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Isopropanol-assisted synthesis of highly stable
MAPbBrz/p-g-C3zN,4 intergrowth composite
photocatalysts and their interfacial charge carrier
dynamicst
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Two phase photocatalysts can be intergrown with each other, resulting in superior photocatalytic
properties. Herein, methylamine lead bromide (MAPDbBrsz) wrapped/entrapped protonated graphitic
carbon nitride (p-g-C3zN4) intergrowth microcrystals were fabricated by mixing a pervoskite precursor
with p-g-CsN4 colloidal sol. A highly stable isopropanol (IPA) solvent based photocatalytic system for dye
degradation was demonstrated. The composite with an optimal p-g-CsN4 mass percentage of 3.3 wt%
(denoted as MAPbBrs/p-g-CsN4-1.0 mg) exhibited the highest photocatalytic degradation of malachite
green (99.8%) within 10 min under visible light, which was 5.3-fold and 16-fold greater than that
exhibited by its constituents separately. The strong chemical interaction and fundamental photophysical
processes in MAPbBrs/p-g-CsN4 were systematically evaluated by spectroscopic and electrochemical
techniques, confirming the effective separation of photogenerated electron—hole pairs and faster
interfacial charge transfer behavior. Furthermore, active superoxide radicals (O,"") played a vital role in
the catalytic reaction, because of the significant photoinduced electron transfer rate (key) in the inverted
type-| core/shell MAPbBrs/p-g-C3sN4 band configuration structure. In addition, MAPbBrs/p-g-CsN4 has
good cycling stability for 10 cycles and versatility for other cationic (RhB) and anionic (MO) dye
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1. Introduction

In 2016, Park and coworkers first introduced the dynamic
equilibrium concept utilizing organic-inorganic hybrid halide
perovskite (CH3;NH;PbX;3) catalysts.! Subsequently, both all
inorganic and hybrid perovskites with the general formula
APbX; (A = methylammonium (MA), formamidinium (FA) or
cesium (Cs); X = Br, I) were explored in photocatalytic water
splitting,»* CO, reduction in ethyl acetate solvent*® and selec-
tive organic synthesis fields.*” Additionally, halide perovskites
for the photocatalytic and photoelectrochemical degradation of
organic dyes were reported.®*** For example, CsPbX; can
decompose methyl orange (MO) within 100 min under visible
light irradiation.'® Cardenas-Morcoso et al. confirmed that the
photocatalytic degradation of a 2-mercaptobenzothiazole (MBT)
compound resulted from hole injection from CsPbBr; nanodots
to MBT."" Moreover, a novel alcohol-based photocatalytic
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pollutants, indicating the great potential for solar energy conversion into chemical energy.

system using lead-free Cs,AgBiBr, perovskite was proposed for
degradation of dyes including rhodamine B (RhB), methyl red
(MR), etc.> However, to the best of our knowledge, literature
reports on halide perovskite MAPbBr; photocatalysts for
degradation of dyes in isopropanol (IPA) solvent are still rare.
Because of the ionic migration nature, the inherent insta-
bility issues of organic halide perovskites make them generally
incompatible with typical photocatalytic reactions in aqueous
media. Therefore, special organic alcohol-catalyzed substitu-
tional growth processes'* and polymer modification'® were
used to prepare highly air (up to =1.5 months), thermally and
chemically stable halide perovskites with unique surface
chemical states. In particular, large MAPbBr; microcrystals were
fabricated through an isopropanol-assisted solvothermal
method in our previous report.** Furthermore, surface modifi-
cation and defect passivation strategies using carbon-based
materials had been investigated to increase the chemical
stability, for example, via integrating graphene oxide (GO) with
MAPDI; (ref. 3) and CsPbX; (ref. 4), and polymeric carbon
nitride (C3N,) with CsPbBr; quantum dots® and MAPDbBr;
nanocrystals.'® The stability enhancement was attributed to the
interaction and intimate contact at the interface between the
nanocrystals and the encapsulation layer, facilitating strong
interfacial electronic hybridization and coupling.”® Although

This journal is © The Royal Society of Chemistry 2020
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grafting rGO onto MAPbI; microparticles was reported,® it is
clear that hybrid perovskite microcrystals with high crystallinity
will reduce defects, but at the same time the long diffusion
distance and reduced active surface area are not beneficial to
the photocatalytic activity relative to nanocrystal composites.
Recently, two phases of cocatalysts and host photocatalysts were
intergrown with each other, which resulted in superior photo-
catalytic properties.” Befitting from this two phase intergrowth
feature, good contact and strong coupling between cocatalysts
and host photocatalysts give rise to efficient charge transfer and
surface redox reaction. On the other hand, in perovskite solar
cells, new concepts such as incorporating g-C;N, into perovskite
precursor solution were developed to enhance the binding
strength in perovskite films and finally improve crystallization
and reduce the intrinsic defect density of the perovskite
layer.”®'® In addition, as another rising star, graphite-like
carbon nitride (g-C3N,) is an important class of metal-free
organic photocatalysts that has attracted particular research
interest since its first demonstration of photocatalytic H,
production in 2009.° Further research had been motivated by
their tunable band gaps, earth-abundance, low cost of synthesis
and ease of surface functionalization. In particular, g-C3N, is an
ideal choice for coupling with perovskite-type metal oxide
compounds such as AgNbO;, KTa,;5Nby,50; and bismuth
oxyhalide-based semiconductors, and black phosphorus*~* to
form hybrid photocatalysts that greatly hinder the annihilation
of charge carriers and extend the life of electrons. However,
there are few reports on the preparation of highly stable
MAPDBTr;/C;N, hybrid intergrowth microcrystal photocatalysts
as well as investigation of interfacial charge carrier dynamics.

Herein, we designed highly crystalline MAPbBr; microcrystal
wrapped/entrapped protonated graphitic carbon nitride (p-g-
C3N,) intergrowth structures by a one-step injection of C3N, sol
into the pervoskite precursor without any surfactants. The
unique chemical covalent C-N-Br interaction at the interface
could eliminate the defects and enhance the stability of
MAPDBr;/p-g-C3N,4, which facilitated the charge separation in
the photocatalytic process. In addition, we systematically
studied the effects of the composition and carrier dynamics
behavior of the composites on photocatalytic activity for
molecular oxygen activation.

2. Experimental section

2.1. Materials and preparation procedures

All chemicals and reagents were analytically pure and used
without further purification. The dark-yellow g-C;N, powder
was synthesized according to a modified approach reported
previously.*® g-C3N, was treated with HBr at room temperature
for 10 hours, collected, and centrifuged to obtain a light yellow
powder (protonated p-g-CsN,). A series of characterization
experiments with bulk b-g-C;N; and protonated p-g-C3N,
nanosheets showed that the p-g-C;N, nanosheets have a thick-
ness of 4-5 nm (Fig. S1-S37). Next, 30 mg (0.08 mmol) lead
acetate (Pb(CH3COO),-3H,0; 99.99% metal basis; Aladdin
Industrial Corporation), 5 mL HBr solution (Z = 47.0%; AR;
Aladdin Industrial Corporation), and 450 pL CH3;NH, alcohol
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solution (30-33%; AR; Aladdin Industrial Corporation) were
added into a beaker with stirring. After stirring constantly for
15 min to get a homogeneous mixture, different amounts of p-g-
C5N, (0, 0.25/0.08 Wt%, 0.5/1.6 Wt%, 1/3.3 wt%, 1.5 mg/5 wt%)
dissolved in isopropanol (IPA) were added. The mixture was
transferred into a 50 mL stainless-steel Teflon-lined autoclave
and the container was closed and maintained at 120 °C for 4 h.
Then the autoclave was allowed to cool down to room temper-
ature under ambient conditions. The resulting solid product
was collected, rinsed with distilled isopropanol several times
and then dried in a vacuum oven at 55 °C for 12 h.

