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In-plate toxicometabolomics of single zebrafish
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Toxicometabolomic studies involving zebrafish embryos have become increasingly popular for linking

apical endpoints to biochemical perturbations as part of adverse outcome pathway determination. These

experiments involve pooling embryos to generate sufficient biomass for metabolomic measurement,

which adds both time and cost. To address this limitation, we developed a high-throughput

toxicometabolomic assay involving single zebrafish embryos. Incubation, microscopy, embryo extraction,

and instrumental metabolomic analysis were all performed in the same 96-well plate, following

acquisition of conventional toxicological endpoints. The total time for the assay (including testing of

6 doses/n = 12 embryos per dose plus positive and negative controls, assessing conventional endpoints,

instrumental analysis, data processing and multivariate statistics) is o14 days. Metabolomic perturbations

at low dose were linked statistically to those observed at high dose and in the presence of an adverse

effect, thereby contextualizing omic data amongst apical endpoints. Overall, this assay enables collection

of high resolution metabolomic data in a high throughput manner, suitable for mode of action hypothesis

generation in the context of pharmaceutical or toxicological screening.

Introduction

EU REACH (Registration, Evaluation and Authorization of Chemi-
cals) legislation requires chemical manufacturers to carry out
comprehensive hazard assessments on new products, necessitating
the use of large numbers of animals (11.5 million in 2011 from the
European Union alone).1 In addition to the practical challenges
associated with high throughput toxicity testing (e.g. time, money)
there are ethical dilemmas stemming from experimentation invol-
ving animals. Recently, the United States Environmental Protection
Agency pledged to stop financing animal tests by 20352 and within
the EU REACH legislation lies imbedded the 3R principle which
strongly encourages a reduction in animal testing.3 Substitution of
the Organization for Economic Co-operation and Development
(OECD) adult fish acute toxicity test (test guideline (TG) 203) with
the fish embryo acute toxicity test (TG 236) addresses some of these
issues4 through low cost, multi-well plate-based in vitro testing.5

However, since TG 236 is only designed to determine lethal
concentration (LC50) it offers limited insight into a chemical’s
mode of action (MoA).6

To address the limitation surrounding conventional toxicity
testing, omics studies involving zebrafish (ZF) embryos are
increasingly used by the ecotoxicological and pharmaceutical
community to aid in development of Adverse Outcome
Pathways (AOPs).7,8 AOPs aim to link a molecular initiating
event (MIE), through a series of key events (KEs), to apical
endpoints, thus following the full progression of toxicity caused
by a xenobiotic.9 Toxicometabolomics and other omics techni-
ques (e.g. transcriptomics, proteomics) are integral tools for
discerning the connections that constitute AOPs. For example,
metabolomics could be applied to investigate the downstream
biochemical changes arising from toxicant-induced gene
expression alterations (such as the cholestasis AOP9).9 How-
ever, current ZF embryo toxicometabolomic studies suffer from
some limitations. For instance, few studies have linked apical
endpoints to metabolomic outcomes, making it difficult to
interpret the data in a regulatory context.10 Furthermore, all
ZF embryo toxicometabolomic studies performed to date have
employed pooling approaches, extracting between 3 and 80
embryos per replicate, in order to obtain sufficient biomass for
instrumental analysis.7,8,11–13 In addition to the time and costs
associated with this approach, pooling decouples apical end-
points from metabolic perturbations in individual embryos.
While the analysis of single ZF embryos could facilitate direct
linkages between metabolic perturbation and apical endpoints,
single ZF embryo metabolomics is hampered by their small size
(B200 mg per individual at 120 hours post fertilization (hpf)),
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which makes them difficult to extract and ultimately generate
sufficient quantities of extract for instrumental analysis.
Perhaps for this reason, single ZF embryo metabolomics has,
to our knowledge, only been attempted once, with a focus on
studying changes in the metabolome of developing embryos.14

In that work, a 3-step homogenization scheme was followed by
filtration and pre-concentration prior to liquid chromatography
(LC)- and gas chromatography (GC)-mass spectrometry (MS)
analysis.14 However, preparing samples in this manner is time
consuming, and limits the number of replicates which are
practically possible to analyze.

