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Applying trapezoidal driving-field waveforms to activate magnetic nanoparticles optimizes their

performance as heat generators in magnetic hyperthermia, with notable advantages with respect to the

effects of harmonic magnetic fields of the same frequency and amplitude. A rate equation approach is

used to determine the hysteretic properties and the power released by monodisperse and polydisperse

magnetite nanoparticles with randomly oriented easy axes subjected to a radio-frequency trapezoidal

driving field. The heating ability of the activated nanoparticles is investigated by means of a simple model

in which the heat equation is solved in radial geometry with boundary conditions simulating in vivo

applications. Changes of the inclination of the trapezoidal waveform's lateral sides are shown to induce

controlled changes in the specific loss power generated by the activated nanoparticles. Specific issues
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typical of the therapeutic practice of hyperthermia, such as the need for fine tuning of the optimal

treatment temperature in real time, the possibility of combining sequential treatments at different
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1 Introduction

Magnetic hyperthermia and related heat-assisted healing
treatments are nowadays one of the most widely studied areas
of application of magnetic nanoparticles (NPs)."” Precision
nanomedicine is a modern therapeutic practice, mainly devel-
oped for the treatment of cancer, and it exploits nanotechnology
to support and favour treatments aimed at healing patients in
a non-invasive manner.**® The important role played by
magnetic NPs in precision nanomedicine is widely recognized:
particles can act as point-like heating agents, can be targeted
towards the malignant tissue and can diffuse around or within
the small region subjected to treatment."**

Magnetic hyperthermia is sometimes exploited as a standalone
cure for cancer>*"**** aimed to selective killing of malignant cells
(tumor apoptosis)*** or complete tissue necrosis by the ablation
process.'” In recent years, magnetic hyperthermia has been
increasingly combined with other anti-tumor therapies, such as
chemotherapy and radiotherapy, resulting in an enhancement of
both therapeutic efficacy"**'*>* and tumor penetration.”

In spite of the vast literature on this subject area, magnetic
hyperthermia is still not completely understood nor completely
optimized. In fact, application of the technique to therapeutic
practice poses a great number of intertwined problems
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temperatures, and the ability to substantially reduce the heating transient in a hyperthermia treatment
are suitably addressed and overcome by making use of versatile driving fields of a trapezoidal shape.

pertaining to different fields such as physics, chemistry, engi-
neering and medicine.>*

Optimization of hyperthermia treatments clearly requires, as
a necessary condition, optimization of the mechanism of heat
release from magnetic NPs, in order to maximize their specific
loss power (SLP),**"° defined as the total power released by the
magnetic nanoparticles divided by their total mass. This can be
done by either looking for higher-performance magnetic
nanomaterials®**** and better particle sizes and shapes,**** or
trying to devise methods to more efficiently extract the heating
power from a given system of nanoparticles.?

In most in vitro and in vivo applications, the particles are acti-
vated by using a radio-frequency (RF) harmonic magnetic field.****
However, it has been recently shown that the sinusoidal waveform
is not always the best choice, and that controlling the shape of the
driving-field waveform may result in a significant enhancement of
the SLP of magnetic NPs evenly distributed in a host medium.* In
fact, choosing a suitable magnetizing waveform not only has an
effect on the SLP, but can also solve a number of practical prob-
lems arising in the therapeutic practice.

For instance, in hyperthermia treatments, the therapeuti-
cally effective temperature interval has to be reached with
precision, which is a not easy task in the in vivo practice where
a number of ill-controlled parameters, many of which are
related to the natural but unpredictable differences existing
from body to body, act to jeopardize the achievement of an
optimal therapeutic efficacy.” Having the possibility of adjust-
ing the steady-state temperature of the treated region in real
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time (i.e., without interrupting the treatment to recalibrate the
volume fraction of inoculated particles) would represent a big
step forward.

When magnetic hyperthermia is used for tumor apoptosis, the
necessity of avoiding damage of healthy tissues poses a strict upper
limit (typically, 41-43 °C (ref. 36 and 37)) to the steady-state
temperature which has to be maintained in the target region for
a rather long time (tens of minutes, up to about one hour®). On the
other hand, in the case of heat-assisted tumor ablation resulting in
tissue necrosis, much higher temperatures (usually more than 60 °C
and up to 70-80 °C) need to be reached in the target region for
a limited time.*** In the current therapeutic practice, magnetically
operated low-temperature hyperthermia and high-temperature
ablation are distinct treatments which are typically performed
using different magnetic nanomaterials and different particle
concentrations. A possible therapeutic opportunity could be to
perform a combined ablation-hyperthermia cycle, where a shorter,
high-temperature treatment is followed by prolonged heating at
a lower temperature, by making use of the same clinical setup and
the same volume fraction of inoculated magnetic nanoparticles.

Another important aspect which requires optimization is the
existence of long thermal transients between the start of
a treatment (i.e., when the RF magnetic field is switched on) and
the time at which the working temperature is actually reached.*
The therapeutic practice would greatly benefit from a reduction
of the initial transients.

In this paper, we show that all the aforementioned issues can
be solved by activating magnetic NPs by means of a trapezoidal
instead of a harmonic driving-field waveform. Trapezoidal
waveforms turn out to be easy to produce and control, and
sufficiently versatile to successfully address the outlined prob-
lems. Our model explicitly refers to particles of magnetite
(Fe30,) having diameters in the 10-16 nm range, because
nanometer-sized magnetite has taken a prominent role in
biomedical applications.**

The effect of using a trapezoidal waveform on the SLP of
magnetite nanoparticles is investigated by determining the area of
the hysteresis loops which appear at the magnetizing frequency.
The loops are obtained using a rate-equation approach, which is
able to suitably describe the dynamics of magnetization in NPs
subjected to an alternating field of high frequency while main-
taining intrinsic simplicity and effectiveness.*'

The heating efficacy of a set of magnetite nanoparticles sub-
jected to a trapezoidal driving field waveform is finally evaluated by
making use of a simple heating model to picture a small portion of
living tissue. The proposed technique of nanoparticle activation by
using trapezoidal waveforms is shown to give a substantial
contribution to the optimization of magnetic hyperthermia.