2.2. Characterization of samples

The morphologies and microstructures were investigated using
a scanning electron microscope (FESEM) (Hitachi S-4800). The
Fourier transform infrared (FTIR) spectra were acquired using
a Nexus 870 FTIR instrument (USA). The photoluminescence
(PL) and time resolved PL decay spectra were measured using
a home-built PL scanned imaging microscope coupled with
a time-correlated single photon counting (TCSPC) module at
500 nm laser excitation at room temperature. Electrochemical
experiments were performed using an electrochemical work-
station (CHI-660E) with a three-electrode system, employing
a Pt coil as the counter electrode (CE) and a Ag/AgCl electrode as
the reference electrode (RE). Dichloromethane (DCM) and tet-
rabutyl ammonium hexafluorophosphate (Bu,NPF,) were used
as the solvent and conducting electrolyte, respectively. Hall
coefficients (Ry) were measured in a Quantum Design Physical
Property Measurement System (PPMS). The charge carrier
concentration (ny) was calculated by using ny; = 1/Rye, where e
is the elementary charge. The Hall carrier mobility (uy) was
calculated according to the relation py = oRy.

2.3. Photocatalytic experiments

The photocatalytic activity of the samples was evaluated by the
degradation of malachite green (MG) under visible light. Typi-
cally, 5.0 mg catalyst was well dispersed in 40 mL MG iso-
propanol solution at an initial concentration of 10 mg mL™*
(Co)- Subsequently, the dispersion was stirred for 60 min in the
dark to reach the adsorption equilibrium. Then, the container
was irradiated under visible light from a 300 W Xe lamp with
avertical distance of 20 cm. Finally, the concentration of MG (C)
was analyzed using an UV-vis spectrophotometer at given time
intervals. ESR-trapping measurements were carried out in 2 mL
acetonitrile mixed with 20 pL of 5,5-dimethyl-1-pyrroline-N-
oxide (DMPO) and 4 mg samples. After being irradiated, the
mixture was characterized using a Bruker EMX plus model
spectrometer operating at room temperature.

3. Results and discussion

3.1. Structure and morphology of MAPbBr;/p-g-C3N,

As we all know, the growth of perovskite single crystals, nano-
crystals and polycrystalline films is a complicated process which
strongly depends on precursor composition, solvent choice,
deposition temperature, etc. Recently, the substitutional growth
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mechanism catalyzed by polar protic alcohols has been used for
the preparation of highly chemically stable MAPbI; powders up
to =1.5 months. The reaction between alcohols and the
precursors is initiated by the polar nature of the alcohols that
can readily donate hydrogen to the reaction medium." On the
other hand, the stable p-g-C3N, colloidal suspension was
prepared by HBr treatment methods, without using other acids
such as HCI or HNO; in order to avoid introducing impurities.
Last but not least, it is reported that suitable incorporation of g-
C;N, could reduce the intrinsic defect density by passivating the
charge recombination centers, improving the crystal quality of
the perovskite film.* Therefore, isopropanol and HBr are very
suitable precursors for our present fabricated system. Fig. 1

Pb(Ac), ®
HBr |

CH;NH, 3y |
| Sainaka J)

Nucleation @ ®

Fig. 1 Schematic illustration of the formation and morphological
evolution process of MAPbBrs/p-g-CsN, composites using a p-g-
C3Ny4 sol solution through a solvothermal method.
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shows a schematic illustration of the formation and morpho-
logical evolution process of the MAPbBr;/p-g-C;N, samples
using the stable p-g-C;N, colloidal suspension solution. A
typical Tyndall effect of p-g-C3N, colloidal suspension is clearly
evident, as indicated by the beam passing through the trans-
parent sol solution. According to our previous research work,**
the MAPbBr; microparticles (with an average size of about 5 pm)
become rougher due to the wrapped/entrapped p-g-C3N,
nanosheets in Fig. 2a and b. With increasing the amount of
1.5 mg p-g-C3N,, the sample appeared as irregular shaped
particles in Fig. 2c¢, indicating that the high amount of C;N,
nanosheet sol could affect the crystal nucleation and growth via
modulation of the local dielectric environment and precursor
concentrations during growth kinetics processes.”>*® It is
important to understand the nature of the interaction between
MAPbBr; and p-g-C3N,, which influences the photo-electro-
chemical properties of the composite. The composition and
chemical structure of the MAPbBr;—p-g-C3N, samples with
different contents of p-g-C3N, (denoted as MAPbBr;/p-g-C3N,-x,
where x = 0, 0.25, 0.5, 1.0, and 1.5 mg) were studied by XRD and
FTIR spectroscopy. The typical peaks of Fig. 2d at 260 of 14.9°,
21.1°, 30.2°, 33.8°, 37.0°, 43.1°, and 45.6° correspond to (100),
(110), (200), (210), (211), (220) and (300) planes, respectively,
indicating that the product contains pure cubic phase CHj-
NH;,PbBr; (MAPbBr;) with a = 5.9394 A (space group = Pm3m).
Besides, the strong one at 27.4° represents the stacking of the -
conjugated p-g-C3N, (p-C;N,) layers. No other impurity phases
are discovered, reflecting the presence of a high crystal quality
two-phase composite. Particularly, the intensity of XRD peaks

p-C,N,-1.5mg

(¢
-

pT?3N4-1 mg

| S I I SPU W Y

p-C,N,-0.5mg
Ao ak

Intensity (a.u.)
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Intensity (a.u.)
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(a—c) SEM images of MAPbBrs/p-CsN4-0, -1.0, and -1.5 mg samples, respectively. (d and e) The corresponding XRD patterns and EDS line

scan image of an individual MAPbBr3z microcrystal encapsulated nanosheet.
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for the MAPbBr;/p-g-C5N,4-0.25 mg is stronger than that of pure
MAPDBr;, suggesting that the crystallinity of the composites
was improved. This is attributed to the relatively controlled
nucleation and growth behavior due to p-g-C3;N, providing
heterogeneous nucleation sites in the crystallization process
through interaction between the hydrogen atoms of the MA and
basic sites on p-g-C3N,." Fig. 2e shows the EDS line profiles
recorded from an individual MAPbBr;/p-g-C;N, intergrowth
microcrystal, indicating that the content of C and N is slight
higher than that of Pb and Br due to wrapped/entrapped p-g-
C;3;N, nanosheets. Such microstructures could not be prepared
when bulk g-C;N, powder was used. With increasing the
content of p-g-C3N,, the diffraction peak at 26.4° gradually
increases, while the diffraction peak intensity of MAPbBr;
increases to the highest value for MAPbBr;—p-g-C3N,;-1 mg, and
then decreases for MAPbBr;-p-g-C3N,-1.5 mg. The reduced
crystallinity of MAPbBr;-p-g-C5N,-1.5 mg may be attributed to
the occurrence of micro-strain in the MAPDbBT; crystals, induced
by crystal imperfections/structural defects including disloca-
tions, vacancies, stacking faults, etc. It is worth noting that the
peaks at 26.4° of p-g-C3Nj still exist for MAPbBr;—p-g-C3N, after
ultrasonic washing treatment, showing that the MAPbBr;/p-g-
C;N, intergrowth hybrids are very robust due to chemical
interaction, which is beneficial to electron transportation.