Here we present a novel, high-throughput toxicometabolomic
assay involving single ZF embryos. Incubation, microscopy,
embryo extraction, and instrumental analysis were all performed
in the same 96-well plate, resulting in a total assay time of less
than 2 weeks. Metabolomic effects at low dose are statistically
linked to those at high dose (i.e. in the presence of an apical
endpoint) which places these data into context amongst conven-
tional toxicological endpoints. For proof of concept we chose
the beta blocker propranolol (PPL), a commonly prescribed
heart medicine developed in the 1960s.15 We considered PPL a
suitable compound for this study not only due to the large body
of literature available to support eventual findings, but also
because it had a distinct documented apical endpoint (heart
rate) in ZF embryos which informed our choice of doses.16

Overall, this sample preparation and analysis method is suitable
for high sensitivity, high throughput MoA hypothesis generation
in pharmaceutical or toxicological screening.

Materials and methods
In-plate heart rate, morphology, and mortality measurements
according to TG 236

According to EU Directive 2010/63/EU on the protection of
animals used for scientific purposes, early life-stages of ZF
are not protected as animals until the stage of being capable
of independent feeding, which in ZF is 120 hpf.17,18 Since our
experiments were terminated before 120 hpf, no ethics approval
was required. ZF embryos were incubated from spawning to
120 hpf with PPL. The exposure setup was guided by general
conditions outlined in TG236,4 with the following deviations:
slightly longer exposure time (120 hpf in the present study vs.
96 hpf under TG 236, still within the time where embryo
experiments are considered to be in vitro17), an absence of pH
measurements in the present work, fewer replicates (12 in the
present work vs. 20 specified in TG 236), and a higher solvent
concentration in the positive controls in the present study (see
Notes S1, ESI† for a description of deviations from the TG 236
assay protocol). In addition, we used fewer lethal doses than
what is specified under TG 236. Finally, heart rate measure-
ments were also included as an apical endpoint, but are not
required under TG 236. A single plate consisted of 6 different
concentrations of PPL (n = 12 embryos/concentration), a vehicle
control (n = 12 embryos) and a positive control (3.8 mg L�1

3,4-dichloroaniline (DCA); n = 12 embryos; see Fig. S1 ESI,† for

plate layout). At 48 and 120 hpf we examined embryos micro-
scopically for standard lethal and sublethal apical endpoints
(i.e. completion of Gastrula, formation of somites, development
of eyes, spontaneous movement, heart beat/blood circulation
(boolean criteria), pigmentation, oedema, malformation of head/
saccule/otoliths/tail/heart, modified structure of the corda,
scoliosis, rachischisis, deformity of yolk, growth-retardation).18

One non-standard non-lethal endpoint was also measured (heart
rate;16,19 Table S1, ESI†). To evaluate the potential for future
cross-plate comparison, and the reproducibility of our in-plate
sample preparation method, we prepared 48 non-exposed
(i.e. control) embryos distributed over four plates from a second
incubation event (see Text S1, ESI†).

Analysis of dose

Exposure concentrations of PPL were determined via direct
injection LC-MS20 (see Text S1, ESI† for details). By measuring
the exposure water in each well, we were able to determine the
concentrations for all but the lowest dose (which was below
the limit of quantification 0.20 mg L�1; Table S2, ESI†). The
measured concentrations in the exposure medium were on
average 0.49, 12, 62, 4550 and 46 540 mg L�1 at 120 hpf. The
nominal dose for the lowest concentration was 0.050 mg L�1.
Through analysis of exposure medium in the beginning,
middle and end of the exposure, from a designated exposure
medium plate, we also confirmed that doses stayed within
�10% over the duration of exposure. Therefore, we could rule
out substantial degradation or biotransformation during the
study (Table S3, ESI†).

