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When finite-size effects dictate the growth
dynamics on strained freestanding
nanomembranes
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We investigate the influence of strain-sharing and finite-size effects on the morphological instability of
hetero-epitaxial nanomembranes made of a thin film on a thin freestanding substrate. We show that
long-range elastic interactions enforce a strong dependence of the surface dynamics on geometry. The
instability time-scale t is found to diverge as (e/H)™* with « = 4 (respectively 8) in thin (resp. thick)
membranes, where e (resp. H) is the substrate (resp. nanomembrane) thickness, revealing a huge
inhibition of the dynamics as strain sharing decreases the level of strain on the surface. Conversely, ©
vanishes as H? in thin nano-membranes, revealing a counter-intuitive strong acceleration of the
instability in thin nanomembranes. Similarly, the instability length-scale displays a power-law
dependence as (e/H)~#, with 8 = a/4 in both the thin and thick membrane limits. These results pave the
way not only for experimental investigation, but also, for the dynamical control of the inescapable
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1 Introduction

A huge amount of research has been devoted in the past decade
to investigate nanomembranes (NM) and apply them in inno-
vative devices especially in flexible electronics."* They represent
a credible alternative especially for group IV semiconductors to
extend Moore's law and circumvent its collapse due to size
reduction. Of special interest, NM allow strain-engineering of
electronic properties, which is one of the most promising routes
to bypass the physical limits of Si.>® They are also characterized
by easy shapeability and transferability that are a serious
advantage for their integration in new micro-electronic devices.
Different techniques are available for the production of crys-
talline NM on different kinds of support.®™* The resulting NM
can be deformed and are attractive for flexible optoelectronics,
photonics and nanoelectronics, e.g. in radiofrequency or ther-
mally degradable devices, magnetotransport systems, micro-
mechanical systems, infrared phototransistors and also for
biological applications.**>

We consider in the following a hetero-epitaxial nano-
membrane where a thin crystalline film of thickness 4 is
coherently deposited on a thin substrate of thickness e that is
supposed to be freestanding and flat. The lattice mismatch
between the film and substrate generates strain, and the long-
range elastic field penetrates throughout the system, building
an explicit dependence on geometry. First, strain sharing occurs
between the film and substrate and is quantified by the ratio e/H
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morphological evolution in epitaxial systems.

(with H the system thickness H = e + /). Second, any modulation
of the surface with a lateral extension A produces a field that
extends also down to 4 in the film and substrate, leading to
a dependence on H (or more precisely on H/A).>* These two
strain-sharing and finite-size effects introduce a new way to
tune strain at will thanks to geometry. In addition, it is known
that the strain thus produced may cause the morphological
evolution of the surface when surface diffusion is active. This is
basically described by the Asaro-Tiller-Grinfeld (ATG) insta-
bility**?¢ that is especially at work in SiGe systems at low strain®
(as opposed to the nucleation occurring at higher strain®). We
therefore revisit this instability to investigate the influence of
finite-size effects and strain sharing on the dynamics of the
growth of a film deposited on a nanomembrane substrate. We
thence focus on the growth dynamics of the film, and not on
equilibrium effects such as the ones for example that rationalize
ordering of quantum dots on nanomembranes thanks to ener-
getic considerations, see e.g. ref. 29-31.

In the following, we compute first the strain field generated
in a hetero-epitaxial nanomembrane with free boundary
conditions, corresponding to ultra-high vacuum conditions. We
compute strain both in the flat film geometry and for a modu-
lation with small slopes. This solution at linear order allows us
to compute analytically the surface dynamics due to surface
diffusion for a single harmonic. By Fourier decomposition, we
then compute the surface evolution during annealing. We show
that the dynamics is strongly affected by both finite-size and
strain-sharing effects, with a possible dynamical inhibition or
conversely strong acceleration of the morphological instability.
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The characteristic time and length scales are then shown to
behave algebraically as a function of e/H and H.