The interaction will be further discussed in the FTIR spectra.
For MAPbBr; microcrystals, the N-H stretch vibrations around
3100-3200 cm™ ', and C-H bending and CHj; rocking modes at
1471 cm ™' and 916 cm ™! are in good agreement with previous
results."* Evidently, all of the bands assigned to p-g-C;N, and
MAPDBr; are visible in MAPbBr;/p-g-C3N, and the absorption
intensity at 810 em™" is substantially increased and shifted
toward a higher wavenumber with the introduction of greater
amounts of p-g-C3N, in Fig. 3a. It is reported that “nitrogen
pots” of g-C3N, with abundant amino sites (NH,, x = 1, 2) on the
edges of heptazine units can take up the PbBr, precursors via
surface N-Br bonding interactions, forming an effective nucle-
ation point for crystal growth.® In contrast, it is worthy of note
that when 1.5 mg p-g-C3;N, was introduced, the peak intensities
of MAPDbBr;/p-g-C3N, decrease, which is possible due to greater
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particle agglomeration around the edges of the nanosheets.
Furthermore, the typical stretching modes of aromatic C-N and
C=N heterocycles in MAPbBrs/p-g-C;N, at 1241 cm ' are
systematically shifted to lower values with the increasing
content of p-g-C3;N, (Fig. 3b), which is ascribed to the high
electron density of aromatic heterocycles due to C-N-Br bond
chemical interaction. An analogous absorption change trend
has also been observed, showing high interfacial coupling
quality.® In addition, cation-7 interaction, an example of non-
covalent bonding between an electron-rich 7 system and an
adjacent cation, is proposed for pervoskite films.'®' In brief,
chemical interaction at the interface could eliminate the defects
and enhance the stability of MAPbBr;/p-g-C3N,, which is also
confirmed by the following photocatalytic tests.

The optical properties of the samples were investigated by UV-
vis diffuse reflectance spectroscopy (UV-vis DRS). As is shown in
Fig. 4a, MAPDbBr;-p-g-C;N,-x has an absorption edge at about
595 nm, which is the characteristic peak of MAPbBr;.> Addi-
tionally, the optical band gaps of MAPbBr;-p-g-C3N,-x estimated
from the Tauc plots using the equation akw o« (h — E,)* are 2.132,
2.143, 2.175, 2.206, and 2.101 eV, respectively (Fig. 4b). The band
gap of our sample is smaller than the previously reported optical
band gap of MAPbBr; nanoparticles (E, = 2.39 eV),” because the
latter are nanoscale particles that can present the quantum effect.
Simultaneously, the band gap values of our samples are close to
the values reported for MAPbBT; single crystals (E; = 2.18, 2.21
eV) grown through an inverse temperature crystallization and
antisolvent vapor-assisted approach.>*>>” It is well known that
the Br (4s°3d'%4p®) 4p orbital and Pb (6s>5d"'°4f**6p?) 6p orbital
contribute the most to the valence band maximum (VBM) and
conduction band minimum (CBM) of MAPbBr;, respectively.® So
the band gap variation with MAPbBr;/p-g-C3N, composition is
probably mainly due to the shrinkage of PbBrs octahedra due to
the chemical interaction, which is consistent with FTIR results.

3.2. Photocatalytic degradation performance

After the structural analysis, photocatalytic degradation of
malachite green (MG) in IPA solvent was employed as a model
reaction to probe the structure-activity relations. MG, a cationic
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Fig. 3
chemical bonding interaction is present in MAPbBrz/p-g-CsN,.
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(@ and b) Full and partial regional FTIR spectra of products prepared with different contents of p-g-CzN4 confirming that the C-N-Br
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triphenylmethane dye (Fig. S41), has been extensively used in
the textile, leather, and pharmaceutical industries due to its low
cost and high efficiency for disease prevention.**® Different
control experiments were conducted to compare the ability of
MAPDBr3;, p-g-C3N,4, and MAPbBr;/p-g-C;N, composites under
visible-light illumination. Fig. 5a shows the concentration-time
profiles of the MG degradation over various catalysts. After
irradiation for 10 min, 30%, 35%, 52%, 46%, 98% and 60% MG
were reduced by MAPbBr;, p-g-C3N4, and MAPDbBr;/p-g-C3N,-
0.25, -0.5, -1.0 and -1.5, respectively. Remarkably, MAPbBr;/

1ot a) 3
0.8 [ Dark adsorption

0610 ECN,
U |-e—pgCN, :
© 0.4} —o—MAPbBr -p-g-C,N 0.25 :
—o—MAPbBr,-p-g-C\N 0.5
0.2 —o—MAPbBr,p-g-C\N,1 ;
'
'
H

—ao—MAPbBr -p-g-C N -1.5 i

| 3 34 —a

00T —o—MaPbB, . ’ ‘ . X
-40 -30 20 -10 0 10 20 30 40 50

Fig. 5 (a) Photocatalytic activities of concentration—time profiles of
the degradation of MG over various catalysts including b-g-C3sNg4, p-g-
C3Ng4, MAPDLBr3, and MAPbBrs/p-g-CsN,4 samples under visible light.
(b) 3D UV-vis spectra of malachite green (MG) at different irradiation
times in the presence of the MAPbBrz;—p-g-CzN4-1.0 mg sample.
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(@ and b) UV-vis diffuse reflectance spectra (DRS) and Tauc plots.

C;3N,-1.0 showed significantly faster degradation rates. To the
best of our knowledge, there has been no study for the photo-
catalytic degradation of MG within 10 min under visible light
irradiation. A comparison of previously reported values for pho-
tocatalytic degradation of MG is shown in Table S3.7 The time-
dependent 3D absorption spectra of a malachite green solution
in the presence of MAPbBr;/p-g-C3N, are shown in Fig. 5b.
During the 10 min irradiation, the characteristic absorption at
about 618 nm in the MG spectra displayed a gradually declining
trend, which indicated the process of N-demethylation, i.e., the
non-selective attack of reactive oxygen species on the C-N bond
as reported.” The absorbance peaks at 425 nm reduce in inten-
sity, which evidently indicates that the whole conjugated chro-
mophore structure of MG has been destroyed.” The surface
properties of a photocatalyst is usually closely correlated with the
photocatalytic activity. It is well known that a photocatalyst with
a large surface area can provide more active sites and good
adsorption for reactants, both of which can speed up the
heterogeneous photocatalytic process. In the current case, N,-
adsorption analysis indicated that the addition of a small
amount of p-g-C3N, slightly increased the surface area of
samples. The BET values of MAPbBr;/p-g-C3N4, MAPDbBr3, and p-
g-C3N,; samples are determined to be 10.2, 7.2, and 12.2 m*> g™,
respectively. Clearly, the consistency between the BET surface
area and catalytic performance is not established due to similar
specific surface areas, indicating that the surface properties of
the MAPbBr;/p-g-C;N, are not the key factor.