In-plate sample preparation and analysis sequence

To minimize sample handling and enhance throughput for
metabolomic analysis, we developed a method for in-plate
extraction which allows for processing of up to several hundred
embryos in o3 hours. Metabolite extraction and protein
precipitation involved bead blending and sonication with
methanol/chloroform (plus internal standard), followed by
centrifugation (see ESI,† Text S1 for further details), after which
the plate was placed directly in the autosampler of the LC for
instrumental analysis. We used mixed-diameter stainless-steel
beads to reproducibly homogenize the embryos, as opposed to
single-sized beads which tended to leave the larvae husk intact.
By gluing silicone cap-mats lined with polytetrafluoroethylene
(PTFE) to each 96-well plate, up to 960 embryos (i.e. 10 � 96-well
plates stacked) could potentially be homogenized simultaneously
with this method. To ensure the absence of cross contamination
between wells, we performed a number of a priori microscopy
experiments where no sign of moisture between the wells was
detectable and where empty wells close to solvent-filled wells
remained dry after homogenization. Blanks were prepared in
separate blank plates alongside the sample plates, but followed
the exact same treatment as normal samples, and were injected
prior to the analysis of real samples.

In order to avoid compromising the LC columns and MS through
injection of small, insoluble organic fragments we increased
the autosampler needle-height to draw extract 5 mm from the
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bottom of the wells (as opposed to the default setting 2 mm).
In this step, the extraction beads also served to stop suction-
induced turbulence from disturbing tissue remnants at
the bottom of the wells. As a final precaution, we installed an
in-line metal filter (0.5 mm) downstream of the autosampler
but upstream of the analytical column. Each plate underwent
three analyses over 74 hours: (a) a lipidomics analysis via flow-
injection MS/MS, (b) non-targeted analysis using hydrophilic
interaction chromatography (HILIC) positive ionization Orbitrap
high resolution MS; and (c) resuspension followed by reversed
phase-chromatography negative ionization Orbitrap high resolu-
tion MS (see ESI,† Text S1).

Signal-drift during both lipidomic and non-targeted
analyses were corrected using the R-package batchCorr21 which
required inclusion of quality control (QC) samples throughout
the injection sequences. The QCs were prepared in 1.5 mL
polypropylene tubes and consisted of extract of five pooled
embryos, for which the same solvent to sample ratio as for
plate samples was used. Blanks for the QCs were prepared in
1.5 mL polypropylene tubes and analyzed together with the
plate blanks. Furthermore, we analyzed a portion of the highest
concentration dose medium with both Orbitrap methods
to identify features corresponding to PPL (e.g. parent ions,
in-source fragments, and impurities), and remove them during
processing. Collectively, analysis using all three methods
yielded over 13 000 raw features per embryo.

Isolation of endogenous metabolites through data filtration

Both lipidomic and non-targeted data were processed using
previously described methods developed by our group,22 the
former of which was adapted from Liebisch et al.22,23 (see also
ESI,† Text S1). Peaks acquired through lipidomics analysis had
to be on average 10-fold higher than in blanks to be considered
metabolite features. For non-targeted data, exogenous sub-
stances (e.g. PPL, its metabolites and background noise) were
removed using a combination of batchCorr21 and an in-house
R package comprised of a total of 6 data filters.24 The first filter
used the gap-filling status recorded by Compound Discoverer
(CD) to remove features not detected in any of the sequence
QC injections. Features which passed the gap-filter were then
subjected to sequence correction using batchCorr21 and any
features displaying relative standard deviations (RSD) above
30% in the sequence QCs post correction were discarded. The
third filter removed low-intensity features (i.e. those features with
highest peak height o200 000 counts per second for positive
electro spray ionization (ESI+) HILIC or o150 000 counts
per second for ESI-reversed-phase) where after the remaining
features were internal standard-corrected to account for inter-
well variability in evaporation. For the fourth filter we used
the annotation package ‘‘ramclustR’’ to detect and remove any
in-source fragments of the masses predicted to be metabolites
of PPL by CD, based on retention time and MS1 intensities.25

