Open Access Article. Published on 09 January 2020. Downloaded on 1/24/2026 11:26:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Nanoscale
Advances

REVIEW

[ '.) Check for updates ‘

Cite this: Nanoscale Adv., 2020, 2, 563

Received 27th August 2019
Accepted 8th January 2020

DOI: 10.1039/c9na00537d

rsc.li/nanoscale-advances

Introduction

7 ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online
View Journal | View Issue

Isolation methods for particle protein corona
complexes from protein-rich matrices

Linda Bohmert, Linn VoR, Valerie Stock, Albert Braeuning, Alfonso Lampen
and Holger Sieg ®*

Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with
biological fluids. This protein shell is called a corona. The composition of the corona has a strong
influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake
and signaling properties. For this reason, protein coronae are investigated frequently as an important part
of particle characterization. Main body of the abstract: The protein corona can be analyzed by different
methods, which have their individual advantages and challenges. The separation techniques to isolate
corona-bound particles from the surrounding matrices include centrifugation, magnetism and
chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different
complex protein mixtures, are used and the approaches vary in parameters such as time, concentration
and temperature. Depending on the investigated particle type, the choice of separation method can be
crucial for the subsequent results. In addition, it is important to include suitable controls to avoid
misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable
protein corona analysis result. Conclusion: Protein corona studies are an important part of particle
characterization in biological matrices. This review gives a comparative overview about separation
techniques, experimental parameters and challenges which occur during the investigation of the protein
coronae of different particle types.

interest to the scientific community."* Their higher surface-to-
volume ratio, as compared to bigger particles, changes their

The impact of micro- and nano-particles on the human body
has been the focus of research for almost two decades. In
particular, nanoparticles, which are mostly defined by a size
between 1 and 100 nanometers in at least one dimension, are of
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physicochemical properties. Nanoparticles therefore may show
higher biological reactivity.® Furthermore, their small size may
allow them to escape from the clearance mechanisms of the
body, and thus they circulate longer in the blood and pass
through cell membranes more easily.* In combination with
their greater reactivity, this increases their biological impact
and implies a potential risk for undesired effects such as
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oxidative stress or cellular import of chemical substances
adsorbed to the particle surface.® Furthermore, the shape of
particles is of special interest since it influences their bioavail-
ability. For example, cylindrical nanoparticles have been shown
to interact more strongly with cells than spherical ones.® Surface
modifications also affect nanoparticle reactivity by changing
their zeta potential and influencing their binding kinetics and
thus their biological interactions.®>” Nowadays, most scientists
agree that it is insufficient to interpret results from toxicological
or biochemical studies without proper characterization of the
respective nanoparticles and analysis of their interactions with
the test environment.® Particle composition, shape, size and
size distribution, and ion release, as well as stability of particle
dispersions are of major relevance, as are their surface chem-
istry and coating which are directly involved in building an
interface between the particle and its biological environment.>’
This biological interface involves physicochemical, thermody-
namic and kinetic interactions between the nanomaterial
surface and the surfaces of biological components such as
proteins, phospholipids, or DNA contained in biological fluids
or present in living cells. The interface represents the contact
point between a particle and the biological system and is called
the “nano-bio interface” or “protein corona”, even though the
particle corona may also contain components other than
proteins.® The composition of the protein corona depends on
the surrounding matrix, for example blood serum, plasma or
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the extra- and intra-cellular protein matrix and can change over
time and after uptake or transportation into another cellular
compartment.®> The corona can have a major influence on
different processes, for example the attachment of particles to
cell surfaces, the triggering of cellular signals, the modulation
of particle uptake, distribution and excretion, the release of ions
or other substances from the particles, or even immunological
reactions.’®™* For example, some proteins make the nano-
particle surface more hydrophilic.’* The term “nanoparticle
protein corona” was introduced by Cedervall et al. in 2007 to
describe the formation of protein layers on a nanoparticle's
surface.’ The concept of a biological interface for particles,
however, had already been studied earlier using the terminology
“interface”, or being described as protein adsorption to parti-
cles and its role in overall biological interactions.”*° For a more
detailed description of the history of protein corona research
please see below. Over time, experimental set-ups and especially
read-outs became more and more sophisticated, ranging from
simple gel electrophoresis in the 1960s to “omics” approaches
in recent years as schematically shown in Fig. 1.

The number of publications on nanoparticle corona analysis
has massively increased during the last decade (Fig. 2). More-
over, already about 100 reviews have been published that deal
with the nanoparticle protein corona and the relationships
between nanoparticles, their attached proteins and different
downstream effects. Some discuss the evolution, composition
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Fig. 1 Development of protein corona research over time. Qualitative protein adsorption studies were performed in the 1960s to explore
pharmaceutical nano-applications, followed by molecular identification of the protein corona in the 2000s with a focus on nanoparticle toxi-
cology. The latest results obtained by means of novel analytical and “omics” approaches suggest a "biomolecular corona” comprising different

types of biomolecules.
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Fig. 2 Usage of different separation methods for corona analytics. (A) Schematic overview of the different methods that are used to separate
particles with their protein corona from unbound proteins in solution. Centrifugation, magnetism (for magnetic particles only), and chroma-
tography-related methods are used. (B) Total number of publications that report centrifugation, magnetism, or different chromatographic
methods as separation steps to isolate particles with their protein corona from the surrounding matrix. (C) Time-resolved overview of the
publications shown in (B), demonstrating a strong increase in protein corona-related studies after 2010 and the increasing use of non-centri-

fugation methods.