2 Magnetite nanoparticle activation
using trapezoidal magnetic-field
waveforms

2.1 Magnetic nanoparticles as double well systems (DWSs)

The properties of magnetic nanoparticles are well described by
a simple model where the key role is played by the energy
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barrier separating two local energy minima. Therefore,
magnetic nanoparticles can be assimilated to classical double-
well systems (DWSs)*>** with a barrier originating from
magnetic anisotropy. Describing nanoparticles as DWSs
involves a number of implicit assumptions, in particular that
each nanoparticle behaves like a macrospin* and that the
effective magnetic anisotropy energy has uniaxial symmetry.*
In spite of all approximations,** the model has proven to
account for most experimental observations, and to provide an
adequate picture of the main features of magnetic nano-
particles, particularly the ones of higher interest in
applications.*

Magnetite nanoparticles are treated as non-interacting DWSs
described by three parameters: magnetization M, magnetic
anisotropy constant K¢, and size D. The magnetic moment of

L T 5. .
each particle is u = MgV where V = EDS is the particle volume;

the energy barrier separating the two energy wells is Eg = KegV.

Considering nanoparticles as non-interacting is of course
an approximation, and in some cases it may be an over-
simplification.*”~>* The assumption is however reasonable in
the light of the ultimate aim of the paper, which is to high-
light the advantages of applying a non-conventional driving
field waveform on the SLP of a set of dispersed nanoparticles,
independent of their degree of interaction. It should be noted
that in the current therapeutic practice there is a tendency
towards the reduction of the concentration of inoculated
magnetic particles (associated with optimization of their
SLP)," in order to minimize potentially negative effects on
the patient's body.* Let us finally stress that the effective
anisotropy constant K.g; can incorporate, although in an
approximate manner, weak interparticle interactions,****
thereby allowing a collective effect to be reduced to a single-
particle picture.

The room-temperature values of the magnetic parameters
used in this work are MX' = 350 emu cm  and Ko = 4 x 10°
erg cm >, in line with those in the literature.**® However, in the
application of magnetite nanoparticles to magnetic hyper-
thermia, the temperature dependence of both magnetization
and magnetic anisotropy cannot be neglected.* In this paper,
the temperature behaviour of M, and the Curie temperature (T
= 856 K) are taken from published data.?***” Uniaxial anisotropy
is assumed to vary according to the third power of
magnetization:*>**

54~

T W

Kex(T) = K {MSET)} 3

The particle diameters considered in this study are in the
range 10-16 nm, corresponding to the most frequent interval of
values in actual in vitro measurements and in vivo application of
magnetite nanoparticles.'**?

2.2 Rate equations: advantages and limits of applications

Rate equations are being applied since about one decade to
study the response of uniaxial magnetic NPs described as
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double-well systems (DWSs).*»* The method has been
successfully applied to systems of non-interacting particles,
under both equilibrium***® and off-equilibrium conditions. In
particular, rate equations are used to describe important off-
equilibrium properties, such as the behaviour of the low-field
magnetization below the blocking temperature in field
cooling/zero field cooling experiments,” and isothermal
magnetic hysteresis loops.****

The method provides an accurate picture of the process of
magnetization of an assembly of DWSs, under both linear
and non-linear, static and dynamic conditions. Rate equa-
tions work well over an extended range of driving-field
amplitudes and frequencies;** they describe with precision
the transition between superparamagnetic and blocked
regimes in a nanoparticle,** and are appropriate for treating
the off-equilibrium response of nanoparticles subjected to
a cyclic field of frequency up to hundreds of kHz (ref. 41) and
of an arbitrary waveform,*® independent of the state of
blocking of the particle.

In this respect, it should be noted that at sufficiently high
driving-field frequencies a typical off-equilibrium behaviour
emerges even in particles which under quasi-static condi-
tions are well inside the reversible region (the blocking
temperature of a magnetic NP is a frequency-dependent
quantity,** so at high magnetizing frequencies it becomes
much higher that the value is appropriate to the quasi-static
case); as a consequence, a hysteresis loop sustained by the
operating frequency opens even in particles which are in
thermal equilibrium at zero frequency. This effect is well
described by the rate equations.

Finally, the rate-equation method is appropriate for studying
both monodisperse and polydisperse systems of nanoparticles
with easy axes randomly pointing in all directions.**

Of course, more exact approaches to the dynamics of
magnetization in nanostructures exist. They involve solving
either the Landau-Lifshitz**/Landau-Lifshitz-Gilbert®*
equations, or the Fokker-Planck-Brown equation for the
magnetization dynamics.®*** The difficulties arising when
either of these methods is adopted are briefly discussed
elsewhere.”® As an approximation to a more complex
problem, the rate-equation approach necessarily exhibits
some drawbacks and has some limits of application, as dis-
cussed elsewhere.?® The predictions of the rate-equation
method applied to magnetite nanoparticles were shown to
gradually lose validity with the decreasing particle size; with
the values of the magnetic parameters used in the present
paper, magnetite nanoparticles should have a diameter D >
11 nm in order to be correctly described by the rate equa-
tions. The range of D values examined in this paper complies
with such a requirement.