According to the kinetic curves in Fig. 6a, the rate constant k
of pseudo-first-order kinetics follows the order MAPbBr;/p-g-
C3N; (0.195 min™') > MAPbBr; (0.037 min™ ') > p-C;N,
(0.018 min~") > b-C3N, (0.012 min~"). Clearly, the MAPbBr,/p-g-
C3N,;-1.0 composite has the highest rate constant, which is
almost 5.3 and 16 times higher than that of pure MAPbBr; and
C3N,, respectively (Fig. 6b). These results allow us to conclude
that controlling the addition ratios of p-g-C;N, is important for
the achievement of an optimal synergistic interaction between
MAPDbBr; and p-g-C3N,. Greater amounts of p-g-C3N, nano-
sheets (1.5 mg) are not good for the photocatalytic performance.
This can be attributed to two reasons: (1) the irregular micro-
crystals with low crystallinity resulted in trap states and thus

This journal is © The Royal Society of Chemistry 2020
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different samples.

reduced the efficiency of charge separation. (2) The increased p-
2-C;N, surface coverage on perovskite materials also blocked
the absorption of light of MAPbBr; and decreased the exposed
surface area of MAPDbBTr; to the reagent solution.**

3.3. Discussion of underlying photocatalytic mechanisms

An in-depth understanding of plausible reaction mechanisms
for the photodegradation of MG over semiconductors is
desirable. Under visible light irradiation, the photogenerated
superoxide radical ("0, ), holes (h*) and hydroxyl radical ("OH)
play an important role in the degradation of organic dyes.***
For unambiguous identification of reactive oxygen species
(ROS) involved in the dye degradation process, the reactive-
species-trapping experiments were performed to clarify the
contribution of different active species to the reaction. In
general, p-benzoquinone (p-BQ), ethylenediaminetetraacetic
acid disodium salt (EDTA-2Na), tert-butanol (¢-BuOH) and
AgNO; are known as effective scavengers for "0, ~, h", "OH and
photogenerated electrons (e~), respectively. As illustrated in
Fig. 7a, the addition of -BuOH had little effect on the photo-
degradation of MG. It is worth noting that isopropanol (IPA)
and t-BuOH have commonly been employed to impair the
hydroxyl radical ("OH) in photocatalytic reaction systems;
therefore, based on our present IPA solvent system, it is ruled
out that "OH plays a role. However, the presence of p-BQ,
AgNO; and EDTA-2Na brought about obvious deactivation of
catalysts and the photodegradation performance was
decreased. Interestingly, among the scavengers employed, BQ
can significantly suppress the degradation rate from 98% to
46% after 15 min, indicating that ‘O,” is a major reactive
species in the system. In addition, spin-trapping electron
paramagnetic resonance (EPR) experiments were also per-
formed to give direct proof for the generation of ‘O, over the
MAPDBr;/g-C3N,4-1.0 composites. In Fig. 7b, no EPR signal was
observed in the dark, indicating that there is no detectable
‘0O, species formed. Upon visible-light irradiation for 5 min,
a four-line EPR signal with an intensity ratioof 1:1:1: 1 was
clearly observed, which is characteristic of the (5,5-dimethyl-1-
pyrroline N-oxide) DMPO-'0O,  adduct, demonstrating the
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(a) Photocatalytic kinetic behavior for the corresponding dependence of In(C/Cy) on irradiation time. (b) Comparison of slope values of

formation of the superoxide radical ‘O, in the photocatalytic
reaction.” The observations strongly suggest that oxygen plays
a critical role as an electron acceptor. Namely, O, accepts the
electrons from the semiconductor conduction band to form
'O, due to a strong thermodynamic driving force to reduce O,
(E°, (04/°0,7) = —0.33 V vs. Ag/AgCl at pH = 7) to superoxide
‘0O, ". Very interestingly, ‘O, was also observed in other
perovskite photocatalytic systems including FAPbBr;/TiO, and
Cs,AgBiBrs.”'* Very interestingly, "OH active species for
CsPbX-based catalysts in an aqueous solution containing
water molecules are often observed, which is attributed to the
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Fig. 7 (a) Effect of radical scavenger/quencher including p-benzo-

quinone (p-BQ), ethylenediaminetetraacetic acid disodium salt (EDTA-
2Na), tert-butanol (t-BuOH) and AgNOs on the degradation process of
MG. (b) ESR spectra of the MAPbBrs/p-g-CzN4-1.0 mg sample without
and with visible-light irradiation for 5 min for the detection of "O,™
radicals.
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oxidation of water molecules with its negative side (3~, O) by
the photo-formed positive charges (holes) on the semi-
conductor surface.'®** However, ‘O,  is the main active
species in the photocatalytic dye degradation in organic
alcohol solvent using organic-inorganic hybrid halide perov-
skites,”*> demonstrating that the incorporation of organic
solvent inhibits the generation of other ROS, especially "OH.
Hence it can be concluded that tuning the solvent system may
control the active species for organic synthesis. The
phenomena may be attributed to two facts that photocatalytic
reactions were performed in organic solvent media without
H,O and the conjugated carbon nitride with amino nitrogen
components and vacancy defects could provide more sites to
adsorb O, by Lewis acid-base interaction. In conclusion,
according to the analysis above, the reactions listed below may
be involved:

MAPbBrs/p-g-CsN, + hv —> ¢~ + h* (1)
e +0, = "0y @

‘0, + MG — degraded products (3)
h* + MG — degraded products (4)

3.4. Interfacial charge transfer

Subsequently, to further investigate the interfacial charge
transfer in MAPbBr;/p-g-C3N, intergrowth microcrystals, the PL
spectra and time-resolved transient PL spectroscopy (TRPL)
spectra of these samples with different loading amounts of p-g-
C;N, were recorded and are shown in Fig. 8. The PL spectrum of
the MAPDbBr; crystal in Fig. 8a displayed a symmetric broad
emission band with a peak at 530 nm, which is attributed to
charge carrier recombination from the CB to the VB via a radi-
ative pathway.”> With an increase in the amount of p-g-C;Ny,
a slight shift (521 nm) was observed, which may arise from the
formation of MAPbBr; with different structural defect densities.
On the other hand, a gradual decrease in the PL intensity was
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found, suggesting that an additional energy-transfer pathway
exists in addition to the intrinsic radiative channel for excited-
state electron transfer. High crystalline quality MAPbBr;-p-g-
C;3N4-1 mg presented the weakest PL emission and the PL
intensity is strongly quenched, indicating that the excited
electrons at the interface of the MAPbBr;/p-g-C3N, composite
will rapidly be separated and recombination will be suppressed.
The decay traces of MAPbBr; (MPB;) and MAPbBr;/p-g-C3N,-
x were fitted using triexponential decay kinetics and are shown
in Fig. 8b. The derivation of the three components and
intensity-average lifetime (t,,) was carried out using the
following equation, and the results are listed in Table S1:t