2 Finite-size elasticity

We first turn to the computation of the elastic strain and energy
in a hetero-epitaxial nanomembrane where the substrate is
supposed to be flat and freestanding. It may correspond to
experiments on a freestanding crystalline-sheet substrate or on
a thin sheet with very weak interactions with its underlying
substrate. We consider a thin film of thickness # on a thin
substrate of thickness e, with H = h + e, the membrane thick-
ness, see Fig. 1. The film surface is characterized by its free
boundary at z = H(r) where r = (x, ), while the substrate lower
surface is located at z = 0. In isotropic elasticity, the displace-
ment e and stress o tensors are related by**

S S
Ty 1oy

Trle] ]1) , D

where Y and » are the Young's modulus and Poisson's ratio of
the film and substrate, supposed to be identical at the lowest
order. When the interface is coherent, stress arises in the whole
system from the lattice mismatch between the film and
substrate, that is quantified by the misfit m = 1 — a'/a®, with o™
the film (substrate) lattice parameter. Using the reference state
defined with the substrate lattice parameter, the strain tensor is

1 . .
e, = 3 (g1 + dpug) — n*Gpg, with n° = 0 in the substrate (o =

s) and 7 = m in the film (¢ = f). Mechanical equilibrium
enforces the local relationship

V.o =0, (2)

but the strain state is fully determined by the boundary condi-
tions. We assume that the substrate is freestanding, and that
the nanomembrane is embedded in an ultra-high vacuum. As
a consequence, both the substrate lower surface and the film
upper are supposed to be free of stress (we also neglect surface-
stress*). The surface boundary conditions are thence

on(z=0)=0 (3a)

on(z=H) =0 (3b)
where n, is the unit vector in the z direction, and n, the unit
vector normal to the film surface. Finally, when the interface is
coherent, the displacement u and forces are continuous

Fig.1 Geometry of a nanomembrane with a film coherently deposited
on a thin substrate of finite thickness.
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uz=-e)=u(z=-e"), (4a)
on(z=e)=on(z=e"). (4b)

The computation of the stress field may be done as a power-
law expansion in the small-slope approximation where |VH| <
1. Its results depend crucially on the level of stress in the zeroth-
order flat-film geometry®* where H(r) = H when the system is
invariant by translation or rotation in the (x, y) plane. Hence, all
the measurable properties such as forces, stress tensor and
displacement gradients are independent of x and y, but not
necessarily the displacement vector defined only up to an
arbitrary reference state. In this geometry, the displacement
vector u, satisfies
62u0

- (5)

62u0 _ 62u0
T oxdy  9y?

9x2

Given the invariance of ¢ on x and y, Navier eqn (2) pro-
jected on the x direction leads to the fact that o,,, and thence
ey, and du, ,/0x, are constant both in the film and substrate.
Similarly, the projection of (2) on the z-direction leads to
a constant g,, and du,/0z in the film and in the substrate, and to
the same conclusion for du, ,/dx and du, ,/dy (after differenti-
ation of o, with respect to x). The general solution for the
mechanical equilibrium accounting for the flat geometry is
then

oL oL
ai a5

a | -R+ b 6)

oL oL
ay ai dai

o oL oL
uy =\ a, a

in the film and substrate (o = f or s), where R = (x, y, 2)" and
choosing a reference state symmetric with respect to x and y.
The stress-free surface boundary conditions (3a) and (3b) give
aj = —aj while aZ = —2va?/(1 — v) + n*(1 +v)/(1 — v). We choose
a reference state such as b} = 0 in the substrate. The conti-
nuity relation (4a) leads to af = af, b§ = 0 while b5 = —me(1 + »)/
(1 — »). At this point, one is left with three unknowns,
ai, a; and a3 that cannot be set by the remaining boundary
condition (4b). Indeed, the Navier equation combined with
the invariance along x and y leads to the invariance of o-n,
along z. Thence, for a flat film where n = n,, if (3a) and (3b) are
satisfied, (4b) is automatically satisfied. To go further, we first
set a5 = 0 thanks to an irrelevant rotation of the reference
state around the z axis. Then, the solution for equilibrium is
found by minimizing the total elastic energy. The latter reads
per unit surface

£ —Y{(e+h)a52+ 1

tot 1+y 2 1—

V [eaﬁz + h(a} - m)z} }, 7)

in which a minimum is found for ai = mh/(e + h) and a3 = 0.
Eventually, for a flat film, the displacement vector is at
equilibrium