The fifth filter removed all features within 5 ppm of masses on
a list of expected phase I and II metabolites of PPL generated by
CD, as well as all features detected in the exposure medium and
in blanks. The sixth filter removed any feature which had

negative intensities and the seventh filter discarded features
present in procedural blanks with peaks 440% relative to the
maximum signal in samples or QCs respectively. Overall, this
procedure reduced the total number of features obtained
from lipidomic and Orbitrap analyses from 413 000 to o350
(Table S4, ESI†).

Statistical analysis

Statistical analysis for apical observations were carried out using
Student’s t-test for heart rates and Pearson’s Chi-squared test
for mortality. Inter-plate reproducibility was assessed using
principal component analysis (PCA). For metabolomics data
from the PPL exposure statistical analysis was performed using
the R-package MUVR26 which performs minimal variable selec-
tion through recursive variable elimination by repeated double
cross-validation (Table S5, ESI†). In order to both characterize
the MoA of PPL and to obtain data suitable for benchmarking
of exposure, we developed and refined two random forest (RF)
models: a classification and a regression model.

Metabolite identification through retention time and MS2-
based fingerprint matching

Metabolite features measured by non-targeted analysis and
selected by the models were putatively identified using mzCloud
(through CD), Metlin,27 Metfrag28 and Sirius + CSI:FingerID.29,30

For compounds where there was no clear consensus regarding
identification between these four software, we used the structure
proposed by Sirius + CSI:FingerID due to its performance in
inter-method comparisons.31 Following putative identification,
we procured authentic standards and determined a similarity
score between sample and standard MS2 spectra using the
R-script ‘‘NTScreeneR’’32 (see ESI,† Data S1). All candidate
metabolite features displayed a similarity score 40.85, which
we deemed sufficient to confirm their identities.

Ecotoxicological evaluation

Determination of a benchmarking dose (BMD) for the meta-
bolomic perturbations connected to the change in heart rate
was carried out by using the RF regression model to predict
the four concentrations not used to train the model (i.e.
0.05 mg L�1, 0.49 mg L�1, 12 mg L�1 and 62 mg L�1). For these
four dose-groups the Q2-values for all groups together and
separately were calculated (see ESI,† eqn (S1)). The predicted
concentrations were then entered into the US Environmental
Protection Agency (EPA) BMD calculating tool BMDS 3.1.33 For
the BMDS analysis the default preset settings were used (i.e. BMR
type ‘‘Std. Dev.’’, BMRF of 1, confidence level of 0.95, distribution
set to ‘‘normal’’, variance set to ‘‘constant’’ and the ‘‘use dataset
adverse direction’’ option for polynomial restriction).

Results and discussion
Apical endpoints

Significant mortality was only observed in the positive controls,
both at 48 and 120 hpf. We observed significantly lower heart
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rates (relative to negative controls) in both the positive control
and the 46 540 mg L�1 exposure group at 48 hpf (Fig. 1a), as well
as the 46 540 and 4550 mg L�1 groups at 120 hpf (Fig. 1b). These
results align well with previously determined no- and lowest-
observed effect concentrations (NOEC and LOEC, respectively)
for decreased heart rate due to PPL exposure in ZF embryos
(3500 mg L�1 and 7000 mg L�1 respectively at 48 hpf19). At
120 hpf all living embryos had hatched.