The procedure adopted in this paper involves the following
steps:

- the rate equations are first numerically solved for an
assembly of randomly oriented nanoparticles of the same size
subjected to a dynamic magnetic field, and the instantaneous
populations of the two wells are calculated for all DWSs;
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- the magnetization along the field direction is calculated as
a function of time from the instantaneous populations in the
wells,*® and the hysteresis loop is generated;

- the area of the loop is calculated, and the SLP is obtained;

- in polydisperse systems described by a distribution of
particle diameters, the procedure is repeated for all nano-
particle sizes and a weighted sum is generated.

An abridged description of the rate-equation model is given
in the following lines. Let us consider first the subset of DWSs
whose easy axes make an angle ¢ with the direction of the
applied magnetic field. The magnetic moments continuously
redistribute between the two wells according to the following
rate equations:

g _ *L"w + L”w = - (L * L)”“ﬁ
dr 71(1) 75(1) 75(1) 71(f)  12(2)

dny, 1 1 1 1 1

KO O O (T(r)+7(r))””'

(2)

The occupancy numbers in the two wells are N,y and Ny
(their sum gives the total number of DWSs of the considered
subset, Ny). In eqn (2), the quantities n,, = N14/N, and ny, =
N,4/Ny are used (14 + 1 = 1).

The escape frequencies in eqn (2) are defined as 7, ' =
To " exp[—(Em — E)/ksT] (i = 1,2) where Ej(t) are the energies of
the two energy minima, and E\ is the energy at the top of the
barrier.

The energy E of a single DWS of volume V is given by:

E = K.V sin®(0) — H(f)M; cos(6 — )

where 6 is the angle between the magnetic moment direction
and the easy axis. The values Ey; and E; are found by making the
derivative of E with respect to ¢ equal to zero and by checking
the sign of the second derivative. These energy values are
functions of time because in the studied case the applied field
oscillates between +Hy, and —Hy, and vice versa. Note that the
relation t,(—H) = 1,(H), valid at all angles ¢, is derived from
symmetry considerations.

When the system is subjected to a harmonic magnetic field
H(t) = Hy cos(2mft), the sweep rate of the magnetic field is not
a constant; therefore, a rms value is typically used in the
calculations. By introducing the dimensionless field 7 = HM/
2K.g, the rms sweep rate is simply defined as rrvs = (7t/v/2)hf
where £, is the dimensionless vertex field: the quantity 4 is
observed to evolve from the upper (%) to the lower vertex (—A,)
and vice versa according to the linear law () = F A, & rryst. As
a consequence, the rate equations can be transformed taking #

as the independent variable:
1 N 1
T (h) 1 (h) é
= +

dn|_¢ $ 1 |: 1
d/’l FRMS ‘L'z(h)
dnmyy _ 1 { 1 ( 1 1 ) }
Pth - n2,¢ .
dh rrvs [Ti(h)  \ni(h)  12(h)
where the F sign refers to the upper/lower loop branch. It
should be explicitly remarked that using a rms sweep rate for

(3)

+
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a harmonic driving field waveform is perfectly equivalent to
applying a triangular symmetric waveform.

Once n, 4 and n, 4 are obtained, the magnetization is easily
found;* the results for each ¢ angle are then easily summed up
assuming a uniform distribution of easy axes.

2.3 Nanoparticle activation by using trapezoidal magnetic
field waveforms

In theoretical and experimental studies of magnetic hyper-
thermia, nanoparticles are usually subjected to sinusoidal
driving fields (although in fact, most of the expressions given in
the literature and attributed to the sinusoidal waveform are
more appropriate to the case of the triangular symmetric
waveform, as explained elsewhere®® and recalled in the previous
subsection). However, changing the waveform's type has
important consequences on the thermal power generated by
a system of magnetic NPs with random easy axes.”® In partic-
ular, the best results in terms of specific loss power (SLP)*” may
be obtained by applying the square driving-field waveform.

Both triangular symmetric and square waveforms are
limiting cases of the general trapezoidal waveform, sketched in
the left panel of Fig. 1. Trapezoidal waveforms are characterized
by three parameters: amplitude (or vertex field) Hy, frequency f,
and taper parameter y. The latter quantity is a measure of the
inclination of the two lateral sides of the trapezoid and is
univocally related to the duration of the time elapsed at
constant applied field (+Hy); it is easy to show that for a wave of
frequency f, such a duration is equal to y/2f (see Fig. 1, where the
waveforms corresponding to three values of y are reported).
Triangular and square waveforms correspond to the limiting
cases y = 0 and y = 1, respectively.

A trapezoidal waveform of magnetizing electrical current can
be produced by sending a rectangular input voltage waveform of
a tunable pulse width and amplitude in an inductive circuit
(coil). The voltage pulse width is univocally related to the shape

y/2f —y=0
H A7 —y=04
—y=0.8
Q A
‘e
35
£0
S
=
_H\;
0 1/2f 1/f 3/2f 2/f
time
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of the taper parameter y of the trapezoidal wave of current. By
defining the dimensionless pulse width as w = Dpf where Dy is
the pulse duration, one gets: y = —2w + 1; the taper parameter y
takes values between 1 and 0 for w taking values between 0 and
0.5. As an example, a train of alternating voltage pulses gener-
ated in the feed circuit at the frequency f= 1 x 10° Hz is shown
in the upper panel of Fig. 2. At a given time (¢5) both pulse width
and pulse amplitude are suddenly modified. In this way, the
waveform of the output current flowing in the coil, obtained by
Fourier series analysis (lower panel) changes at ¢; from trape-
zoidal with y = 0.8 to triangular (y = 0), maintaining the same
amplitude. Therefore, a quick change of the taper parameter y is
easily achieved when needed.

