moreover, by cycling the photocatalytic experi-
ments, the performance stability and reusability of 50%-RP/
SnS, photocatalysts were investigated. As revealed from the

(b)
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Fig.2 Comparison of the effect of photocatalytic simultaneous removal of (a) Cr(vi) and (b) RhB by RP, SnS,, and x-RP/SnS,, (c) the fitted reaction
kinetic curves (—In(C/C,) = kt) and (d) recycling test runs for five times in the photocatalytic removal of Cr(vi) and RhB by 50%-RP/SnS,.
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Fig. 3 SEM images of (a) SnS,, (b) RP, (c) 50%-RP/SnS,, (d and e) TEM and (f) HRTEM images of 50%-RP/SnS,.

results of the recycling degradation experiments of Cr(vi) and
RhB simultaneously in Fig. 2(d), there was a minor decrease
after five cycles. Overall, 50%-RP/SnS, exhibited a relatively
optimal and comprehensive performance. Thus, the analyses of
the other samples are not presented in the following discussion.

The surface and interface characteristics of the composite
significantly enhanced the photocatalytic efficiency. SEM and
TEM images were examined for the interfacial state and
morphological structure of RP-modified flower-like SnS,. As
revealed from Fig. 3(a) and (b), the prepared SnS, and RP
exhibited nano-sized sheets with flower and fragment struc-
tures, respectively. The morphology of 50%-RP/SnS, presented
in Fig. 3(c) indicated that the fragments were uniformly scat-
tered on the planes. In this nanocomposite, RP nanosheets act
as a support to amplify the inner space of the SnS, nano-
structure, which may provide more transmission channels for
carriers. The elemental mapping images of P, S and Sn in-plane
and the EDS spectrum of 50%-RP/SnS, (Fig. S21) also confirmed
the uniform dispersibility of RP on SnS,. TEM and HRTEM
images (Fig. 3(d)—(f)) further showed the morphological struc-
ture between SnS, and RP, exhibiting effective contact and close
interfaces, in which the lattice fringes of the sample with
a d spacing of 0.312 nm can be assigned to the (100) lattice
planes of SnS,. Obviously, the RP modification strategy did not
modify the flower-like structure of SnS,. The construction of
a 2D heterojunction between RP and SnS, may reduce the
resistance and speed up the transmission of charge carriers,
which was verified by the electrochemical characterizations, as
shown in Fig. 7. Furthermore, N, sorption was measured to
determine the specific surface area (Sggr) and corresponding
pore structure (Fig. 4). Moreover, the Sggr of SnS,, RP and 50%-
RP/SnS, samples was determined as 35.38, 36.79 and 40.96 m?>
g !, respectively (Table 1). Minor variations were identified in
the Sger and pore volume of the 50%-RP/SnS, compared with
SnS,, suggesting that the composite does not generate
agglomeration and has good dispersibility. It is noteworthy that

This journal is © The Royal Society of Chemistry 2020

the pathway between them might lead to an efficient charge
transfer.

3.2 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) was performed to delve
into the chemical composition and analyze the chemical states
of 50%-RP/SnS,. Fig. 5(a) presents the full survey spectrum,
suggesting that the elements the composites contained
complied with the chemical composition of the photocatalyst.
The high-resolution P 2p spectrum of RP illustrated in Fig. 5(b)
displays two main peaks at 130.3 eV and 131.4 eV, assigned to P
2pss2 and 2p4, respectively. The corresponding peak positions
of RP/SnS, shift to 130.6 and 133.1 eV. The Sn 3d spectrum of

~o—RP/SnS2
—o—SnS2
—a—RP

€ <

N
3
3

snsz

“

RP

g
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E“,:./\,ﬁP!s'\Sz
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3
S
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Fig. 4 (a) N, adsorption—-desorption isotherms and (b) the pore size
distribution of SnS,, RP and 50%-RP/SnS, samples.