" mh 1+ 1+
uy = e—i_—h(Rf I_—I/Z”Z) +7] I_V(Zfe)":' (8)

This journal is © The Royal Society of Chemistry 2020
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In the limit of a semi-infinite substrate, eqn (8) leads to the

1+v . .

known result uf , = linm(z—e)n27 that vanishes in the
' —v

substrate and displays the Poisson's dilatation in the film. In

the opposite limit e — 0, one finds the symmetric case

1
iy = MR~ - i "~ )(z — e)n, where the film s fully

relaxed while the substrate displays the Poisson's dilatation in
the opposite direction. In between, the solution (8) quantifies
the strain shared between the film and the substrate. Finally,

. . 1 . . .
the elastic energy density & = 50€ associated with (8) is in the

film

_ 2 Y
&y = & (%) with &) = 1= sz. (9)

We now turn to the case where the film is corrugated and
displays small slopes. Writing H(r) = H + hy(r) with H = (H(r)),
one may find the solution for the displacement vector as an
expansion u = u, + u; +..., supposing that k; (in fact |Vhy|) is
a small parameter. At equilibrium, u; may be conveniently
found in Fourier space in the x and y directions, with the result
given in Table 1.

View Article Online
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G e 1
C. =2m(l +v)— X ... 11
c. g sinh?(kH) — (kH )’ =

ik, [sinh(kH) — kh cosh(kH)]/k
.. x| iky[(sinh(kH) — kh cosh(kH))]/k | hi (k).
kH sinh(kH)

(12)

Given this solution for the C;s and thence for u (given
explicitly in Appendix), one can compute the elastic energy
density on the film surface at z = H(r), that reads & = &, + &
with &, given in (9) and

& = 2(1 +v)é&o Ay (e, H)kh (k), (13)
where
1 /e\2 sh(2kH) — 2kH
Ay(e, H) = §(ﬁ> )~ ) (14)

In the limit of a semi-infinite substrate (where e >> h and
kH > 1), one finds .« —1 as expected.*® Otherwise .«
describes the influence of strain-sharing and of finite-size
effects on elasticity.

Table 1 General solution for the displacement vector in a nanomembrane

klkz Kok ykz ik kez
4k C* ~ C* X7y c* X o
S g oA T oS g
cosh(kz) | je ke kz kykz ik, ke
% (k. z) = xKyhz o o y e o IKyKZ
uf(k,z) a T —V)k2C2 + 4kC? + Tt _V)c5
ik kz ik kz 2kz
R o J o 4, o 3
TR P p i Rt il g
2’z Bk HA0 -0k, 2k, kb ke o 2K, (10)
1—2v ! (1—v)k? R T N (Y =t RS AL R P P
(Sinh(kz) | 2k k2 oo kb o 2%’z LA Wk’ + G-k’ ., ik cry 2t
4k -2 ' (-2 1-w"? (1—v)k2 =y T2y
2k o K g 2k 7 Kz oo 2 -3)
-2 " " 1—»2 1-2w3 " 1—v* 1-»7 1-20 ¢

We find there are six unknown C?s both in the film and
substrate, and, contrarily to the semi-infinite case, both ¢ and
e terms, with the wavevector k and k = |k|. The boundary
conditions at the interface (4a) and (4b) give C' = C} = ¢;
(independent of the film or substrate) for i = 1...6, that lead to
1t = 15, an identity resulting from the hypothesis of an identical
film and substrate elastic constants.t The boundary condition
(3a) gives C, = ik,Cs, C4 = ik,C5 and Cg = iv(k,Cy + k,C3)/(1 — ).
Eventually, the surface boundary condition (3b) gives

+ This was also proven in the semi-infinite substrate case.