In a trapezoidal waveform, the applied field takes a constant
value twice per cycle, and is quickly reversed at a constant rate

1—
twice per cycle. The time taken by each field reversal is (1-y );

2f

as a consequence the absolute value of the time derivative of the

—| = 4fH—V; note that for
det 1-y

a nearly square wave (y — 1) the value of this derivative
becomes very large, so particular precautions need to be taken
in order to avoid potential damage to living tissues by the effect
of the eddy currents generated by the strong magnetic flux
variation.”® The hysteresis loops obtained at 7= T, = 310 K by
solving the rate equations for a monodisperse assembly of non-
interacting, randomly oriented magnetic nanoparticles with D
= 13 nm are shown in the right panel of Fig. 1 for the same y
values as in the left panel; the frequency is f= 1 x 10°> Hz and
the field amplitude is Hy = 100 Oe = 8 x 10° A m . The
product (Hyf) is therefore well below the upper limit for bio-
logical safety proposed by Dutz and Hergt.””

For a triangular waveform (y = 0) the usual almond-like
shape of a minor hysteresis loop is obtained (magnetic satura-
tion is achieved in this case at much higher vertex fields, Hy > 1
x 10° Oe). The loop's shape changes when a trapezoidal

magnetic field (during reversal) is

H (A/m)
7955 -3978 0 3978 7955
+y=0
301 « y=04
gg| - 08
s ]
" 10
L /
g 0
2 /
s -104
-20- D=13nm
f=1x10° Hz
-30+ T=T,=310K
100 -50 0 50 100

H (Oe)

Fig. 1 Left panel: parameters defining the trapezoidal driving-field waveform. Right panel: hysteresis loops of monodisperse magnetite
nanoparticles (D = 13 nm) with random easy axis directions for the same values of the parameter y as in the left panel.
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Fig. 2 Top panel: pulsed voltage waveform at a frequency of 1 x
10° Hz. Pulse duration and amplitude are changed at t = t,. Bottom
panel: resulting electrical current waveform flowing in an inductive
circuit.

waveform is applied: in this case, the loop is characterized by
two vertical segments where the magnetization, initially out of
equilibrium, relaxes toward the equilibrium conditions at
constant field.”® The other two branches of the loop correspond
to quick reversal of the magnetic field. When y — 1, these two
branches become increasingly similar to straight lines (and
become nearly adiabatic*®). The loop's area and consequently
the power released by the nanoparticles at the frequency f
monotonically increase with y. Similar results can be obtained
for all the values of the nanoparticle diameter D.

More details about the effect of the taper parameter y on the
loop's shape and on the temperature behaviour of the power Py,
released by the magnetic nanoparticles are given in the
following subsection.

2.4 Hysteresis loops and power released by the nanoparticles

The effect of taper parameter y on the hysteresis loop's area 4;, at
fixed temperature (T, = 310 K) is shown in the upper panel of
Fig. 3 for a monodisperse system of randomly oriented
magnetite nanoparticles (D = 13 nm) subjected to a driving field
of frequency f = 1 x 10° Hz and amplitude Hy = 100 Oe. An
almost perfectly linear behaviour of A;, with y is observed. As
a consequence, the released power P;, = A;f increases in the
same way when y is increased. When the temperature of the
system of nanoparticles is raised above the starting temperature
Ty, the released power changes, as shown in the right panel of
the same figure (in SI units). The non-monotonic behaviour of
the P;,(T) curves is related to the variation of the magnetic
parameters M and K¢ with temperature® (eqn (1)).

The maximum of the P;,, curves occurs where the loop area is
the largest,® this condition roughly corresponding to the
temperature where the typical time of jump across the DWS
barrier t(T) becomes equal to half a period of the driving field.
On the other hand, the effect of increasing the taper parameter y
is limited to an almost rigid increase of the whole P;,(7) curve.
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The inset in the lower panel of Fig. 3 shows the details of the
power curves in the region of temperatures close to Ty, which is
the most interesting one for the magnetic hyperthermia treat-
ments considered in this paper.

2.5 Heating model

In magnetic hyperthermia, the SLP of a system of magnetic NPs
is exploited to raise the temperature in a bounded region filled
with a medium where the particles have been dispersed. Both in
vitro and in vivo applications require an accurate prediction of

10000
8000 =]
o
( ]
«g 6000 ®
E’ [}
2, [$)
& 4000
0J
2000 |
T,=310 K
0 1 4 T T L] T 1
0.0 0.2 04 0.6 08
Y

2010 - /
2x10° 1 ;_//
')E - :
— 320 33
= 1x10° T(K)
o | W\
S D=13 nm
07T Tt
350 400 450 500 550 600
T (K)

Fig. 3 Upper panel: effect of the taper parameter on the area of the
hysteresis loops of monodisperse magnetite nanoparticles (D = 13
nm). Lower panel: temperature behaviour of the heating power
generated by the nanoparticles; the curves are reported for temper-
atures higher than To = 310 K. The inset shows the detail of the region
immediately above To.

This journal is © The Royal Society of Chemistry 2020
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the temperature behaviour in such a region."*® In magnetic
hyperthermia, the problem of correctly predicting the steady-
state temperature is complicated by the fact that the heating
power P;, is itself temperature-dependent.®

Power dissipation by a system of non-interacting nano-
particles is often described in the linear response regime;*
however, for the driving field values most commonly used in
practical applications®® (100-250 Oe, i.e. 9-20 kA m~ ") the limits
of validity of the linear theory are overcome, and the magnetic
response of the system is no longer linear, as clearly shown by
the rate equation approach.”®*' The present heating model
takes in due account the true magnetic losses of typical nano-
particles under standard operating conditions. In particular,
the rate equations governing the evolution of the populations in
each potential-energy well of the DWS are solved for both
monodisperse and polydisperse NP systems, so that the
hysteresis loops and the heating power P;, are obtained as
functions of temperature 7. When a trapezoidal waveform is
applied, the heating power is a function of the taper parameter
too, as shown in the right panel of Fig. 1 (further details of the
solutions for a monodisperse system are discussed in the
previous subsection).