Table 1 Sget, pore diameter and pore volume of SnS,, RP and 50%-
RP/SnS, samples

Pore diameter Pore volume

Samples Sper (M> g 1) (nm) (em® g™
SnS, 35.38 3.05 0.20
RP 36.79 3.74 0.21
50%-RP/SnS, 40.96 3.76 0.23

Nanoscale Adv, 2020, 2, 4220-4228 | 4223
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SnS, (Fig. 5(c)) displays two main peaks at 487.1 and 495.5 eV,
assigned to Sn 3ds, and 3dj,, respectively.**** The corre-
sponding peak positions of RP/SnS, show minor shifts to 487.2
and 495.6 eV. Likewise, Fig. 5(d) suggests that the high-
resolution S 2p spectrum for SnS, can be deconvoluted into
two peaks at 162.1 and 163.3 eV, assigned to S 2p;,, and 2p;,,,**
expressing minor shifts to lower binder energies 161.9 and
163.1 eV for RP/SnS,. As revealed from the mentioned results,
the coupling between SnS, and RP altered the elemental
binding energies for both of them, probably resulting from the
electron transfer between semiconductors with different Ey
levels.*® This also indirectly implied that a nano-heterojunction
was successfully established between SnS, and RP.

3.3 Photogenerated carrier transmission performance

As clearly identified from the above results, RP helps enhance
the photocatalytic activity of SnS, by forming a nano-
heterojunction. There into, the transmission mechanisms of
carriers between semiconductors can be examined for an
explanation. Photoluminescence (PL) spectra of SnS, and RP/
SnS, under an excitation of 645 nm are presented to investigate
the transfer behavior of photoinduced electrons and holes in
photocatalysts. Fig. 6(a) suggests that the PL intensity of RP/
SnS, was obviously lower than that of SnS,, demonstrating that
the SnS, nanosheets with moderate amounts of RP can
suppress the electron-hole recombination. To delve into the
reason for the enhanced photocatalytic activity, time-resolved
photoluminescence (TR-PL) spectra were collected (Fig. 6(b))
with radiative lifetimes (tr; and 7,) and their corresponding
coefficients (A, and 4,) in the inset of Fig. 6(b). Based on the

4224 | Nanoscale Adv, 2020, 2, 4220-4228
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(a) XPS survey spectra and corresponding high-resolution XPS spectra of (b) P 2p, (c) Sn 3d, (d) S 2p.

mentioned data, average fluorescence lifetimes (t) can be ob-
tained by the following formula,*” i.e., 0.69 ns and 0.73 ns for
RP/SnS, and SnS,, respectively. The decreased average fluores-
cence lifetime means that the transfer of electrons between SnS,
and RP was accelerated, which is conducive to facilitating
photocatalytic reactions.

_ A% + Axty?
T AT+ A

To further verify the role of RP in accelerating charge carrier
separation, electrochemical measurements were performed, as
shown in Fig. 7. It is known that the transient photocurrent
response could manifest the separation and collection effi-
ciency of hole-electron pairs occurring on the photocatalyst
surface/interface.® Fig. 7(a) suggests that the number of
photoinduced charge carriers generated under the light expo-
sure of RP/SnS, was significantly higher than those of SnS, and
RP (nearly 2-3 times), in agreement with the photocatalytic

10000
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Fig. 6 (a) PL and (b) time-resolved fluorescence decay spectra and
calculated average lifetime (inset) of samples.
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Fig. 7 (a) Transient photocurrent response and (b) EIS spectra of the
samples.

performance results reported above. Moreover, the radii of
these samples identified in the Nyquist plots (Fig. 7(b))
complied with the sequence of RP/SnS, < SnS, < RP, revealing
that RP/SnS, possessed the lowest resistance and fastest charge
transfer kinetics for charge carriers.