and kinetics of the protein corona,>?® some deal with impli-

cations for cellular uptake**>® and some are focused on the
relationship between the nanoparticle corona and the immune
system.””?® The authors of the aforementioned articles agree
that information about the corona is essential for assessing and
understanding the impact of particles on the human body, as
through its (protein) composition the corona determines the
biological identity of a particle which is recognized by the cell.
All in all, it became clear that the corona composition of
different particles is not only dependent on the particle mate-
rial, its surface chemistry, and the composition of the
surrounding media, but is also subject to time-dependent
changes. Therefore, corona analytics does not only include
the determination of a complex protein composition, but
should also consider the complex kinetics of corona formation.

It has to be kept in mind that choosing a method for isola-
tion of particles with their corona proteins from a protein-rich
matrix, such as a cell culture medium containing bovine

This journal is © The Royal Society of Chemistry 2020

serum as a supplement or blood samples, is a critical step in the
workflow. Isolation methods for the protein coronae of nano-
particles are not standardized. From many publications in the
field it remains unclear whether the most appropriate isolation
method for the particular scenario investigated has been
chosen based on thorough pre-testing and method optimiza-
tion. The separation step has a major influence on the results
and their interpretation, as it decides whether proteins can be
identified as part of the corona or not. False positive or false
negative results may be obtained due to association or disso-
ciation of proteins from the corona resulting from physical or
chemical forces during the isolation and purification process.
As an additional aspect in corona analytics it should be noted
that most model matrices, e.g. cell culture medium, reflect the
in vivo situation only to a limited degree.'****> Model media can
be used to simulate the behavior of nanoparticles, e.g. after
direct injection into the bloodstream or when focusing on the
cellular environment. They do not reproduce the fact that

Nanoscale Adv, 2020, 2, 563-582 | 565
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nanoparticles in vivo may be transferred through several body
compartments with different compositions of body fluids, for
example through the oral cavity, stomach and intestinal lumen,
and then into enterocytes, and further via the blood stream into
other organs.* All these aspects determine how the protein
corona is composed, and therefore how it influences cellular
uptake and downstream effects.'®>*

In the context described above, this review aims to give an
overview of the different methods that have been developed to
isolate nanoparticles with their protein corona from different
environments, in order to enable the subsequent analysis of the
protein corona composition. The main focus will be on the
isolation methods for corona analytics in the context of specific
research aims. To this end, particle sizes, surface modifications
and materials are considered in relation to the respective
isolation method used, and the results are compared among
these different characteristics. This work thus provides a broad
overview on the aspects that need to be considered in nano-
particle protein corona analytics.

Terminology

Even though the interest in protein corona analytics has
increased in the context of nanotoxicology and nanomedicine
in recent years, the adsorption of proteins to surfaces is not
a new discovery. Protein films on surfaces were already reported
in the 1920s.?® Research on protein adsorption and its role in
biological interactions with surfaces and materials began in the
1950s by Bangham and Vroman.'®' Subsequent studies on
protein adsorption were focused on prolonging the blood
circulation half-life of particles by reducing protein adsorption,
in order to prevent their opsonization and recognition by cells.*®
Compared to the history of research on protein adsorption, the
term protein corona has been introduced rather recently. It was
proposed in 2007 to describe spontaneous self-assembly and
layering of proteins on nanoparticle surfaces.* Other
researchers describe it as the biomolecular coating of a particle
that is actually in contact with a biological system (e.g. a cell or
an organ), which interacts with a nanoparticle dispersed in
a biological medium.*® The interest in investigating the protein
corona increased since it was proposed that the protein corona
determines the interaction with the surrounding biological
matter.***” Aggregation and formation of a protein corona in the
extracellular environment will alter nanoparticle size, shape,
and surface properties, providing the particle with a “biological
identity” that is distinct from its initial “synthetic identity”.*®
The term corona is an appropriate description for proteins
adsorbed to a particle surface as it comes from the Latin word
for circle or wreath. However, “corona” is also used in other
contexts in the nano field, like in “core-corona nanoparticles” as
an alternative term to describe core-shell nanoparticles that are
composed of different materials in concentric layers.***' In
addition, the term corona is used for stabilized polymers in
some publications.”” It also has to be kept in mind that
“nanoparticle” is a rather new word for a nanoscale structure.
Other terms used for particles in the same or comparable size
range are, for example, colloid, submicron particle, dust, fine
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particulate matter, and others. While reviewing the literature,
the above terminology has to be taken into account to prevent
exclusion of relevant literature.