This journal is © The Royal Society of Chemistry 2020

3 Dynamical evolution
3.1 Fourier analysis

The elastic stress may be relieved by the morphological change
of the film free surface when surface diffusion is at work, as
described by the Asaro-Tiller-Grinfeld instability.>>***¢ This
corresponds to experiments where the film free surface is in
contact with vacuum so that the surface diffusion is activated,
while the surface diffusion on the lower substrate surface is
inhibited, e.g. by contact with porous materials, or occurs on
a larger time scale. Mass conservation on the film surface

Nanoscale Adv, 2020, 2, 161-1167 | 1163
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thence enforces the diffusion equation®” dk/dt = DAgu where D
is the diffusion constant, and 4, the surface Laplacian. The
chemical potential u is the sum of the elastic energy density on
the surface ¢ and of the capillary term y«, where 7 is the surface
energy (we neglect here the surface energy anisotropy*) and « =
—(hex + hyy) is the surface local mean curvature. Given the
solution (13), one finds that a modulation of wave-vector k

evolves in the linear approximation as #,(k, t) = e ™ with
a(k,e,h) = (e, H)k> — k*, (15)
in units of the space and time scales lp = v/[2(1 + ») &) and t, =

I,*/(DY).

We plot in Fig. 2, the resulting growth rate as a function of k
and e for different membrane thicknesses H. It is first noted that
o can be either strongly increased or lowered depending on
finite-size effects (ruled by H) and strain sharing (ruled by e/H).
To quantify this, we compute the maximum of ¢ for a given e
and H, that occurs at (kmax, Omax), See Fig. 3. We take as
areference, the infinite-substrate limit o, (k) = &* — k* for which
Omax = 27/256 = 0.105 and kmax = 3/4 (this limit occurs when
both H > 1and e/H = 1, i.e. e > h). This limit is already nearly
achieved when H = 10 and when strain sharing vanishes (e/H =
1). By decreasing the membrane thickness, one finds a ten-fold
increase in oy, for H = 1 without strain sharing (oyax = 1.15

Fig. 2 Growth rate a(k, e, H) for H = 10 (top), H = 1 (middle) and H =
0.1 (bottom). The black thick solid line represents the reference g (k)
corresponding to the semi-infinite substrate limit. The dots locate the
maximum value (Kmax, omax) Of a(k, e, H) for given e and H.
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Fig. 3 (Dashed red line) Typical growth rate ok, e, h) of the
morphological instability as a function of its wavevector k when strain
sharing is at work, for e/H = 5/6 and H = 6 in dimensionless units; (dot-
dashed blue line) the same curve for e/H =1/2 and H = 2/3; (black solid
line) infinite substrate limit g« (k).

when e/H = 1) and a 10°-fold increase for H = 0.1 (0 = 101
when e/H = 1). Hence, for a given e/H, the maximum growth
rate increases with H, showing the a priori counter-intuitive
influence of finite-size effects that enforce a faster relaxation
for a thinner membrane. Conversely, for a given H, the growth
rate significantly decreases when strain sharing occurs (i.e.
when e/H decreases from 1). For H = 10, one finds respectively
Omax = 0.105, 9.5 x 10~ * and 1.0 x 10~ ° for e/H = 1, 1/2 and 1/
10. Similarly, for H = 0.1, one finds respectively o,.x = 101, 6.27
and 1.0 x 10> for e/H = 1, 1/2 and 1/10. Therefore, the stronger
strain-sharing is (i.e. the lower e/H is), the slower the instability
occurs, as the less strained the system is.

The second conclusion regarding o(k, e, H) is the variation of
the maximum wavelength k,.x as a function of finite-size and
strain-sharing effects. We find, see Fig. 2, that for a given H, kuax
decreases when strain-sharing increases (i.e. when e/H
decreases) while, for a given e/H, k,.x increases when finite-size
effects increase (i.e. when H decreases). Numerically, we find for
H = 10, respectively kmnax = 0.75, 0.19 and 0.032 for e/H = 1, 1/2
and 1/10, while for H = 0.1, k,.x = 3.18, 1.58 and 0.32 for e/H =
1, 1/2 and 1/10. The decreases of kmax With strain-sharing
corroborate the fact that the film is globally less strained in
this case. Conversely, the increase in k., with finite-size effects
is consistent with the increase in ¢, signaling the increase in the
surface strain in this case. Globally, even if the variation of kax
with e/H and H is quantitatively less pronounced than for oy,
it is nonetheless significant and leads to variations that are
expected to be important in experimental systems.