Ty = (A1T17 + 417 + A5td)(AyTy + Aty + Asy) (5)
where 4 and t denote the amplitudes and emission lifetimes of
each component. The 7,, values were determined to be 43.3 ns
for MAPDbBr3, 28.2 ns for MAPbBr3/p-g-C3N,-0.25, 23.1 ns for
MAPDbBr;/p-g-C5N,4-0.5, 20.8 ns for MAPbBr;/p-g-C3N,-1.0 and
48.6 ns for MAPbBr;/p-g-C3N,-1.5, exhibiting a PL decay time on
the nanosecond scale. Significantly, the t,, value decreased to
a minimum value for the MAPDbBr;/p-g-C3N,-1.0 sample,
showing that the charge-separated state lifetime of MAPbBTr;/p-
g-C3N,;-1.0 is ~2.08-fold longer than that of MAPDBr;, in
agreement with previous observations for MAPbI;/rGO and
CsPbBr;/rGO composites with shorter lifetime compared to
pure pervoskite.>* More importantly, the contribution of the
fast decay component (r;) underwent a significant increase
from 9.70% for MAPbBr; to 91.1% for MAPbBr;/p-g-C3N,-1.0,
illustrating that more pronounced interfacial electron transfer
occurred due to the existence of non-radiative quenching
routes.” Therefore, based on the PL and TRPL results, it can be
concluded that the N-Br chemical bond of the MAPbBr;
wrapped/entrapped p-g-C,N; microcrystals could allow a more
efficient electron transfer, and reduce the proportion of accu-
mulated unreactive electrons, which is presumably key to the
increased photoactivity. The electron and hole transfer rate
constants (ke and k) can be estimated using the following
expression:*®

a) b)
E
-~
: 3
& 51
o <
‘® »
= Rt
] ‘n
-
= =
3 3
&~ -
-3
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(a) Steady-state PL spectra and (b) time-resolved photoluminescence decay spectra (TRPL) of MAPbBr3/p-g-CsN4 (loading amount: 0—

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9na00634f

Open Access Article. Published on 21 November 2019. Downloaded on 1/24/2026 3:45:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

1 1

ke (p-C;N, — MAPDBr;) = _ 6)
T1(MAPbBrs /p-C;Ng)  TI(p-C3Ny)
1 1
ki (p-C3sNg—MAPbBr3) = _ @)
Tav(MAPbBr; /p-C3Ny) Tav(p-C3Ny)

The calculated k., and &y, values for samples of MAPbBr;/p-g-
C;3N,4-1.0 were approximately 2.86 x 10° s~ " and 4.90 x 10°s™",
respectively. This k.. value is 4.65 fold higher than the reported
ke¢ value (6.15 x 10® s7') by Pu et al,*® indicating that highly
crystalline MAPbBr; wrapped/entrapped p-g-C;N, intergrowth
microcrystals have great potential as new photocatalysts to

convert solar energy into chemical energy.

3.5. Electrochemical analysis of MAPbBr;/p-g-C5N,

Recently, there have been some literature studies on the rich
solid state chemistry aspects of perovskites through electro-
chemical experiments®**-** where defects and grain boundaries
as well as chemical changes occurring at the various interfaces
could be monitored. To gain deeper insight into the electron
transport behaviors, electrochemical impedance spectroscopy
(EIS) was conducted in dichloromethane solution to determine
the charge-transfer resistance of the electrodes. The spectra
depicted the interfacial charge transfer efficiency of the samples
with the radius of the arc correlating with the reaction rate at
the surface of the electrode.* Hence, as shown in Fig. 9a,
a smaller diameter of the Nyquist semicircle at high frequencies
is realized with MAPbBr;/p-g-C3N,-1.0, implying that the charge
transfer resistance is smaller than that of MAPbBr; and the
other  MAPDbBr;/p-g-C;N,  composites.  Evidently, the
pronounced decrease of the charge-transfer resistance by
incorporating a suitable amount of p-g-C;N, validates better
charge transport ability and a more facilitated charge separa-
tion process of the MAPbBr;/p-g-C3N,-1.0 sample.

On the other hand, the band edge positions of the perovskite
materials were obtained from electrochemical experiments.
Electrochemical Mott-Schottky (MS) analysis (Fig. 9b) was also
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performed to estimate the flat band potential (Vi) of different
optically active perovskites, which can further illustrate their
band structure. The Mott-Schottky equation can be written as
follows (eqn (8))

1 2 kg T
— == (E—Ep-
C? NqueO< o q)

where C denotes the space charge capacitance, Ny, is the density
of charge carriers, q is the electronic charge (1.602 x 10 ° C), ¢
and ¢, refer to the dielectric constant of the semiconductor and
permittivity in a vacuum (8.85 x 10~ "> F em™?), respectively, E
and Eg, denote the applied potential and flat-band potential,
respectively, kg is the Boltzmann constant, and T is the
temperature in Kelvin. The value of Eg, is determined from the
x-intercept of the linear section of the Mott-Schottky curve. For
instance, Gimenez's research group demonstrated that a Mott-
Schottky plot on a CsPbBr; quantum dots/c-TiO,/FTO film
showed n-type behavior and a flat band potential of —0.109 V vs.
NHE.® Furthermore, Li et al. found that the position of the
valence band maximum (VBM) could be determined from the
MS plots. The Vg of MAPDBr; is 1.07-1.23 V vs. NHE, which is
0.4 V more positive than Vgg of MAPDI;.** Similarly, Samu et al.
reported that the VB edge of MAPbLBr, _, becomes significantly
more positive upon increasing Br incorporation into the lattice
(0.77 — 1.15 Vvs. Ag/AgCl).** It is generally accepted that the CB
and VB potentials in n or p-type semiconductors are approxi-
mately equal to the flat band potential and the potentials vs. Ag/
AgCl were converted to normal hydrogen electrode (NHE)
potentials using the Nernst equation®**®

(8)

©)

VNHE = Vagaecl T VagaeCl vs. NHE

where Vag/agcl vs. nur iS 0.199 V at 25 °C. Fig. 6d shows n-type
semiconducting features and the flat band potentials of
MAPDBr; and p-g-C3;N, are —1.03 V and —1.34 V vs. Ag/AgCl
derived from the intersection. Gelderman et al have
described the nature of the semiconductor-electrolyte interface,
together with the Mott-Schottky equation for determining the
flat-band potential which is approximately equal to that of the

MAPDBr;

2.5
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(a) Electrochemical impedance spectroscopy (EIS) spectra of the MAPbBrs/p-g-CsN4 composites and (b) Mott—Schottky plot on MAPbBr3

and p-g-CsN4, showing n-type semiconducting features and flat band potentials of —1.03 V and —1.34 V vs. Ag/AgCl, respectively.
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Fermi level.’” The Fermi level is defined as the energy level at
which the probability of occupation by an electron is 1/2, and it
lies at the mid-point of the band gap in an intrinsic semi-
conductor. But doping could change the Fermi level due to the
redistribution of electrons within the solid. The Fermi level of
an n-type semiconductor lies just below the conduction band,
while for a p-type semiconductor it lies just above the valence
band.*”** Consequently, the Fermi level (flat-band potential) of
a p-type catalyst is close to the VB while that of an n-type sample
is located near the CB, which was also demonstrated for porous
few-layer carbon nitride by Xiao et al.>* and a NiO/g-C3N, het-
erojunction by Tang et al.*® Therefore, the potentials of the VB of
MAPDBr; are calculated to be ~1.1 eV by subtracting the optical
band gap (2.13 eV) from the CBM, which is in reasonably good
agreement with those reported by Li et al.** and Samu et al.*
Additionally, the flat-band potential of p-g-C;N,~Sol was
measured to be —1.34 V versus Ag/AgCl, which is similar to the
value of ultrathin g-C3N, (—1.32 V vs. Ag/AgCl)*® and slightly
smaller than the value (—1.43 V) reported by Wang et al. So, the
potentials of the VB of p-g-C;N, are calculated to be ~1.4 eV by
subtracting the optical band gap (2.7 €V)'*** from the CB, which
is slight bigger than that of MAPDbBr; (1.1 eV).