The corona has become an important parameter within the
characterization of nanoparticles and their interaction with
biological systems. When a particle surface comes into contact
with a protein-rich environment for the first time, it gets rapidly
covered with proteins. At this moment, the protein corona
composition is mainly driven by the abundance of the proteins
in the surrounding medium. Over time, however, the specific
affinity of individual proteins to the particle surface gains
importance. Vroman and coworkers have postulated in the
1980s that during the adsorption of blood proteins to surfaces,
small proteins cover the surface faster, due to their higher
mobility, whereas bigger proteins with higher affinity are
adsorbed later but are exchanged more slowly, and therefore get
enriched over time.**** This was later termed the Vroman effect.
The adsorption of proteins to surfaces is in a dynamic state and
therefore proteins with long residence times and slow exchange
rates become enriched on the particle surface and gradually
replace more abundant proteins with lower affinities.

The protein corona 1is loosely subdivided by some
researchers into the so-called “hard corona” and the “soft
corona”. Sometimes, the soft and hard coronae are defined by
their spatial arrangement, with the inner coating of particles
(i.e. the proteins in direct contact with the particle surface)
called the hard corona and the outer layer called the soft
corona.**® In contrast, hard and soft coronae may also be
defined based on protein affinities, with the hard corona con-
sisting of proteins with a high affinity to the particle and having
evolved over a longer period, while the soft corona is accord-
ingly described as the (outer) layer of the protein corona with
lower protein affinity to the particle surface, but high abun-
dance in the biological fluid and a high rate of ad- and de-
Sorption‘5,23,29,47749

Another nano-specific term appeared in the literature about
10 years ago: the term “nanoparticle/biological interface” or for
short the “nano-bio interface” was used by Nel et al. in their
review discussing the interactions of nanoparticles with not
only proteins but also other biological structures like
membranes, cells, DNA or organelles.” An issue of JACS Select
was entitled ‘Chemistry at the Nano-Bio Interface’ and pre-
sented many studies about modification and manipulation of
the interaction of nanoparticles with biological systems for
medical and bio-sensing purposes.*® However, the composition
of the protein corona was not the focus of most of these studies.
Approaching the issue from the reverse point of view, the term
cell “vision” has been established.** It describes a comple-
mentary concept to the protein corona and emphasizes the role
of the cell when it comes to a cellular reaction to nanoparticles.
During the first contact of nanoparticles with cells, the structure
of the cell membrane with its phospholipid composition,
surface proteins and glycocalyx defines how the cell comes into
contact with a nanoparticle and its protein corona. Depending
on the cell type, the “vision” of cells is different and so is the
cellular reaction to a specific nanoparticle.****

This journal is © The Royal Society of Chemistry 2020
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Due to the diversity of terminology, literature mining aiming
to provide a broad overview of the critical steps of separating
particles with their protein corona from the surrounding
protein-rich matrix is a difficult task. Therefore the NCBI
PubMed database was searched using multiple search terms
(“nanoparticle corona”, “particle corona”, “protein corona”,
“nano corona” and “particle protein adsorption”). The resulting
4427 hits were further screened manually for contents related to
centrifugation and chromatographic and magnetic separation
methods related to the separation of particles with proteins on
their surface from protein-rich matrices. Studies dealing with
fibers and larger surfaces were excluded. Studies which were
only investigating binding affinities of single proteins to parti-
cles or beads were excluded as well. The remaining 412 studies
were then evaluated to give an overview on the state of the art of
protein corona isolation methods, as presented in the following
sections.

Application of separation methods in
corona analytics

Research on nanoparticle-matrix interactions is very diverse
and reflects the variety of nanoparticle applications. A brief
overview of investigated particle types and experimental
conditions is given in Fig. 2. Literature analysis revealed that the
most widely used method of choice for nanoparticle-protein
corona isolation is centrifugation. This technique is rather easy
to implement with standard laboratory equipment, and it is also
considered time- and cost-effective. In addition, magnetic
separation is commonly used for particles with magnetic
properties, for example iron oxides. Size exclusion chromatog-
raphy is used rarely, mostly with polymers and silver
nanoparticles.

Most of the available studies focus on proteins which are
generally assumed to play the most decisive roles in nano-
particle corona formation.>****** A few studies also analyze
other biomolecules interacting with nanoparticles, e.g. lipids or
nucleic acids.****® Even though most studies have the analysis
of particle-protein interactions in common, very different
aspects related to protein adsorption and corona formation are
investigated. For example, some studies focus on the relation-
ship between particle properties like surface chemistry and
protein corona formation******%* and others analyze the protein
corona as particle properties (like size or shape) needed to
interpret cellular or biological effects.>***%7> Further aspects
include improving particle properties to change protein corona
composition and biological response;”®>”* targeting or charac-
terizing of particles for usage as drug carriers or for other
medical purposes;’*®" or the comparison of different parti-
cles.®****> Some studies report on the topic of biological func-
tion by single-protein measurement or functionality analysis.
Consequently, several studies investigated the binding proper-
ties of, for example, fibrinogen,?** lysozyme®>*® and others®***
using colorimetric protein quantification or ELISA. Kondo et al.
combined protein binding studies with enzymatic activity
assays of catalase, trypsin and peroxidase.** Jayaram et al.