We note that for given strain-sharing and finite-size effects,
the growth rate eqn (15) always displays a positive maximum
so that the morphological instability should always occur
(we neglect here the influence of wetting effects that can lead
to the existence of a critical thickness,* in order to focus solely
on the influence of strain-sharing and finite-size effects).
Indeed, for given e/H and H, we find at low-k
o(k,e,H) = 2e2k?/H® + 0(k*), 1 while o(k, e, H) = —k* at large
k.§ Another interesting limit is the thin-membrane limit (when

i Note that the k¥ — 0 and H — o limits do not commute.
§ Subsequently, there exists k., such as o <0 for k > k., and the instability will occur
only if no lateral finite-size effect occurs, i.e. only if L > 27/k,.

This journal is © The Royal Society of Chemistry 2020
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6’4 ~2 ~4 . =~
= (2K — k') with k = k/k and & =

e/H**>. When both e and H are of order ¢, knx diverges as 1/1/¢
while o,.« behaves as 1/¢2.

H < 1), where o(k,e,H)

3.2 Real-space analysis

We now investigate an evolution that shows experimental
systems where the ATG instability is at work, with the deposi-
tion of a film of a given thickness, followed by instability during
a subsequent annealing. The initial condition is a film with
a given thickness 7 on top of a thin substrate of thickness e, with
an additional surface roughness on the film free surface. The
latter stands for the deposition noise and thermal fluctuations,
that is described here by an initial white noise with an ampli-
tude of one monolayer. We then study surface diffusion during
annealing. In this case, the surface is not characterized by
a unique wave-vector, but may be decomposed as the sum
of different Fourier modes with equal amplitude at ¢t = 0
(describing a white noise). We consider only the linear regime of
the surface diffusion equation (that is relevant in the small-
slope approximation) where elasticity is given at first order in
h by eqn (13). Hence, the different Fourier modes evolve inde-
pendently following eqn (15), starting with equal amplitude,
and evolving with different growth rates. We expect the fastest
growing mode ky,x to mainly rule the long-time behavior,*
nevertheless within a time-scale where the linear regime
applies, i.e. when the surface slope remains small.

The resulting typical evolution on top of a membrane is
shown in Fig. 4. We characterize the surface geometry with the
length-scale A that can be related to the average wave-vector

S Wl
(k) = %7 (16)

ijlh(k)l

(where the summation runs over the different Fourier modes),
thanks to A = 2m/(k). On the other hand, the dynamical

Fig. 4 Evolution of the film surface h(x, y, t) for H = 10 and e/H = 0.9.

This journal is © The Royal Society of Chemistry 2020
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evolution may be associated with a characteristic time 7, defined

<(h(r7 t) - h)2>7 by
w(t = 1) = ew(¢ = 0). This time-scale rules the initial exponential
increase in the surface roughness in the linear regime. In
addition, these scales can be compared to the scales associated
with the fastest growing mode kyax, Amax = 270/kmax and Tmax =

through the surface roughness w(¢) =

1 c
AnlTmax Where ay = 1 + Eln(N) accounts for the initial random

noise uniformly distributed on N Fourier modes.

We plot in Fig. 5 and 6, the resulting characteristic scales for
H =100, 1 and 0.1. It is noteworthy that the typical time scale t
displays huge variations as a function of strain sharing and
finite-size effects. For a given H, it shows a 10* (respectively 10%)
increase when e/H decreases from 1 to 0.4 for H = 100 (resp.
0.1), describing a strong slowdown of the instability evolution.
This sensitivity is naturally related to the decrease in the global
strain with strain-sharing, as described above for the growth
rate . But we also find that t decreases strongly when H
decreases for a given e/H: we find e.g. a decrease from 30 down
t0 0.012 in between H = 100 and 0.1 for e/H = 1. This reveals the
counter-intuitive result of these finite-effects, coherently related
to their influence on the growth rate ¢: a thinner membrane
leads to a much faster surface dynamics, and the acceleration of
the instability. Similarly, the typical wave-length of the insta-
bility is also ruled by strain-sharing and finite-size effects, but
with a lower amplitude, see Fig. 6. The increase in A when e/H
decreases is again related to the decrease in the global strain but
with a factor at most around 3 to 4, while its decrease when H
decreases is also related to the counter-intuitive finite-size
effects. In addition, we find that the resulting length and time
scales A and 7 are very well approximated by Amax and Tmayx,
showing that the fastest growing mode is quickly driving the
surface dynamics. It is nonetheless not a perfect approximation,