Reproducibility of between-plate controls

After instrumental analysis (i.e. non-targeted analysis and
lipidomics) and a data processing approach slightly modified to
facilitate batch comparison (see ESI,† Text S1) we used PCA to
obtain an unbiased measure of between-plate variability in the
measured metabolome. Evaluating the PCA score plots for both
the lipidomics (Fig. 2a) and non-targeted data (Fig. 2b), as well as a
combination thereof (Fig. 2c) it is not surprising that only the non-
targeted data scores plot shows signs of outliers (Fig. 2a). Non-
targeted metabolomics is not only susceptible to in-sequence drift
but also drift between batches, both in mass and baseline signal.21

To counteract these phenomena we prepared a batch QC sample
which, together with batchCorr, was used to normalize the base-
line between the non-targeted data of the four plates.21 Since the
outliers are not present in the lipidomics data (Fig. 2b) we
conclude that the deviation of the outliers is not inherent to the
embryos or the sample preparation but rather stems from the
analysis. Interestingly, the extreme samples in the non-targeted
data are almost completely attenuated in the first 2 PCs by
combining the datasets (Fig. 2c). Altogether, by utilizing the full
functionality of batchCorr,21 we were able to show that ZF embryos
can be reproducibly incubated, homogenized and analyzed using
our in-plate sample preparation and analysis methods.

PPL exposure modelling

For the classification model we used all PPL exposure concen-
trations as well as negative controls as input which generated a
model based on 34 of the 311 metabolite features. Unsurpris-
ingly, the majority of misclassification of samples occurred
between similar dosing concentrations (i.e. doses within 1
order of magnitude; Fig. 3a). However, when we considered
misclassification as only those samples which were incorrectly
classified by over an order of magnitude, the misclassification-
rate decreased from 51% to only 24% (Fig. 3a). Permutation
analysis of the model with randomized sample labels revealed
that the model was highly statistically significant (n = 100,
p = 1.16 � 10�10) which confirmed that there was no overfitting.
In comparison, the RF regression model was constructed using
only the negative control along with the groups in which
statistically significant apical endpoints were observed (i.e.
heart rate perturbations at 46 540 and 4550 mg L�1; Fig. 3b).
This model resulted in a selection of 10 metabolite features, 7
of which were also identified by the classification model
(Fig. 4). The Q2 and p-value for 100 permutations were 0.67
and 9.2 � 10�5 respectively. In summary, we obtained two
adequately accurate and non-overfitted RF models of PPL
exposure using MS-data collected from single ZF embryos
through RF analysis.

PPL mode of action

The relative, scaled abundance of the 11 structurally confirmed,
20 putatively identified, and the 6 unidentified metabolite
features elected by the two models were plotted on a heat map
to obtain a biochemical overview of the exposure (Fig. 4). Both
monotonic and non-monotonic dose-responses were observed,

Fig. 1 Heart rate of embryos measured at 48 hpf (a) and 120 hpf (b) for the range of exposure concentrations. Heart rate was measured through
microscopy and determined by counting the number of heartbeats of the embryo during 15 seconds. Groups with significantly lower heart rate
compared to controls (p o 0.05) are marked by *.
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highlighting the multi-faceted and complex perturbation of the
metabolome caused by PPL exposure.

It is well-documented that PPL strongly interacts with
the phosphatidate phosphatase (PAP)/phospholipase D (PLD) path-
way, causing inhibition of PAP and induction of PLD (Fig. 5a).34–36

The PAP/PLD pathway is a major component of glycerophospholipid
metabolism in which a number of other enzymes have been
documented to be affected by PPL exposure (Fig. 5a). Phospholipids
such as phosphatidylcholine (PC), -ethanolamine (PE), -inositol (PI),
-serine (PS), -glycerol (PG) and phosphatidic acid (PA) as well as the
fatty acids (FA) which they are composed of are not only structural
components of the lipid membrane but also signaling molecules
governing important cellular and physiological mechanisms such as
cytokinesis,37 apoptosis,38 neurotransmission39 and inflammation.40

Thus, it is no surprise that a large number of PC lipids show

signs of a monotonic increase in abundance over the exposure
doses in this study (Fig. 4). Interesting to note is that our RF
regression model is solely based on compounds with an increase
in relative concentration over increasing exposure doses.