This journal is © The Royal Society of Chemistry 2020
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investigated cellular oxidative stress by the measurement of
oxidized corona proteins.** Li et al focused on corona-
dependent particle uptake and enzymatic activity in inflam-
matory processes.” Taken together, drawing conclusions on
biological effects in relation to protein corona composition
remains challenging and a major focus of many research
projects.”*

Method development and validation for corona or protein
adsorption analysis constitutes another important aspect.”**°
In addition, the investigation of conformational and structural
changes of particle-adsorbed proteins;*”* analyses of differ-
ences between model particles and the real-life environ-
ment;'**** the search for in vitro methods to predict the in vivo
haemocompatibility of nanoparticles;* investigation of the
relationships between the particle surface, protein adsorption
and immune response;'** interaction analysis of proteins with
particles for analytical purposes;'® surface functionalization of
particles with proteins;*** kinetic analysis;'** enzymatic degra-
dation of the protein corona;'® and the characterization of gold
particles from immunocolloidal methods play a role.*®

Particles used for corona studies

Literature evaluation was used to determine which type of
particles has been studied more or less extensively for protein
corona formation and composition. Fig. 3 shows that silica
nanoparticles constitute the largest fraction of particles
analyzed for their protein corona, which is not surprising since
they are considered promising materials for diverse biomedical
or industrial applications'**** and are also frequently analyzed
in toxicological studies."* The big group of polymers contains
very different materials. Most of them are of interest for
research because they are being developed for a variety of
diagnostic and therapeutic applications.*»****>™** These can be
polystyrene (PS) with and without surface modifications, poly-
ethylene glycol (PEG), polylactide-derivatives (PLGA), resins,
crosslinked cellulose, carbon beads or polylactic acid (PLA). The
same holds true for the separately listed group of chitosan
particles."”®*** By contrast, the main reason for the high interest
in polystyrene particles is their use as model particles that are
available in many different sizes and narrow size distributions,
labeled with different fluorophores and with different surface
modifications."”"** In addition, their potential use in phar-
maceutical industries®®**>'** and also the growing concern
about the environmental fate of plastic particles appear to
underlie the interest in their protein corona.””**® Gold nano-
particles are, in most cases, of interest due to their potential for
drug delivery applications."*** In addition, gold is very appli-
cable in analytical investigations due to its low reactivity, low
solubility and high electron density. The same holds true for
iron oxide nanoparticles that are used in high-sensitivity
biomolecular magnetic resonance imaging (MRI) and tumor
targeting.****"%® Additionally, iron oxide particles are also used
for analytical purposes due to their magnetic properties.’*>*° As
shown in Fig. 3, mainly iron oxide nanoparticles are separated
by magnetic methods. However, some particles from other
materials have also been separated by magnetism-based

Nanoscale Adv., 2020, 2, 563-582 | 567
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Fig. 3 Number of publications using different types of particle material in combination with the separation techniques centrifugation,
magnetism and chromatography. When particles consisted of two or more materials (e.g. an iron oxide core covered by a second material), the
outer layer was used for material categorization, because it is considered the relevant surface for nanoparticle—biomolecule interactions. The
polymer category includes all polymers except polystyrene, chitosan and latex, which are listed separately.

techniques. This applies to cases where iron oxide nanoparticle
cores are embedded in other materials to combine the magnetic
properties of the iron oxide with the desired properties of the
other materials. Such magnetic nanoparticles can be function-
alized and used in different fields like biology, medicine,
physics and materials science.'® Most particles that are
subsumed in the group of lipid-based particles are of interest as
drug targeting agents."*** These can be in the form of lipo-
somes, lipoplexes or solid-lipid-nanoparticles, which show
different properties in surface reactivity, protein binding and
drug delivery. Titanium dioxide has a lot of applications, for
example as a pigment or photocatalyst, in sunscreens, in food
colorants, for electrical purposes or in the biomedical field, e.g.
in dental and orthopedic reconstructive surgery.*****! Titanium
dioxide is also used as a comparator in studies dealing with
airborne particulate matter.*”* Zinc oxide is used in cosmetics,
especially sunscreen products as a UV-protective agent, in the
agricultural and food industries, and in packaging. Moreover,
its use in food fortification is discussed, due to the essential role
of zinc in many metabolic and enzymatic processes.*>**> Other
particles used are, for example, aluminum,*® calcium
compounds,*®” copper oxide and rare elements such as cerium,
bismuth, cobalt, gadolinium or tin oxide.** Very recent studies
investigated, for example, the corona formation on quantum
dots,"*® colloidal silica nanoparticles'* and BSA-stabilized gold
nanoparticles.**

568 | Nanoscale Adv, 2020, 2, 563-582

Biological matrices used for corona
studies

The most studied biological fluid in corona analytics is blood,
either whole blood or, in the majority of cases, plasma or serum
(Fig. 4). In particular, human blood has been of interest,
congruent with the intended use of many particles for medical
applications. In addition, animal blood from common test animal
species such as rat or mouse is also frequently used for corona
analysis in studies dealing with animal trials, or as a comparator
to human blood.**>'*> Bovine blood components, such as serum
or plasma, are also of interest for corona studies, due to the fact
that bovine serum is often used as a supplement in cell culture
studies. Other, not blood-derived matrices include buffers with
individual or mixed proteins, e.g. aimed at investigating the
specific binding behavior of a certain protein.'**'** Few studies
have been conducted dealing with fluids of the gastrointestinal
tract, food components, urine, or the lymphatic system.'®>*%
Several studies provide a comparison of the coronae formed after
incubation with different matrices. Some groups compared
blood, blood plasma and serum as matrices.'®*'*® Other groups
compared bovine and human serum.'**'”° Jiang et al. compared
bovine serum and a cell culture medium."”* Lundqvist et al. made
a comparison between extracellular fluids (blood plasma) and the
intracellular matrix (cytosolic fluid) to simulate corona changes