100000 4
10000 4
1000 4
100
104

13

0.1 3

0.01

Fig. 5 Characteristic time-scale 7 (black solid line) as a function of the
strain-sharing ratio e/H and numerical estimate (dashed-blue line) for
(top curve) H = 100, (middle) H = 1 and (bottom) H = 0.1. For the top
and bottom curves, analytical approximation 1,4 (dot-dashed red line)
respectively for H > land H < 1.
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100 5

Fig. 6 Characteristic length-scale A (black solid line) for large time t
(nevertheless within the small-slope approximation) as a function of
the strain-sharing ratio e/H and numerical estimate (dashed-blue line)
for (top curve) H = 100, (middle) H = 1 and (bottom) H = 0.1. For the
top and bottom curves, analytical approximation 7,ax (dot-dashed red
line) respectively for H > land H < 1.

especially for v and at low thickness H where the maximum of
a(k) is less sharp.

To get some analytical insights on these evolutions, we find
that the previous results can be well approximated in some
limits, see Fig. 5 and 6. When finite-size effects vanish, i.e. for
H > 1, one finds

H>1 _(e\*s 4
o>k e, H) = (H) e -k, (17)
that can be maximized, giving the approximate
256 e\
H>1 _ ©
= () (18a)
8 e\ 2
H>1 _ %V /(€
Amax = 3 <H) . (18b)

These approximations are plotted in Fig. 5 and 6 and do
indeed perfectly capture the numerical estimate of 7,,x and
Amax, and approximate well the global time and length scales 7
and A. In the other limit of strong finite-size effects, i.e. for H <«
1, we find the Laurent series

2 re\?
H<I1 ~ (=) 2t
o<\ (k, e, H) H(H) K-k (19)
leading to the approximates
4
<l = oy 2 <§) , (20a)
-1
< :2%\/]7(%) , (20b)
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that again approximate well both the numerical estimates Tyax
and Anmax, and more importantly the global values 7 and A, see
Fig. 5 and 6. Hence, these power-laws characterize well the
strong variations of T and A as a function of strain-sharing and
finite-size effects. Finally, we also plot the results of the inter-
mediate case for H = 1 in Fig. 5 and 6, that is characterized here
by =" = 5.6(e/H) *° while A"~ = 6.0(e/H) "° with exponents
close to the H < 1 limit. Note that in all cases, as ¢, scales as I,*,
it is natural to find here that the dependence of t on e/H is as A*.

4 Conclusion

As a conclusion, we have investigated the influence of strain-
sharing and finite-size effects on the morphological instability
at work in strained nano-membranes. We have shown that
geometric parameters can tune the nanomembrane surface
dynamics and rule either its strong acceleration in thin nano-
membranes, or its strong inhibition when strain is significantly
shared. This theoretical study may serve as a guide to rationalize
and control experiments on such systems. One of its natural
extension concerns the study of sandwiched film/substrate/film
geometries where corrugations grow on both sides of the NM.
The initial linear evolution in such geometries should corre-
spond to the results of the present analysis, while correlations
between the NM both sides are expected to arise at non-linear
order and are currently under investigation.

5 Appendix

The full solution for the displacement vector at first order in the
surface slope is eventually

u(kz)—mlJrVe ! X
e 1—v H 1 +2(kH)* — cosh(2Hk)

D(k,z)
Tk

hy (k) (21)
with

D, = 2k, {k sinh(kz) x ... x [((2v — 1)H — z)sinh(kH)
+ kHz cosh(kH)] — cosh(kz)[(k*Hz — 2(v — 1))sinh(kH)

+ 2(v — 1)kH cosh(kH)]} (22)
and a symmetric definition for D), while
D. = —k{sinh(kH) x ... x [sinh(kz)(kz — K*Hz — 2(v — 1))

— 2 cosh(kz)(kz — 2(v — 1)kH)]

+ 2kH cosh(kH)[(2v — 1)sinh(kz) + kz cosh(kz)]} (23)
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