3.4 Optical performance analysis

The optical properties are another vital factor in increasing the
photoactivity and quantum yield. The enhanced light capture
capacity of RP/SnS, was verified by UV-vis absorption spectros-
copy. The tangent lines in the plots of the square root of the
Kubelka-Munk functions against the photon energy were used
to assess the band gaps (E,) of SnS, and RP. As displayed in
Fig. 8(a) and (b), the absorption edge of SnS, was around
634 nm with a band gap of nearly 2.21 eV. However, RP exhibits
a considerably strong absorption in the visible region, the
absorption edge of which is at approximately 689 nm with
a band gap of nearly 1.97 eV. An obvious absorption edge red-

View Article Online
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shift could be identified in the RP/SnS, composites and the
light absorption coefficient was integrally up-regulated in the
500-800 nm range. As revealed from the above results, the
loading of RP nanosheets enhanced the optical properties of
SnS,, thereby partially facilitating the enhancement of photo-
catalytic activity, in agreement with the previous results.

Moreover, Fig. 8(c) and (d) shows the XPS valence spectrum
of SnS, and RP, in which the obtained valence band (VB) posi-
tions were identified as 1.53 eV and 1.83 eV, respectively.
Meanwhile, the E, measured via the optical absorption spectra
above (E, (SnS,) = 2.21 eV and E, (RP) = 1.97 eV) indicates that
the conduction band (CB) positions would respectively occur at
about —0.44 eV and —0.38 eV for SnS, and RP. To identify the
major active species accounting for organic pollutant degrada-
tion, disodium ethylenediaminetetraacetic acid (EDTA-Na,),
benzoquinone (BQ), and isopropyl alcohol (IPA) solutions were
respectively added to trap holes (h"), hydroxyl radicals ("OH),
and superoxide radicals ('O, ). According to Fig. 9, IPA slightly
impacted the RhB degradation, demonstrating that ‘OH are not
the major reactive species in the photocatalytic oxidation
process. However, upon the addition of EDTA-Na, and BQ, the
efficiency decreased significantly, revealing that ‘0, and h* are
the main reactive species in the photocatalytic oxidation.
Moreover, as indicated by their relative positions and band
structure, e, h* and 'O, are involved in the reactions
theoretically.***

The reactive oxygen species was further detected by EPR for
verification, in which DMPO was applied in aqueous and
methanolic dispersions as a trapping reagent for the "OH and
'O, . As expected, the signal of the DMPO-"OH was not found
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but the signal of the DMPO-'O,” was obvious, as shown in
Fig. 10. These findings along with scavenger trapping experi-
ments demonstrated that '0,~ and h* were the predominant
active species in this photocatalytic reaction system.

As revealed from the analysis, the nano-heterojunction was
built between SnS, and RP when the flower-like SnS, was
modified by RP. The enhanced photocatalytic performance of
RP/SnS, and photocatalytic synchronous removal of Cr(vi) and
RhB was attributed to the critical role of nano RP. As described
in Scheme 2, RP acts as the optical receiving active site to

enhance the visible light response capability, thereby
e Cr(II)
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Scheme 2 Schematic illustration of photocatalytic removal mecha-
nism of Cr(vi) and organic pollutants over RP/SnS, composite.
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generating and transmitting more electrons to the CB of SnS,.
Additionally, RP nanosheets created a proper transmission
channel of carriers to inhibit the recombination of photo-
generated holes and electrons. Furthermore, photogenerated
electrons and the absorbed O, might be trapped on the SnS,
surface to generate an abundant superoxide radical (‘O,"),
thereby significantly impacting the photocatalytic degradation.

4. Conclusions

The proposed method for synchronous removal of Cr(vi) and
RhB with RP/SnS, is promising based on the significantly
increased degradation rate, expressing 8.2 and 10.8 times that
of pristine SnS,, as well as its high reusability. In the mentioned
process, nano RP was introduced to act as an active site for both
absorption enhancement and carrier separation with excellent
dispersibility on the SnS, films. Moreover, the 2D hetero-
junction of the RP/SnS, photocatalyst created channels for the
rapid transfer of photon-generated -carriers; thus, photo-
generated carriers can be effectively separated. Furthermore,
the generation of abundant ‘O,  impacts the photocatalytic
degradation oxidation reaction process. Overall, the application
of RP/SnS, in the removal of coexisting Cr(vi)/RhB was demon-
strated as a promising path toward treating wastewater.
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