Generally, based on the bandgap and electronic energy level of
the semiconductors, there are five different cases for semi-
conductor heterojunctions: straddling alignment (type-I), stag-
gered alignment (type-II), Z-scheme system, p—n heterojunctions,
and homojunctions.* In type-I band alighment composed of two
kinds of semiconductors, both VB and CB edges of one semi-
conductor are localized within the energy gap of another semi-
conductor. Recently, Zhao et al. reported that the Ag-CsPbBr;/CN
composite has two electron transfer pathways. In fact, the first
pathway is analogous to the type-I model, where the CB and VB
edge potentials of pure CN are about —1.33 and 1.40 eV, and the
CB and VB edge potentials of CsPbBr; are about —1.13 and
1.1 eV, respectively.*® In our present work, the MAPbBr;/p-g-C3N,
intergrowth composites have a structure similar to this so-called
inverted type-I core/shell structure, where a material with a nar-
rower band gap is grown epitaxially around the core material with
a higher band gap.*® Both electrons and holes would be rationally
driven to the shell by the built-in energy potential, and the charge
carriers (electrons and holes) are distributed largely in the shell
region, which promotes separation of the photoexcited charge
carriers and efficiently facilitates charge transfer to the shell layer
surface to enhance the redox reaction. In contrast, with contact of
p-type and n-type semiconductors with each other, the bands of
the semiconductors will bend and the Fermi levels will equili-
brate because of the formation of a space charge region after the
diffusion of electrons and holes. Thus, the built-in electrical
potential in the space charge region from the n-type side to the p-
type side can direct the electrons and holes to quickly travel in the
opposite directions, and allow more effective separation and
longer lifetime of electron-hole pairs.*’ These advantages endow
the p-n type heterostructures with an enhanced photocatalytic
performance. For example, when p-type NiO and n-type g-C3N,
are connected closely, the electrons in n-type g-C;N, transfer to p-
type NiO, leading to a positive charge; meanwhile, the holes in
NiO transfer to g-C;N,, generating a negative charge.
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Consequently, the space charge region called the internal electric
field in p-n heterojunctions is established when the electrons
and holes accumulate until reaching an equilibrium, which
could acts as a potential barrier to decrease the electron-hole pair
recombination.’ Based on the Mott-Schottky (MS) analysis, the
corresponding inverted type-I band configuration structure
alignments of MAPbBr; and p-g-C;N, are schematically depicted
in Fig. 10. In other words, in MAPbBr; microcrystal wrapped/
entrapped p-g-C3N, microstructures, MAPbBr; with a smaller
band gap is the shell and p-g-C;N, with a bigger band gap is the
core, which is evidently different from the work of Pu et al.® Both
electrons and holes would rationally move from the p-g-C;N, core
to the MAPDBr; shell driven by the built-in energy potential, and
then diffuse to the MAPDbBr; shell layer surface to enhance the
redox reaction, which promotes separation of the photoexcited
charge carriers (Fig. 10b).

Meanwhile, based on the slopes of the Mott-Schottky plots,
the density of the charge carrier, Np, can also be calculated from
eqn (10).

2 dE 2 1
Np = _ _
qeeo g 1 gee, slope
c?

(10)

The relative ¢ dielectric constant of a MAPDbBTr; single crystal is
about 25.5.2 Therefore, the Ni, of MAPbBr; (5.43 x 10'® cm™)
was found to be comparable to previously reported values of
MAPDI; (on the order of ~10"® ecm™*)* and was also in line with
our Hall effect measurement results and smaller than the donor
density of n-type CsPbBr; films (6.77 x 10'° em™>).° The deviation
is most probably due to the action of surface states in the poly-
crystalline electrode capturing and immobilizing the carriers.
Moreover, Hall effect measurements were also carried out at
room temperature, showing the n-type semiconductor behavior
for all MAPDbBr;/p-g-C4N; samples. Both the samples have
a carrier concentration of 10'® cm ™3, as shown in Table S2,t
which is in agreement with the Mott-Schottky results. This
mobility values are of the same order of magnitude compared to
the previous result of a MAPbBr; single crystal (up to 60 cm® V™"
s~ ).’ Our results are in accord with the fact that g-C;N, doping
increases the conductivity and carrier mobility in the perovskite
film."™ With regard to MAPbBr;, another important parameter is
the carrier diffusion length, Ly, (the distance over which the
limiting photocarrier diffuses before it recombines), so we can
calculate the carrier diffusion length by combining carrier life-
time with carrier mobility given by the following equation:*”**
Lp = (utkgTle)'? (11)
where Boltzmann's constant kg = 1.38 x 10 >*JK ' and T'is the
sample's temperature (298 K). By using the average carrier
lifetime (t,,) obtained from the present work and carrier
mobility 4 = 37.21-165.02 cm® V' 57, the carrier diffusion
lengths of Lp(MAPbBr;) and Lp, (MAPbBr;/p-g-C3N,-1.0) are
found to be 6.44 and 9.39 pm, respectively, which is similar to
a previously reported value of 4.3 pm for MAPbBr;,>” and an
estimated 3-17 um in MAPDbBr; using a shorter lifetime and
lower mobility.”® Such long carrier diffusion lengths will be

This journal is © The Royal Society of Chemistry 2020
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(@) Schematic illustrations of the MAPbBrs/p-g-CsN4 intergrowth microcrystal composite wrapped/entrapped nanosheets on the

molecular level. (b) The proposed corresponding inverted type-| band configuration structure alignments of MAPbBrz and p-g-CzN4, which are

similar to core/shell heterostructure band structures.

favourable for photocarrier diffusion and separation for an
efficient halide perovskite microcrystal photocatalyst.

3.6. Stability of the as-prepared samples

As long-term stability is also an important metric for photo-
catalytic systems, the recycling experiment runs for MG degra-
dation under visible light irradiation were further tested in
Fig. 11a and b. Compared with pure MAPbBr; (Fig. 11a), no
evident reduction in activity is observed in the MAPbBr;/p-g-
C3N,;-1.0 composite sample during at least ten reaction cycles
(Fig. 11b), indicating the excellent chemical stability of the
photocatalyst under testing conditions. The degradation rates
were slightly decreased because of the inevitable loss of the
photocatalyst mass during the recycling process. Since it is
widely accepted that microcrystals are more stable than nano-
crystals due to low surface Gibbs energy, it is reasonable that
our samples have desirable high stability. In order to further
evaluate the stability of the MAPbBr;/p-g-C;N, samples, FTIR,
XRD and SEM measurements after the recycling experiment
were employed. The FTIR spectra of IPA and MAPbBr;/p-g-C3N,-
1.0 were identical before and after the stability test (Fig. S57),
showing no obvious changes in chemical functional groups for
the solvent and catalyst. Simultaneously, no appreciable change
in the crystal structure and morphology of MAPbBr;/p-g-C3N,-
1.0 can be observed, suggesting that the chemical stability of the
MAPDbBr;/p-g-C3N, sample is high, and is comparable to the
stability reported for double-perovskite Cs,AgBiBre."* Clearly,
the as-synthesized MAPbBr;/p-g-C3N, composite could thus be
an effective and stable catalyst for photocatalytic reaction. On