This journal is © The Royal Society of Chemistry 2020
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after cellular uptake of nanoparticles.”* Some groups investigated
the corona from blood components from humans and different
animal species such as mice,"” rats, sheep and rabbits.'”

Choice of temperature and time for
corona formation

Research in the field of nanoparticle-bio interfaces focuses
mainly on humans or other mammalian systems, and therefore
the incubation temperature is often set to 37 °C,*>'* as shown
in Fig. 5A. Nonetheless, incubation at room temperature has
also been performed,™*'** and sometimes lower temperatures
down to 4 °C have also been used.'”>"’” The latter ensure
structural stability of proteins, while at the same time physio-
logical relevance might be questioned. The incubation time for
corona formation at the particle surface is often set to 60
minutes, assuming this to be an appropriate period to establish
equilibrium.?*7413317817 However, short-term and long-term
studies have also been performed, with incubation times
ranging from 1 minute to several days.''”'*® Only a few
studies investigated protein corona formation in vivo in
mice,****®> for which, in our view, the biggest challenge is the
particle recovery and purification after in vivo administration.
The process of corona formation does not only depend on
biophysical parameters, but is also rather dependent on bio-
logical processes such as cellular uptake or intracellular distri-
bution into different compartments. So, the extracellular
corona differs strongly from the corona after uptake or, for

This journal is © The Royal Society of Chemistry 2020

example, vesicular delivery. This topic has been profoundly
reviewed by Monopoli et al.® Integrative approaches of bio-
informatic simulations and corona formation experiments are
performed to study protein corona kinetics.” In particular,
Tenzer and colleagues have demonstrated the early develop-
ment of the corona, revealing that corona composition is
established within the first few minutes of protein-particle
contact, while the protein amount changes over time.'** Mor-
tensen and co-workers monitored changes of the protein corona
from 1 to 48 hours of incubation.**® In this context, corona
formation is described as a very dynamic process based on the
“Vroman effect”. In particular, very mobile, small and highly
abundant proteins tend to form the corona in early kinetics,
while bigger, less mobile and higher affinity proteins can
replace them in later stages and form a thermodynamically
stable protein corona. Mortensen et al. further stated that the
presence and absence of specific proteins at a certain time point
can influence interactions between nanoparticles and cells.
This knowledge reinforces the importance of dynamic investi-
gations on the kinetic process of corona formation. Neverthe-
less, based on our literature evaluation, the choice of isolation
method appears to not be correlated with the incubation time or
temperature used for corona formation.

Separation techniques — centrifugation

Proper interpretation and comparison of corona data from
different particles and studies require the use of reproducible
methods to isolate particles with their corona out of complex,
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protein-rich matrices. Particles should be isolated without
losing the attached proteins, while at the same time false
positives should also be omitted, making separation method-
ology a complex analytical challenge. Currently, a plethora of
different experimental approaches is used, hampering direct
comparisons between many studies. In addition, many papers
lack information about the controls included in the experiment
to exclude false positive or negative results. In the following, we
summarize and compare current methods for nanoparticle-
protein corona isolation, divided into three main categories:
centrifugation, magnetism and chromatography.

The most common method for separating particles and their
protein corona from a matrix is centrifugation or ultracentri-
fugation. Here, the different densities of particles and proteins
in the matrix are used for separation. Using centrifugation-
based approaches, various aspects of particle-protein interac-
tions have been studied.>*”'** The major issue with this method
is the risk of false positives: proteins, protein complexes which
originally did not bind to the particle, or proteins that bind to
particle-attached proteins but not to the particle itself, may
sediment during the centrifugation process together with the
particles and their corona. On the other hand, false negatives
may occur due to dissociation of proteins from the nano-
particle-corona complex due to centrifugation forces. It is
therefore very important to determine the number of washing
steps and the centrifugation time which is appropriate for
separating a specific type of nanoparticle-corona complex from
a certain protein-rich medium. It appears, however, that this
optimization is often not performed, or at least not described in
the respective publications.

The speed and duration of centrifugation must be optimized
to the respective particle species, to assure complete separation
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of nanoparticles with their corona from the surrounding media,
while at the same time preventing protein aggregates ending up
in the pellet. Konduru et al. noted that the density of the
particles (which has a significant influence on the sedimenta-
tion properties) cannot always be directly estimated from the
density of the material the particles are made of, due to
agglomeration and media inclusion effects.'®® Therefore, suit-
able controls are necessary to check for remaining nano-
particles in the supernatant and for unintentionally
precipitated protein aggregates in the pellet.