The subsequent step is to insert the heating power of
magnetic origin in a suitable heat equation with the appropriate
boundary conditions. Accurately modelling heat transport in
living bodies is a very difficult task. Many variants of the bioheat
transfer equation with internal power generation have been
proposed;* they are all aimed to describe with various approx-
imations how heat can be generated, transported and dissi-
pated in an extremely complex system such as a living body.

The problem is made very challenging by the variety and
variability of parameters influencing magnetic hyperthermia in
real living bodies, such as, variations in the blood composition

View Article Online
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and density, non-uniform blood flow, thermal interactions
between blood vessels and tissues, and types of blood vessels
significant for heat transfer in tissues. A number of bioheat
equations specifically aimed to take into account most of these
effects have been proposed, starting from Pennes' transfer
equation® and including the Chen-Holmes approach® and the
Weinbaum-Jiji-Lemons model®® and related modifications.®
Another important factor is the difference between healthy and
malignant tissues when physiological properties important for
heat dissipation, such as the tissue-blood perfusion rate, are
considered; possible thermal consequences and related dangers
have been discussed elsewhere from a physicist's viewpoint.*

As a matter of fact, all the mentioned approaches take origin
from the classical Fourier equation, with suitable adaptations
introduced to account for specific heat sources, heat transfer
mechanisms and heat sinks typical of living tissues.* It should
be stressed that the emphasis of all the bioheat equations is
more on the processes governing the way the heat is transported
and dissipated in a living body rather than on the physical
properties of the internal heat source, i.e., the processes deter-
mining the energy deposition rate.

On the contrary, the present paper is specially aimed to
provide a proof of principle of the tapered waveform technique,
describing how and how much can the power released by
magnetic nanoparticles be enhanced and controlled. As
a consequence, we have taken the simplest possible thermal
model, the standard Fourier equation in radial
symmetry*>’*>”* with a distributed heat source and with
boundary conditions simulating heat loss dominated by forced
convection, a common situation in living bodies where the
excess heat generated in a small region is basically taken away
by blood flow.*® Therefore, our results can be of interest not only
for in vitro experiments, but also for in vivo healing treatments.

Le.,

1x10' 4277 5 = 0.03
Yo =0.06

—_aEES---...,
NN

SN

"

D (nm)

Fig. 4 Left panel: sketch of the heating model with convective boundary conditions. The sphere is made of a phantom containing a uniform
dispersion of magnetite nanoparticles. Right panel: lognormal probability density functions used in this study, reported both as histograms at

intervals of half a nanometer and as continuous curves (dashed lines).
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Focussing on a particularly simple heat equation and
simplified boundary conditions is fundamental to easily grasp
features and advantages of a technique aimed at enhancing the
magnetic response of nanoparticles and their thermal perfor-
mance, as well as at providing the final user with a better control
of the heating process.

Of course, the predictions of the present proof of principle
may become more accurate by inserting the power released by
nanoparticles in a bioheat equation more precisely describing
heat transport in living bodies.

In the present model, a sphere of radius b = 0.01 m is filled
with a homogeneous medium (e.g., a biological simulant or
tissue phantom) populated with magnetic NPs evenly distrib-
uted in space, which act as a space- and time-dependent heat
source (note that the heating power P;, is explicitly dependent
on the local, instantaneous temperature, so that it turns out to
be a function not only of time but also of the distance from the
sphere’s centre, even if the NP distribution is uniform in space).

Here, the only important mechanism of heat generation by
magnetic nanoparticles is assumed to be Néel's relaxation,”
Brown's relaxation being negligible at the frequency of operation (f
= 1 x 10° Hz).”»”® Moreover, in real living tissues or phantoms
other types of energy dissipation (such as the ones derived from NP
translational motion) are almost completely hindered.””*”

The thermal model analyzed here is shown in the left panel
of Fig. 4.

The heated medium is immersed in a continuously flowing
fluid representing blood (initially at the temperature 7,), and
the temperature is found by numerically solving an equation
appropriate to a medium with uniform thermal conductivity
and thermal diffusivity:
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where T(r,t) is the local, instantaneous temperature inside the
sphere, P;,(7) is the heating power of the homogeneous NP
distribution, and k and « are the phantom's thermal conduc-
tivity and thermal diffusivity. Their values, k = 0.5 W m K
(applicable to real phantoms™”’) and @ = 1.4 x 10’ m*s™ ", are
considered to be constant owing to the limited temperature
increment above T, considered in this paper.

The loss of heat in the medium is taken into account by
introducing an appropriate boundary condition, ie., by
assuming that the heat exchange at the sphere/fluid boundary
occurs by convection at local blood's temperature and is
determined by the process of tissue-blood perfusion, an effect
which greatly varies from tissue to tissue.*®”® The boundary
condition is:

T (r, 1)
ar |,

h
=% T(b,1) (5)

where % is the convective heat transfer coefficient. The value
used here is # = 133 W m > K ', corresponding to a blood
perfusion coefficient as high as 4 x 10° W m™> K™, typical of
tumor tissues.”

The approach to the steady-state temperature is determined
by the thermal parameters k and « of the phantom; however, the
magnitude of the input power P;,, which is remarkably influ-
enced by y, has an effect not only on the steady state tempera-
ture itself, as predictable, but also on the initial slope of the
AT(b/2,t) curve: the larger y is, the higher is the initial slope.