This journal is © The Royal Society of Chemistry 2020
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Fig. 11 (a and b) Long-term cycling stability tests of the MAPbBr3 and

MAPDbBr3/p-g-C3N4-1.0 under visible-light irradiation for photore-
duction of malachite green.
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the other hand, for electrocatalyst experiments, the I~ polari-
zation curve after many CV cycles in alkaline solution is usually
used to evaluate the long-term stability. The related electro-
catalyst work on the MAPDbBr;/p-g-C;N, composite is under
investigation. Besides the degradation of MG, our sample
exhibited a good photocatalytic performance for other cationic
(RhB) and anionic (MO) dye pollutants (Fig. S61), and the
solution turned completely colorless within 20 min. To sum up,
it is believed that the N-Br chemical bonding interaction
between MAPDbBr; and p-g-C3;N; not only enhances charge
separation and transportation efficiency, but also provides an
alternative way for surface passivation of uncoordinated halides
to improve their chemical stability, exhibiting huge potential
for thermocatalysis, electrocatalysis and photocatalysis.

4. Conclusion

In summary, we demonstrated that the construction of
a MAPbBr;/p-g-C3N, intergrowth composite photocatalyst was
realized by the abundant NH, sites along the edges of p-g-C;N,
bonded with MAPbBr;. The spectroscopic and electrochemical
results showed that the unique chemical covalent C-N-Br
interaction at the interface could eliminate the defects and
enhance the stability of MAPbBr;/p-g-C;N,4, which facilitated
the charge separation in the photocatalytic process. The pho-
tocatalytic activity (kug) and interfacial charge transfer effi-
ciency (k) in the inverted type-I core/shell MAPbBr;/p-g-C3N,
band configuration structure were strongly dependent on the
composition of p-g-C;N, nanosheets. The MAPbBr;/g-C3N,
composites exhibited outstanding photocatalytic degradation
of malachite green, with 15 and 3 times higher activity
compared to their pure constituents, respectively. The photo-
excited electron induced radical anions (‘O,”) were the major
species for MG degradation. Furthermore, the MAPbBr;/g-C3N,
composites were found to be rather stable for at least ten cycles,
revealing their promise for utilization in long-term photo-
catalysis. The excellent activity and good stability could enable
this hybrid system to be a highly efficient visible light-driven
photocatalyst for practical harvesting of energy from sunlight.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (Grant No. 51502062, 51702067, 51572060
and 51671074) and Program for Innovation Research of Science
in Harbin Institute of Technology (PIRS of HIT No B201507).

References

1 S. Park, W. J. Chang, C. W. Lee, S. Park, H. Y. Ahn and
K. T. Nam, Photocatalytic hydrogen generation from
hydriodic acid using methylammonium lead iodide in

284 | Nanoscale Adv., 2020, 2, 274-285

View Article Online

Paper

dynamic equilibrium with aqueous solution, Nature Energy,
2016, 2, 16185-16193.

2 H. Wang, X. Wang, R. Chen, H. Zhang, X. Wang, J. Wang,
J. Zhang, L. Mu, K. Wu, F. Fan, X. Zong and C. Li,
Promoting Photocatalytic H, Evolution on Organic-
Inorganic Hybrid Perovskite Nanocrystals by Simultaneous
Dual-Charge Transportation Modulation, ACS Energy Lett.,
2019, 4, 40-47.

3 Y. Wy, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou,
Y. Dai, M. H. Wang and B. Huang, Composite of
CH;NH;Pbl; with Reduced Graphene Oxide as a Highly
Efficient and Stable Visible-Light Photocatalyst for
Hydrogen Evolution in Aqueous HI Solution, Adv. Mater.,
2018, 30, 1-6.

4Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen,
D. B. Kuang and C. Y. Su, A CsPbBr; Perovskite Quantum
Dot/Graphene Oxide Composite for Photocatalytic CO,
Reduction, J. Am. Chem. Soc., 2017, 139, 5660-5663.

5 M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan,
Q. Zhong and R. Xu, Amino-assisted anchoring of CsPbBr;
perovskite quantum dots on porous g-C3;N, for enhanced
photocatalytic CO, reduction, Angew. Chem., Int. Ed., 2018,
130, 13758-13762.

6 X. Zhu, Y. Lin, Y. Sun, M. C. Beard and Y. Yan, Lead-Halide
Perovskites for Photocatalytic alpha-Alkylation of Aldehydes,
J. Am. Chem. Soc., 2019, 141, 733-738.

7 H. Huang, H. Yuan, K. P. F. Janssen, G. Solis-Fernandez,
Y. Wang, C. Y. X. Tan, D. Jonckheere, E. Debroye, J. Long,
J. Hendrix, J. Hofkens, J. A. Steele and M. B. ]J. Roeffaers,
Efficient and Selective Photocatalytic Oxidation of Benzylic
Alcohols with Hybrid Organic-Inorganic Perovskite
Materials, ACS Energy Lett., 2018, 3, 755-759.

8 Y. Wang, L. Luo, L. Chen, P. F. Ng, K. I. Lee and B. Fei,
Enhancement of Stability and Photocatalytic Performance
on Hybrid Perovskite with Aniline, ChemNanoMat, 2018, 4,
1054-1058.

9 S. Schiinemann and H. Tiiysiiz, An Inverse Opal Structured
Halide Perovskite Photocatalyst, Eur. J. Inorg. Chem., 2018,
2018, 2350-2355.

10 G. Gao, Q. Xi, H. Zhou, Y. Zhao, C. Wu, L. Wang, P. Guo and
J. Xu, Novel inorganic perovskite quantum dots for
photocatalysis, Nanoscale, 2017, 9, 12032-12038.

11 D. Cardenas-Morcoso, A. F. Gualdron-Reyes, A. B. Ferreira
Vitoreti, M. Garcia-Tecedor, S. J. Yoon, M. S. Fuente,
I. Mora-Sero and S. Gimenez, Photocatalytic and
Photoelectrochemical Degradation of Organic Compounds
with All-Inorganic Metal Halide Perovskite Quantum Dots,
J. Phys. Chem. Lett., 2019, 10, 630-636.

12 Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen and
D. Xu, Stable and Highly Efficient Photocatalysis with
Lead-Free Double-Perovskite of Cs,AgBiBrs, Angew. Chem.,
Int. Ed., 2019, 58, 1-6.

13 M. Acik, T. M. Alam, F. Guo, Y. Ren, B. Lee, R. A. Rosenberg,
J. F. Mitchell, I. K. Park, G. Lee and S. B. Darling,
Substitutional Growth of Methylammonium Lead Iodide
Perovskites in Alcohols, Adv. Energy Mater., 2018, 8,
1701726-1701740.

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9na00634f

Open Access Article. Published on 21 November 2019. Downloaded on 1/24/2026 3:45:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

14 Q. Wang, T. Yang, H. Wang, J. Zhang, X. Guo, Z. Yang, S. Lu
and W. Qin, Morphological and chemical tuning of lead
halide perovskite mesocrystals as long-life anode materials
in lithium-ion batteries, CrystEngComm, 2019, 21, 1048-
1059.