While considering appropriate centrifugation conditions,
different properties of the nanoparticles and the experimental
set-up have to be taken into account. In general, one harsh
centrifugation step is often not sufficient for complete isolation
of particle-corona complexes without false positive results.
These may, for example, result from protein complexes that
have a higher density than the investigated particles or from
proteins trapped in cavities of particle agglomerates.*® On the
other hand, insufficient centrifugation speed may leave parti-
cles in the supernatant.’® Similar considerations are to be made
for the washing procedure. Here, washing time, centrifugation
speed and the number of repetitions need to be balanced.
Furthermore, the choice of the washing buffer may influence
the binding of proteins to the nanoparticles due to changing pH
values, salt concentrations, and temperature.®®'®* Fig. 6
summarizes the aspects to consider when setting up a centri-
fugation-based separation method. Unfortunately, only
a comparably low number of publications contain experimental
details about the centrifugation procedure and its optimization.
Here, it would be desirable to establish standards of reporting
in order to allow the reader to judge the applied method.

This journal is © The Royal Society of Chemistry 2020
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Different variations and advancements of classic centrifu-
gation methods have been introduced in nanoparticle corona
research: sucrose cushions are used to reduce the interaction
time of nanoparticles and media. Unbound proteins are sepa-
rated from the nanoparticles by the sucrose cushion and
agglomerates also tend to float above the cushion. This way,
snapshots of nanoparticle-protein interactions can be analyzed
with high resolution®'®* The sucrose cushion may be used
either as a homogeneous sucrose solution with a defined
density or as a gradient. The latter enables the harvesting of
different fractions of nanoparticle-corona complexes to inves-
tigate the fate of nanoparticles, their protein corona and
unbound proteins.******* In particular, for low-density parti-
cles, ultracentrifugation is the method of choice, sometimes in
combination with a sucrose cushion.'** Ultracentrifugation is
mostly referred to as centrifugation at >100 000xg, and can be
subdivided into analytical and preparative ultracentrifugation.
Analytical ultracentrifugation allows monitoring of the
concentration of an analyte in the sample in real time, for
example by analyzing fluorescent nanoparticles. This way,
information about sedimentation properties and size distribu-
tion can be obtained.'*® However, a high centrifugation speed
may lead to aggregation of proteins, thereby increasing the risk
of obtaining false positive results by agglomeration. Sequential
centrifugation has been used to achieve neat separation of
particle-corona complexes.*****> This technique can be very

This journal is © The Royal Society of Chemistry 2020

useful, while at the same time multiple purification steps bear
the risk of disruption of the corona equilibrium.

Separation techniques — magnetism

The second way to isolate particles with their corona is the use
of magnetic force. Provided that the particle species is suitable
for use with magnetic separation methods, magnetism is used,
for example, as an easier and faster approach for separation.**®
In general, the magnetic properties of the nanoparticle are
provided by iron oxide (Fig. 3). Iron oxide nanoparticles are
promising tools in targeted cancer diagnostics, and they are
also available in versions coated with other materials such as
silica to form hybrid particles that combine the different
properties of the two materials.”” Nevertheless, centrifugation
methods are also used for iron oxide nanoparticles, sometimes
even for comparison. Bonvin et al. used both magnetic separa-
tion and centrifugation methods on the same nanoparticles.'®
Different experimental setups are available: Luborsky and
Drummond described an experimental setup with magnetic
columns and magnetic gradients which has been adapted to
nanoparticle-related experiments.”® Using magnetic forces for
separation is thought to have less of an impact on the structure
of the nanoparticle-protein corona complex than centrifuga-
tion."® Nevertheless, it has to be noted that the risk of
agglomeration increases with particle size. Because of this it is
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not recommended to use magnetic separation for nanoparticles
with diameters greater than 10 nm. Thus, for larger particles,
multi-step purification with increasing centrifugation intensi-
ties could be more appropriate.’*® A big advantage of magnetic
separation is the reduction of false-positive proteins due to
aggregation under centrifugal forces. It also reduces the loss of
protein after multiple washing steps. Nevertheless, washing
steps are needed after magnetic separation too, but the loss of
particles at each step might be lower. The limited number of
applicable particle species as well as the possibility of interac-
tions between magnetic particles and other required analytical
methods are disadvantages of this separation technique.

Separation techniques —
chromatography

Chromatographic approaches are used less frequently than the
above methods, probably because they are in general more
time-consuming and cost-intensive and allow only a relatively
low throughput of samples. In addition, they are not suitable for
a variety of particle types with bigger sizes, for polydisperse
particles, and for particles which adhere to the column mate-
rial. However, they provide a possibility for investigating
association/dissociation rates and affinity of individual proteins
bound to nanoparticles, and they also allow collection of
different fractions of a sample with less perturbation to
particle-protein complexes.™ In general, two main methods are
used, size exclusion chromatography and flow-field-flow-
fractionation methods, such as asymmetric flow-field-flow-
fractionation (A4F).'*

Described for the first time in 1950, the principle of size
exclusion chromatography is separation by the hydrodynamic
volume of the analyte.”* Smaller particles interact more with
the stationary phase (mostly composed of porous particles) and
therefore need more time to pass through the column while
bigger particles elute faster. This principle helps in determining
association and dissociation rates: complexes with a stable
corona have an increased hydrodynamic diameter compared to
blank particles, since proteins remain attached to the particle.
In contrast, if particle-protein affinity is weak, proteins tend to
dissociate quickly, causing no measurable increase in the
hydrodynamic diameter. Therefore, the latter will elute at the
same time as their non-incubated counterparts.**** Also,
particle-protein complexes can be collected in fractions relative
to their size and used for further analysis.”** However, interac-
tions with the stationary phase may occur and lead to a change
in the protein corona. Not only due to competing interactions
between the particle, corona and stationary phase, but also due
to shearing forces, this may result in a loss of protein—particle
interaction.