2.6 Effect of nanoparticle size distribution

Nanoparticle systems used in typical applications are never

FT(r,t) 20T (r,1) Po(T) 19T(r,1) ideally monodisperse. The effect of particle size distribution is
2 +; or + ko ot ) however easily accounted for when particles are non-
interacting. In this paper, the size distribution is modelled
36 60
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Fig.5 Left panel: effect of the taper parameter y on the time evolution of temperature in r = b/2, for a sample containing a volume fraction f,, =
0.5% of polydisperse magnetite nanoparticles (¢ = 0.06). Right panel: effect of the taper parameter on the steady state temperature
Afjs achieved in a monodisperse system with D = 13 nm and in two polydisperse systems with the same ¢ values as in the right panel of Fig. 4.
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using a lognormal probability density function, whose mode
has been fixed at D = 13.25 nm whilst the variance ¢ takes the
values ¢ = 0.03 or ¢ = 0.06. Histograms representing the two
distribution functions at intervals of half a nanometer are
shown in the right panel of Fig. 4, along with the corresponding
continuous functions.

The distributions obtained using either value of ¢ describe in
a realistic manner actual systems of magnetite nanoparticles for
magnetic hyperthermia. All the size-averaged quantities are
obtained as discrete weighted sums of the results for mono-
disperse systems using diameter intervals of half a nanometer.

An example of application of eqn (4) and (5) in a sample
containing polydisperse particles is given in the left panel of
Fig. 5. There, the time evolution of the temperature increment
AT = T — T, halfway between the sphere centre and the
boundary (r = b/2) is shown for different values of the taper
parameter y. The magnetic NPs are distributed in size according
to the lognormal with ¢ = 0.06.

When nanoparticles are distributed in size, the variance o
and the taper parameter y have combined effects on the steady-
state temperature, as shown in the right panel of Fig. 5.
Generally speaking, the final temperature increases with
increasing y. However, the values of AT,® are larger in the
monodisperse system than in the two polydisperse systems: this
can be explained considering that the heating power of nano-
particles is the largest for the value of D considered here (13
nm). In polydisperse systems, adding the weighted contribu-
tions from particles of different sizes necessarily lowers the final
temperature reached when only particles with D = 13 nm are
present. On the other hand, it is observed that doubling the
value of ¢ has minor consequences on the AT?S values. The
differences between the two curves reflect the complex interplay
between the heating power of nanoparticles (and its tempera-
ture dependence) and the relative weight of each diameter D in
the p(D) distribution.
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3 Optimization of magnetic
hyperthermia treatments

Trapezoidal driving-field waveforms can be applied to optimize
hyperthermia treatments based on the use of magnetic nano-
particles. Three possible goals of high relevance in the thera-
peutic practice will be discussed here, along with the
corresponding experimental procedures.

(a) An important instance in hyperthermia treatments is to
be able to finely tune the thermal efficiency of nanoparticles and
to quickly modify the steady-state temperature of a treated
region, when it turns out to be slightly incorrect with respect to
the initial aim, and to do so without the need of interrupting the
healing treatment.

(b) Subjecting a tumor tissue to a short high-temperature
treatment followed by a more prolonged heating at a lower
temperature could be of interest in view of the possible
advantages derived from the combination of ablation and
hyperthermia processes within the same curing treatment, i.e.,
a greater therapeutic efficacy of the apoptosis process together
with a reduction of tissue inflammation typically caused by the
necrosis process.”

(c) Another important issue is the reduction of the overall
time taken for a typical hyperthermia treatment. Thermal
inertia of the region subjected to heating often results in rather
long initial transients, therapeutically mostly useless, which
amount to non-negligible fractions of the total treatment time.
A handy method to drastically reduce the heating transient
would be beneficial in the therapeutic practice.

When a treatment of magnetic hyperthermia is implemented
using a sinusoidal driving field, there is in practice no way to
easily achieve the outlined objectives. In contrast, trapezoidal
driving-field waveforms are sufficiently versatile to allow an user

0.12-
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Fig. 6 Left panel: effect of taper parameter y on the initial value of the time derivative of temperature in r = b/2, in samples containing either
monodisperse (D = 13 nm) or polydisperse nanoparticles. Right panel: correlation between the initial time derivatives for different y values (as
reported in the left panel) and the corresponding heating power P;, generated by the nanoparticles at the starting temperature, T = To.
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to reach all the aforementioned goals, as described in the
following paragraphs.

It has to be stressed that in all the examined cases a key role
is played by the taper parameter. In fact, the initial slope of the
heating curve 7(r,t) turns out to linearly depend on y, making
the heating curves steeper and faster obtained using a higher y.
This is shown in the left panel of Fig. 6, where typical results for
a monodisperse system with D = 13 nm and two polydisperse
systems with ¢ = 0.03 and ¢ = 0.06 are reported. The volume
fraction of the nanoparticles is fy = 0.5%. The initial derivative

of the heating curve, {%] , has been evaluated in r = b/2
0

between ¢ = 0 and ¢ = 10 s, where the temperature still varies
linearly. In all the cases a direct proportionality of the initial
slope with y is observed.

These results also show that the width of the size distribu-
tion function plays a remarkable role; in particular, a non-trivial

behaviour of {%} with ¢ is observed. This result can be
0

explained considering that the key parameter determining the
initial slope of the heating curve is the value of the input power
Py, at T = 310 K, which depends on both y and ¢. When the
values of the time derivative at different y are plotted as func-
tions of the corresponding values of P;,(T = 310 K), a single
master curve is obtained, as shown in the right panel of the
same figure.