We hypothesize that the chain of events that induces PC
lipids with one ether-bound FA also explains the increase of PE
lipids in higher exposure doses (Fig. 4). When PPL induces PLD
and inhibits PAP a build-up of PA will occur36 which will lead to
a subsequent increase in PI and PS.41 PS can be further
metabolized into PE which in turn can be metabolized into
glycerol-3-phosphate, one of the main starting molecules for ether
lipid metabolism (Fig. 5a). Also, many enzymes which are either
directly or indirectly affected by PPL can be found within the
ether lipid metabolism pathway (e.g. phospholipase A2 (PLA2),42

PAP, PLD and PLC43). So, despite the lack of detailed knowledge

Fig. 2 PCA score plot of single ZF embryo data from four different plates acquisitioned by Orbitrap utilizing HILIC chromatography (a); lipidomics
analysis (b) and a combination of both analyses (c).
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on how PPL interacts with ether lipid metabolism, our findings in
literature are indicative of a MoA which would explain the stepwise
increase and subsequent decline in PE and the monotonic
increase in PC ether lipids over the exposure concentrations.

The heart rate-lowering MoA of PPL through blockage of
b-adrenergic receptors is well studied.44 Activation of these
receptors result in adenylyl cyclase activation and conversion
of ATP into cAMP. cAMP then activates protein kinase A which
leads to contraction through phosphorylation of ryanodine
receptors and L-type Ca2+ channels.44 There is, however, an
alternative way in which PPL influences this pathway, through the
PLD-induced increase in PA.45 It has been shown that PPL induced
build-up of PA activates type 4 cAMP-specific phosphodieseterase
(PDE4) which turns cAMP into 50AMP, thus inhibiting cAMP-
activation of protein kinase A.45 This alternative pathway consti-
tutes a strong link between the lipid metabolites elected for our
regression model and the apically observed heart rate reduction in
the most highly exposed embryos.

A number of biologically important FAs (i.e. docosapentaenoic
acid, eicosapentaenoic acid, docosahexaenoic acid, X-hydroxy eico-
satetraenoic acid) showed similar non-monotonic expression
patterns to one another, consistent with the response observed
for a number of lysoPEs and lysoPCs (Fig. 4). The concentration
of these FAs decreased in the lower dose groups (0.5–62 mg L�1)
before returning to levels similar to controls at the highest doses
(4540–46 540 mg L�1). This could be explained by the ability of
PPL to inhibit the activation of PLA2, which facilitates hydrolysis of
acyl-bound FAs from phospholipids (Fig. 5a).42 Considering that all
of the affected lipids and FAs are messenger molecules, we
propose that fold-change increases in higher doses might be
the result of many negative and positive feedback loops inter-
acting with each other.

The only non-lipid related metabolite feature we identified
with a level 1 certainty was phenylalanine, which has also been
reported in a previous metabolomics study on PPL exposure.46

The direct inhibition of tyrosine hydroxylase (TH) by PPL is a
likely explanation for the relative increase of phenylalanine in
the two highest exposure concentrations in our data (Fig. 5b).47

If tyrosine concentrations grow large, due to TH-inhibition,
alternative pathways could be over-burdened which would
ultimately result in a build-up of its precursor phenylalanine.
Thus, we conclude that the metabolites elected by our models
are consistent with existing literature on PPL and provide
strong evidence supporting their perturbation at the exposure
concentrations investigated in the present work.