A4F is a method to separate analytes in a wide size range
(1 nm to 100 um).>* It also helps to reduce potential non-
specific interactions.®” A4F uses a liquid cross flow that is
established in a channel with a nonporous and a porous wall.
Particles are thus exposed to a laminar flow that pushes the
particles along the tube, and a cross flow that forces them to the
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bottom of the channel. Due to their Brownian motion (which is
more for smaller particles), the analytes can also float back into
the channel, thereby avoiding passage through the porous
membrane.?***** A4F is especially used for analysis of complex
samples and stable protein coronae.”®'*® Fractions can be
collected without much perturbation of particle-protein
complexes. However, method establishment is usually very
time-consuming due to the variety of parameters to be
optimized.>*

Ashby and colleagues combined the chromatographic
method of flow field-flow fractionation with ultracentrifugation
to obtain information about the composition of hard and soft
coronae.” However, ultracentrifugation tends to yield false
positives or negatives due to dissociation of proteins owing to
centrifugal forces or due to down-centrifugation of non-corona
proteins. These often unconsidered issues aggravate the iden-
tification especially of the soft corona proteins, as already
mentioned at an early stage of corona analytics by Lundqvist in
2008.°

Comparability of different methods

A few studies are available comparing the results obtained with
different corona isolation methods. Bonvin et al. compared
magnetic separation and a new multi-step centrifugation
method for their iron oxide nanoparticles in human blood and
lymph serum.'*® The results showed that the hard corona ob-
tained by magnetic separation differed from that obtained by
the new centrifugation method, as only about half of the iden-
tified corona proteins were commonly detected using both
methods. The parallel use of the two different methods was thus
helpful to verify the presumably true positive results, but it was
not possible to firmly distinguish whether the other proteins
identified by only one single method represent false or true
positives. Similarly, Pisani et al. compared magnetic separation
with centrifugation and also concluded that the results differ
substantially.”® By contrast, other analyses have revealed greater
similarity of coronae obtained by using different separation
methods: Monopoli et al. isolated nanoparticles by centrifuga-
tion, size exclusion chromatography, and magnetic separation.
The protein composition of isolated hard coronae in the latter
analyses was very similar between the different methods.**
Bekdemir et al. compared their centrifugation results using
mercapto-undecanoic acid (MUA) gold nanoparticles with the
results of Rocker et al., 2009 which were obtained using iron-
platinum (FePt) nanoparticles of a similar size and with the
same surface modification (carboxylated).’®***” The authors
concluded that protein dissociation behavior mainly depends
on the nanoparticle surface modification and size, and not on
its core material. However, their centrifugation based method
requires the adsorption of proteins to be reversible. In contrast
to their finding that diluting the sample led to a lower number
of proteins adsorbed to the particle, Milani et al. showed no
reversibility of the protein corona after transfer into more
diluted media and thus no Hill coefficient but material depen-
dency was observed. The different results may also be due to the
nature of the surface modifications since different materials

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9na00537d

Open Access Article. Published on 09 January 2020. Downloaded on 1/24/2026 11:26:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

View Article Online

Nanoscale Advances

Tablel Summary and overview of the different particle—protein corona isolation methods and their advantages and disadvantages as discussed

in the text
Method Advantages Disadvantages
Centrifugation - Separation according to density and size - Long centrifugation times can lead to false

Size exclusion
chromatography
(SEC)

Asymmetric
flow-field-flow
ractionation (A4F)

Magnetism

- Most frequently used technique

- Widely used and easy to use>'®

216

- High throughput

- Centrifugal speeds and times can be optimized
according to the nanoparticle material and
media

- Tuning experimental conditions makes the
method available for a wide range of
nanoparticles

- High resolution results®

- Possibility of separating different populations
co-existing in situ®°

- Flexible technique, many stationary/mobile
phases

- can be used with standard lab equipment

- Analyte resolution and recovery in SEC is
generally superior to A4F>'®

- Has been developed into a systematic
methodology™*

- Less perturbing than centrifugation**

- Complex, heterogeneous and polydisperse
dispersions can be investigated without
extensive sample preparation®®®

- Reduced to no destruction or alteration of the
protein corona

- Prior fractionation by AF4 allows size
investigation of complex heterogeneous and
polydisperse mixtures®’®

- Several detection techniques can be coupled to
AF4 (online and offline)**®

- Possible automation®”®

- Short measurement time>°®

- Easy collection of fractions®*®

- Absence of a packaging material or a stationary
phase®®®

- The potential of AF4 increases with increasing
molar mass®®®

- Once established, AF4 is a multifunctional
technique for separation and characterization of
nearly all nano-sized**’particles