All the results reported in the following examples refer to the
volume fraction f;; of the nanoparticles corresponding to 0.5% of
the total volume of the spherical sample. The magnetic nano-
particles are distributed in size according to a lognormal law with o
= 0.06 and are subjected to a driving-field of frequency f= 1 X
10° Hz, with a vertex field of 100 Oe (=8 x 10> Am ™).

3.1 Fine tuning of the steady-state temperature

Using a trapezoidal wave of intermediate taper parameter y is
a good starting point if one looks for the ability to vary the
steady-state temperature of the heated medium. The value y =
0.4 has been used to generate the heating curve shown in Fig. 7
(the full line shows the temperature increment AT above T, for r
= b/2). Once the steady-state temperature corresponding to y =
0.4 has been reached (dotted light green line in Fig. 7), it can be
easily modified (in both directions) by simply changing the
parameter y; this can be done by suitably changing the ac
voltage applied to the inductive circuit (see Section 2.3). The
effect is illustrated in Fig. 7; the taper parameter is suddenly
increased or decreased at the switching times ¢ reported in the
figure, leading the system's temperature to change by about one
kelvin in absolute value. The steady-state temperatures corre-
sponding to y = 0.45 and to y = 0.35 (dotted dark green lines in
Fig. 7) are reached after a transient which is basically deter-
mined by the intrinsic parameters & and « of the phantom. We
refer to this thermal behaviour as the “natural” response of the
medium, in contrast with the forced response described below,
point c).

Therefore, small changes of the taper parameter lead to
small increments or decrements of the steady-state
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Fig. 7 Fullline in magenta: temperature—time curve showing how the
steady state temperature of a heated medium can be adjusted by

acting on the taper parameter of the trapezoidal waveform. See text
for details.

temperature, precisely as required if its value turns out to be not
optimal, i.e., different from the target temperature.

Of course, tuning the steady state temperature could be
possible - at least in principle - using a standard sinusoidal
waveform. For instance, the final temperature can be modified
either by changing the driving frequency or by changing the vertex
field. Both solutions are however unpractical and not easily
controllable (a change of either parameter has non-linear effects
on the steady-state temperature of the sample). In contrast,
changing the taper parameter y is a much easier task and does not
require changing the driving-field frequency or amplitude. Only
the amplitude and width of the pulsed driving voltage are to be
adjusted in a controlled manner (see Section 2.3).

3.2 Initial overheating of a treated region

An initial overheating of the treated region above the standard
temperature of treatment can be achieved by switching the
taper parameter from a high value to a lower one during the
initial transient. A typical example is shown in Fig. 8, where the
evolution of temperature AT is again studied in r = b/2. It is
supposed that the steady-state temperature is the one obtained
by applying a trapezoidal waveform with taper parameter y = 0.4
(green line). The overheating can be achieved by applying
a waveform of a considerably higher taper parameter (e.g., y =
0.8; dotted line in Fig. 8) and by switching the waveform down
to y = 0.4 once a previously appointed temperature has been
reached. Two examples corresponding to different peak
temperatures are shown in the same figure. It can be noted that
when y is suddenly decreased from 0.8 to 0.4 the temperature
quickly departs from the AT(b/2,t) curve (dotted line). The time
of cooling is determined by the thermal parameters of the
phantom. The time taken by the medium to reach the steady
state is basically the same with and without the initial
overheating.

This journal is © The Royal Society of Chemistry 2020
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3.3 Active reduction of thermal transients

The characteristic time needed to reach the steady-state
temperature is basically determined by the thermal parame-
ters k and « in the heat equation and by the size of the heated
region. Changing the fraction of magnetic nanoparticles only
has minor effects on the thermal transients (for a constant
heating power P;, the temperature transient is completely
independent of the nanoparticle fraction;®* however, in the
present case Pj, depends on temperature, so that the duration
of the transient is weakly modified by the number of nano-
particles per unit volume also). Actually, the duration of the
temperature transient is an aspect of primary importance in in
vivo application of hyperthermia, because during a part of this
time the temperature of the treated region is too low to produce
therapeutic effects. The question arises if it is possible to
substantially reduce the duration of the initial transient. Again,
trapezoidal waveforms display their versatility. In fact, acting on
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the taper parameter of a trapezoidal waveform provides
a natural approach to speed up the hyperthermia treatment by
shortening the initial transient time. The effect is shown in
Fig. 9 (the time evolution of the temperature increment AT is
always evaluated in » = b/2). The black line in the left panel
shows the AT(b/2,f) curve using a symmetric triangular wave-
form (y = 0). In this case the initial transient's duration is of
about 700 s (=12 minutes) before the steady-state temperature
ATﬁio is reached.

Now, if the heating procedure is initiated with a trapezoidal
waveform of a high taper parameter (y = 0.8 has been used
here), the temperature of the medium rises at a much faster
rate, as previously discussed. If a sudden switch of the taper
parameter down to y = 0 is operated once a prefixed tempera-
ture has been reached in the sample (in the present case, 95% of
AT}%,), the red line shown in Fig. 9 is obtained (the dotted line
shows the curve which would be obtained without operating the
switch). Now, the temperature very quickly reaches AT}, as
further indicated in the right panel of the figure, where the time
derivatives of the two curves are reported. It can be checked that
in this way the duration of the heating transient is reduced by
about 80% with respect to that of the standard case, leading to
a substantial improvement of the healing efficacy using the
same treatment time.

