A sensitive sensor based on carbon dots for the determination of Fe3+ and ascorbic acid in foods†
Abstract
To develop a feasible, sensitive, and essential sensor is important for the identification of Fe3+ ions and ascorbic acid (AA). Herein, highly fluorescent heteroatom co-doped carbon dots (N,S-CDs) with a quantum yield (QY) of 24.6% were synthesized, using hydrothermal treatment of L-cysteine (Cys) and 1-amino-2-naphthol-4-sulfonic acid (ANSA). The fluorescence emission of the as-prepared N,S-CDs was quenched strongly by Fe3+ ions, and this was further recovered by the reduction effect of AA on Fe3+. Based on this, continuous fluorescence sensing of Fe3+ and AA with an “on-off-on” style was developed. The detection of Fe3+ and AA were in relatively wider linear ranges of 5.00–105 μmol L−1 and 4.97–54.8 μmol L−1, with a detection limit of 0.10 μmol L−1 and 2.4 nmol L−1 (S/N = 3), respectively. Then, the N,S-CDs were successfully used to measure Fe3+ ions and AA in some daily food samples, and this method exhibited some advantages over most other reported techniques in the term of response speed, quantum yield, and detection limit.