15 A. Pan, M. J. Jurow, F. Qiu, J. Yang, B. Ren, J. J. Urban, L. He
and Y. Liu, Nanorod Suprastructures from a Ternary
Graphene Oxide-Polymer-CsPbX; Perovskite Nanocrystal
Composite That Display High Environmental Stability,
Nano Lett., 2017, 17, 6759-6765.

16 Y. C. Pu, H. C. Fan, T. W. Liu and J. W. Chen, Methylamine
lead bromide perovskite/protonated graphitic carbon nitride
nanocomposites: interfacial charge carrier dynamics and
photocatalysis, J. Mater. Chem. A, 2017, 5, 25438-25449.

17 Z. Qin, Y. Chen, X. Wang, X. Guo and L. Guo, Intergrowth of
Cocatalysts with Host Photocatalysts for Improved Solar-to-
Hydrogen Conversion, ACS Appl. Mater. Interfaces, 2016, 8,
1264-1272.

18 D. Wei, F. Ma, R. Wang, S. Dou, P. Cui, H. Huang, J. Ji, E. Jia,
X. Jia, S. Sajid, A. M. Elseman, L. Chu, Y. Li, B. Jiang, J. Qiao,
Y. Yuan and M. Li, Ion-Migration Inhibition by the Cation-7
Interaction in Perovskite Materials for Efficient and Stable
Perovskite Solar Cells, Adv. Mater., 2018, 30, 1707583.

19 L. L.Jiang, Z. K. Wang, M. Li, C. C. Zhang, Q. Q. Ye, K. H. Hu,
D. Z. Lu, P. F. Fang and L. S. Liao, Passivated perovskite
crystallization via g-C3;N, for high-performance solar cells,
Adv. Funct. Mater., 2018, 28, 1705875.

20 J. Zhang, M. Zhang, L. Lin and X. Wang, Sol processing of
conjugated carbon nitride powders for thin-film
fabrication, Angew. Chem., Int. Ed., 2015, 54, 6297-6301.

21 P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao and Y. He, In
situ synthesis of AgNbO,;/g-C3N, photocatalyst via microwave
heating method for efficiently photocatalytic H, generation,
J. Colloid Interface Sci., 2019, 534, 163-171.

22 Z. Chen, P. Chen, P. Xing, X. Hu, H. Lin, L. Zhao, Y. Wu and
Y. He, Rapid fabrication of KTa, ;5sNbg ,5/g-C3N, composite
via microwave heating for efficient photocatalytic H,
evolution, Fuel, 2019, 241, 1-11.

23 Z. Feng, L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin and Y. He,
In situ preparation of g-C3N,/BijOsl, complex and its
elevated photoactivity in methyl orange degradation under
visible light, J. Environ. Sci., 2020, 87, 149-162.

24 Y. Zheng, Z. Yu, H. Ou, A. M. Asiri, Y. Chen and X. Wang,
Black Phosphorus and Polymeric Carbon Nitride
Heterostructure for Photoinduced Molecular Oxygen
Activation, Adv. Funct. Mater., 2018, 28, 1705407.

25 K. Zheng, K. 7idek, M. Abdellah, M. E. Messing, M. J. Al-
Marri and T. Pullerits, Trap States and Their Dynamics in
Organometal Halide Perovskite Nanoparticles and Bulk
Crystals, J. Phys. Chem. C, 2016, 120, 3077-3084.

26 M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu,
V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He,
G. Maculan, A. Goriely, T. Wu, O. F. Mohammed and
O. M. Bakr, High-quality bulk hybrid perovskite single
crystals within minutes by inverse temperature
crystallization, Nat. Commun., 2015, 6, 7586-7592.

This journal is © The Royal Society of Chemistry 2020

View Article Online

Nanoscale Advances

27 D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu,
A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev,
Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed,
E. H. Sargent and O. M. Bakr, Low trap-state density and
long carrier diffusion in organolead trihalide perovskite
single crystals, Science, 2015, 347, 519-522.

28 Y. Lin, S. Wu, X. Li, X. Wu, C. Yang, G. Zeng, Y. Peng, Q. Zhou
and L. Lu, Microstructure and performance of Z-scheme
photocatalyst of silver phosphate modified by MWCNTs
and Cr-doped SrTiO; for malachite green degradation,
Appl. Catal., B, 2018, 227, 557-570.

29 Y. M. Ju, S. G. Yang, Y. C. Ding, C. Sun, A. Q. Zhang and
L. H. Wang, Microwave-assisted rapid photocatalytic
degradation of malachite green in TIO, suspensions:
mechanism and pathways, J. Phys. Chem. A, 2008, 112,
11172-11177.

30 Y. Zhao, Y. Wang, X. Liang, H. Shi, C. Wang, J. Fan, X. Hue
and E. Liu, Enhanced photocatalytic activity of Ag-CsPbBr;/
CN composite for broad spectrum photocatalytic
degradation of cephalosporin antibiotics 7-ACA, Appl
Catal., B, 2019, 247, 57-69.

31 G. F. Samu, R. A. Scheidt, P. V. Kamat and C. Janaky,
Electrochemistry and Spectroelectrochemistry of Lead
Halide Perovskite Films: Materials Science Aspects and
Boundary Conditions, Chem. Mater., 2018, 30, 561-569.

32 R. A. Scheidt, G. F. Samu, C. Janaky and P. V. Kamat,
Modulation of Charge Recombination in CsPbBr;
Perovskite Films with Electrochemical Bias, J. Am. Chem.
Soc., 2018, 140, 86-89.

33 Z. Li, C. C. Mercado, M. Yang, E. Palay and K. Zhu,
Electrochemical Impedance Analysis of Perovskite-
electrolyte Interfaces, Chem. Commun., 2017, 53, 2467-2470.

34 G. F. Samu, A. Balog, F. D. Angelis, D. Meggiolaro,
P. V. Kamat and C. ]J. ky, Electrochemical Hole Injection
Selectively Expels Iodide from Mixed Halide Perovskite
Films, J. Am. Chem. Soc., 2019, 141, 10812-10820.

35 F. A. Fatwa and K. Roel van de, Nature and Light Dependence
of Bulk Recombination in Co-Pi-Catalyzed BiVO,
Photoanodes, J. Phys. Chem. C, 2012, 116, 9398-9404.

36 Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao and
H. Fu, Molecule Self-Assembly Synthesis of Porous Few-Layer
Carbon Nitride for Highly Efficient Photoredox Catalysis, J.
Am. Chem. Soc., 2019, 141, 2508-2515.

37 K. Gelderman, L. Lee and S. W. Donne, Flat-band potential
of a semiconductor: using the Mott-Schottky equation, J.
Chem. Educ., 2007, 84, 685-688.

38 A. W. Bott, Electrochemistry of Semiconductors, Curr. Sep.,
1998, 17, 87-91.

39 J. Tang, R. Guo, W. Zhoua, C. Huang and W. Pan, Ball-flower
like NiO/g-C3;N, heterojunction for efficient visible light
photocatalytic CO, reduction, Appl. Catal., B, 2018, 237,
802-810.

40 H. Li, Y. Zhou, W. Tu, ]J. Ye and Z. Zou, State-of-the-Art
Progress in Diverse Heterostructured Photocatalysts toward
Promoting Photocatalytic Performance, Adv. Funct. Mater.,
2015, 25, 998-1013.

Nanoscale Adv., 2020, 2, 274-285 | 285


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9na00634f

	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f

	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f

	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f
	Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamicsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9na00634f