A similar technique can be exploited to speed up the
temperature adjustments discussed in Section 3.1 and illus-
trated in Fig. 7. The effect of repeatedly changing y is shown in
Fig. 10, where the blue line has been obtained by modifying the
taper parameter of the applied waveform (the line in magenta
referring to the “natural”, i.e., not forced case studied in Section
3.1 is reported for comparison). The proposed procedure
involves the following steps:

- Initial temperature rises with y = 0.8;

- switch from y = 0.8 to y = 0.4 when AT has reached 95% of
the steady-state temperature fory = 0.4 (AT}2, ,); the new value
of y is maintained until ¢ = ¢;
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Fig. 9 Left panel: temperature—time curves showing how the initial thermal transient can be reduced with respect to the standard case of
a harmonic/triangular waveform. Right panel: time derivatives of the curves reported in the left panel. See text for details.
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Fig. 10 Blue full line: temperature—time curve showing how the time
needed by temperature adjustments can be reduced for the same
study case analyzed in Fig. 7. The line in magenta corresponds to the
“natural” response of the sample. See text for details.

-when t = t,, y is switched to 0.8 and the temperature starts
increasing at a very high rate, so that the corresponding steady-
state temperature is approached very rapidly (in fact, the blue
line becomes a nearly vertical segment);

- switch from y = 0.8 to y = 0.45 when AT has reached 95% of
the difference between ATJ‘fiMS and ATgiM; the new value of y
is maintained until ¢ = ¢,;

-when t = t,,, y is switched down to 0 (triangular waveform);

- sudden switch from y = 0 to y = 0.4 when the decreasing
temperature AT reaches 5% of the difference between
ATgiMS and ATinA; the new value of y is maintained until ¢t =
tes-

A similar procedure (with obvious adaptations) is followed in
the subsequent steps.

Therefore, fine tuning of the steady-state temperature can be
remarkably sped up, at least if AT needs to be increased.
Downward temperature adjustments are not sped up by the
present technique with respect to the “natural” case shown in
Fig. 7: changing y has virtually no effect on the time constants of
cooling.

As a final remark, the steady-state temperature increments
reported for the three examples we have just discussed are
typically higher than the ones used in the therapeutic practice
of magnetic hyperthermia aimed at malignant cell apoptosis.
Actually, the aim of the paper is to outline the features of the
proposed technique rather than to provide a recipe to reach
a given temperature. All the reported thermal effects can be
obtained starting from (or ending with) any steady-state
temperature; every result is easily rescaled by simply changing
a single experimental parameter, such as, the volume fraction of
magnetic nanoparticles dispersed in the medium.

4 Conclusions

Using RF magnetic fields of a trapezoidal rather than sinusoidal
waveform allows substantial improvements to be gained in

4662 | Nanoscale Adv, 2020, 2, 4652-4664
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therapeutic applications involving hyperthermia from magnet-
ically activated nanoparticles. A trapezoidal waveform can be
easily generated and tuned and is versatile enough to control
the target temperature by acting on a single parameter, i.e., the
taper parameter y of the trapezoidal wave.

Changes of the taper parameter have been shown to produce
changes in the hysteresis loops of a system of non-interacting
magnetite nanoparticles, and therefore in their SLP. These
effects have been tested using a simple heating model that
simulates a region of living tissue exchanging heat with the
surroundings through forced convection carried out by tissue-
blood perfusion.

It has been shown that fine tuning of the working tempera-
ture of a magnetically heated region can be achieved by suitably
acting on y without implementing any other changes. In this
way, the working temperature can be suitably adjusted in real
time. The relationship existing between the taper parameter
and steady-state temperature can be exploited to obtain
controlled overheating of the treated region, which can allow
combined ablation-hyperthermia treatments to be performed.
Moreover, the direct proportionality between the taper param-
eter and initial slope of the temperature-time curve can be
exploited to considerably reduce the initial temperature
transients.

Using a trapezoidal RF magnetic field poses no particular
harm to the safety of healthy tissues crossed by the magnetic
flux lines. Of course, trapezoidal waveforms are characterized by
a higher rate of change of the RF driving field than a harmonic
waveform of the same amplitude and frequency. Such a rate is
inversely proportional to (1 — y); however, the values of taper
parameter y, driving-field amplitude Hy and magnetizing
frequency f considered in this paper are such that detrimental
effects on healthy tissues can be safely excluded.

In conclusion, a substantial optimization of the heating
performance of magnetic nanoparticles where Néel's relaxation
plays a dominant role can be achieved not only by developing
better nanomaterials, but also by increasing one's ability to
efficiently extract the power released by a nanoparticle system.

The effects described in this paper provide a glimpse of the
benefits of using specifically tailored driving-field waveforms to
activate the magnetic nanoparticles. A further step towards
application will be the development of an experimental and
metrological framework devised to validate the magnetic and
thermal model and requiring:

- The design of a resonant circuit equipped with a solenoid
coil able to generate a homogeneous radio-frequency magnetic
field of a sufficient amplitude, trapezoidal waveform and
tunable taper parameter;

- the design of an experimental setup to perform accurate
measurement of space- and time-resolved temperature (using,
e.g., a set of fiber-optical thermometers), duly taking into
account the non-adiabatic conditions of the heated system and
the various mechanisms of heat exchange with the surrounding
environment;

- use of biological simulants and phantoms, characterized by
dielectric and thermal properties close to those of living tissues,

This journal is © The Royal Society of Chemistry 2020
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in order to obtain reliable estimates of the relevant heat trans-
port mechanisms.

These steps towards validation of the proposed method will
have to be complemented with additional know-how to secure
a smooth transfer to in vitro and finally in vivo experiments. In
particular, the knowledge of the physical properties is to be
integrated with biological/biomedical skills and competences:
biocompatibility tests, evaluation of magnetic nanoparticle
biodistribution in living tissues, and measurements of the
thermal and conductive properties of bloodstream have to be
carefully performed.

However, we point out that directly acting on the efficiency of
heat generation from magnetic nanoparticles brings about
significant advantages expected to remain basically unchanged
even in complex experimental arrangements or in applications
involving living bodies.
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