- Low impact on the structure

- High throughput

This journal is © The Royal Society of Chemistry 2020

particle-protein interactions

- Several purification steps needed;
modifications in the protein-corona system can
occur

- Magnetic nanoparticles can agglomerate
false-positive highly abundant proteins due to
insufficient washing

- Changing of centrifugation tubes is necessary
to exclude carryover of proteins adsorbed to the
tube walls

- Outcome affected by centrifugation force,
washing duration, washing solution and
solution volumes; must be adjusted for each
particle type

- The smaller and less dense the particles, the
higher the centrifugation speeds chosen; thus
aggregation®” occurs

- Not suited for very small (5-20 nm) or low
density nanoparticles (1 g cm™?), because
unbound proteins and protein corona
complexes cannot be separated effectively®*>'”
- Not preparative, so no populations can be
recovered for further studies®*22%

- Interaction between analytes and the
stationary phase can occur®'®

- SEC selectivity decreases when applied to
analytes with a very high molar mass such as
nanoparticles®®

- Low throughput

196

- No full recovery of hard corona complexes for
further studies®

- Long establishment process

- Must be adjusted for every particle type®*®

205

- Low throughput

- Expensive

- Not routinely available in many analytical
laboratories

- Separation of particles from a very polydisperse
sample leads to peak broadening and loss of
resolution; must thus be divided into several
experiments

- Sample loss due to adsorption on the
membrane can occur, affecting retention and
disturbing quantification of single fractions®*®
- No full recovery of fraction for further
experiments®’

- Only practicable for small (~10 nm), magnetic
nanoparticles'®®

- Degree of separation decreases with decreasing
magnetism'®®
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may lead to different ligand packing densities with little change
in the hydrodynamic diameter.***>°

Approaches using two independent methods allow for
a better assessment of the protein corona, but difficulties
remain, as highlighted above. Often, false positives or false
negatives result from the isolation/separation method. The
variation between different isolation methods might, to a large
extent, arise from different forces acting on NPs during the
isolation process. In addition, the obtained results might be
transferred to only a small selection of closely related nano-
particles, thus hampering more general conclusions and
making it difficult to compare results from different corona
Studies.93'166'196

Methods for identification of
nanoparticle corona proteins

In general, the isolation of nanoparticle-protein corona
complexes from biological media is considered to be the most
critical point in corona research. However, interpretation of the
data also depends on the method of “stripping” the particle for
analyzing the composition of the corona by protein identifica-
tion methods. Different approaches have been used for this
purpose, depending on the experimental question addressed.
Some methods quantify the total protein content, such as the
Bradford and BCA assays®*®>" and UV/vis absorption
measurements.”” The protein amount can be measured by the
determination of bound proteins or as a difference in the
supernatant. Other methods separate proteins, for example
electrophoresis or chromatographic techniques, followed by
visualization methods such as Coomassie brilliant blue or silver
staining.®**** More detailed information about the corona, and
thus possibly also insights into the biochemistry of particle-cell
interactions via the corona, can be obtained using methods for
protein identification, for example mass spectrometry. A stan-
dard protein identification technique is 2-dimensional gel
electrophoresis followed by tryptic digestion and mass spec-
trometry. Therefore, protein identification by MALDI-TOF is
usually used.”*** Unfortunately, traditional mass spectrometric
methods allow just the identification of a rather small number
of highly abundant proteins and is very time-consuming.
Advanced mass spectrometry methods, such as LC-MS, orbi-
trap- or triple-quad-MS can replace the gel electrophoresis steps
and lead to a significantly increased sensitivity with lower
detection limits. Up to now, using high-resolution mass spec-
trometry to identify proteins has been the recommended state-
of-the-art method, even though this requires bioinformatics
data evaluation of big data sets. For a more in-depth review of
this topic, we recommend the recent review articles by Carrillo-
Carrion and Pederzoli (Table 1).2*42*

Conclusion

Individual nanomaterials exhibit very specific characteristics.
Therefore, the choice of separation method for the isolation of
protein—-corona complexes depends strongly on the particle and
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its physicochemical parameters and also on the surrounding
matrix, possible unintended interactions and the desired fate of
the corona. Centrifugation as the most widely used technique
may be the first choice for many particles but may, for example,
not be feasible for low-density analytes. Centrifugation is easy to
use, but care should be taken for proper controls to exclude
false positive and negative results in protein identification. In
addition, loss of particle fractions during repeated washing and
centrifugation steps is an issue. However, this might be
managed by analyzing all fractions for their particle contents to
exclude the loss of particle fractions. Additionally, control
samples with the particle-free matrix of interest, including
stabilizing agents and ions that might be released from the
particles, can help to prevent false positives. Nanoparticle
corona analysis is a very diverse field of current research,
investigating a dynamic process that depends on a plethora of
different parameters. To enable comparative and reproducible
results across different studies and laboratories, it would be
desirable to have harmonized experimental setups for the
scientific community, and detailed descriptions of experimental
procedures including the use of controls.
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