Ecotoxicological evaluation

The results showed a large variation in predictability of different
dose concentrations (Fig. 6): The two higher doses (12 mg L�1 and
62 mg L�1) were very close to modelled values while lower doses
(0.05 mg L�1 and 0.49 mg L�1; Fig. 5) suffered from slightly worse
prediction accuracy, although without any measurable bias (Fig. 6).
Importantly, predicted doses at all concentrations were significantly
higher than predictions of the negative control, suggesting a high
potential to correctly identify the occurrence of exposure even at such
low exposures that could not be accurately predicted (Fig. 6). We also
used the data acquired from the model to make BMD calculations
using the US EPA BMD tool (BMDS, version 3.0).33 This resulted in a
log-normal model with constant variance which fulfilled all but one
of the default requirements of BMDS (see ESI,† Table S6). The
metabolomic BMD (lower confidence level; BMDL) and LOEC of this
model were 0.0016 mg L�1 and 0.050 mg L�1 at 120 hpf, which are
orders of magnitude lower than the LOEC for heart rate (7000 mg L�1

at 48 hpf;19 46 540 mg L�1 at 48 hpf in this study) which the

Fig. 3 Results of MUVR random forest (RF) modelling. Panel a shows results of the RF classification model with actual and predicted exposure groups in
the columns and rows, respectively (green for correct predictions, orange for prediction within one order of magnitude and red for erroneous
predictions). Panel b shows the results of the RF regression model, trained on the two exposure groups with lower heart rate at 120 hpf (i.e. 4550 and
46 540 mg L)�1 and the negative controls (Q2 = 0.67, p = 9.2 � 10�5).
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metabolomic effect is anchored in. Unfortunately, we were unable to
find any heart rate BMDL for PPL in the literature.

Conclusions

The present work demonstrates that combining metabolomics
with apical endpoints in single ZF embryos provides a robust and
high throughput means of obtaining data on a chemical’s MoA.

The newly developed in-plate extraction procedure minimized
sample handling error induced by multi-step protocols and
the delicacy of small sample volumes, while also improving
time-efficiency, thus enabling large-scale, high-throughput
analysis. The possibility to determine metabolomic BMDs,
NOECs and LOECs linked to apical endpoints in single fish
embryos not only forwards the possibility to use omics data in a
legislative context but it also emphasizes the question of where

Fig. 4 Heatmap of all endogenous metabolites elected by the classification and regression random forest models. 1–5 = level of putative identification
as suggested by Schymanski et al.48 = no MS2 data gathered.
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the threshold of an adverse effect should be drawn. Beyond
molecular hazard screening, the developed in-plate sample
processing method can be applied to metabolomic studies
in other species or for the rapid determination of chemical
transformation products. Overall, the method presented here
constitutes a significant development in high-throughput
toxicometabolomics in small organisms.
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Data availability

Datasets obtained through data processing of instrumental raw
files from Thermo Scientific Quantiva and from Q Exactive
Orbitrap instrumental analysis are available in the Data Dryad
repository (https://doi.org/10.5061/dryad.7m0cfxppz). The raw files
generated through instrumental analysis in this study, as well as
result files generated by data processing software, are available
from the corresponding author upon reasonable request.

Code availability

All code involved in formating data prior to employment of
functions included in the ‘‘batchCorr’’ R-package are available
through requests sent to the corresponding authors. Code
related to reorganization and deconvolution of lipidomics data
is available as a package for R called ‘‘metLab’’, (https://github.
com/parasitetwin/metLab). All functionality connected to our

Fig. 5 Pathways of phospholipid (a) and tyrosine (b) metabolism implicated in the mode of action of PPL. Enzymes are color-coded for up-regulation or
induced activity (green), down-regulation or reduced activity (red) or no documented effect (gray) associated with PPL. The hexagon indicates a direct
interaction of PPL (PPL DI) with phopshatidylo choline lipids. Metabolite heatmaps are arranged from the highest concentration (top) to the negative
control (bottom). # = only in regression model; = both in regression and classification model.
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non-targeted data filtering procedures are available as a pack-
age for R called ‘‘ExpMetFilter’’, (https://github.com/parasitet
win/ExpMetFilter).
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