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Applications of Bayesian optimization to problems in the materials
sciences have primarily focused on consideration of a single source
of data, such as DFT, MD, or experiments. This work shows how it is
possible to incorporate cost-effective sources of information with
more accurate, but expensive, sources as a means to significantly
accelerate materials discovery in the computational sciences.
Specifically, we compare the performance of three surrogate
models for multi-information source optimization (MISO) in combi-
nation with a cost-sensitive knowledge gradient approach for the
acquisition function: a multivariate Gaussian process regression, a
cokriging method exemplified by the intrinsic coregionalization
model, and a new surrogate model we created, the Pearson-r
coregionalization model. To demonstrate the effectiveness of this
MISO approach to the study of commonly encountered materials
science problems, we show MISO results for three test cases that
outperform a standard efficient global optimization (EGO) algo-
rithm: a challenging benchmark function (Rosenbrock), a molecular
geometry optimization, and a binding energy maximization. We
outline factors that affect the performance of combining different
information sources, including one in which a standard EGO
approach is preferable to MISO.

1 Introduction

At the forefront of materials sciences, there is a set of research
topics that remain largely inaccessible, experimentally and
computationally, due to their combinatorial complexity. As one
topical example, the study of high entropy alloys has exploded
into an almost insurmountable combinatorial problem." In the
biological sciences, the large conformational space of protein
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Cost-effective materials discovery: Bayesian
optimization across multiple information sourcesf

a

New concepts

Bayesian optimization methods require an acquisition function (where to
search next) and a surrogate model (mimicking the behavior of real
systems). We create a novel algorithm that uses the only existing
acquisition function capable of taking information from multiple sources
(e.g., different experimental sources and/or simulation approaches) in
conjunction with a new surrogate model that finds the optimal result
meeting a pre-specified objective. Current surrogate models require many
fitting parameters, restricting their applicability to less complex domains.
Our new model minimizes the number of such hyperparameters and yet
frequently performs far better than more complicated approaches. This
opens the door to considering larger combinatorial problems than
previously possible. We show that our new algorithm is successful at
accelerating the search for optimal solutions of common materials
science problems, like geometry optimization or optimal solvent choice.
We identified that our multi-information source approach will work best
in well-correlated systems. Noisy information sources make our approach
only comparably effective to a standard EGO approach. Overall, this is an
important new addition to existing Bayesian optimization tools, one that
functions in decision-making more like our own brains, considering
many pieces of information before deciding upon the best solution in
the most effective manner.

folding has proven to be exceedingly difficult to tackle.” In recent
years, machine learning (ML) techniques have shown promise in
their application to challenges in the physical and biological
sciences, proving to be an effective means to tackle intractable
compositional and/or high-dimensional problems. Several land-
mark studies are emerging, as evidenced by examples using “deep
learning” approaches on protein folding such as AlphaFold,’
regression methods for transformation temperature predictions
in shape change alloys,* the use of a random forest approach to
predict the thermoelectric properties of materials,™® the use of
neural networks to predict molecular” and atomic® energies, and
using Bayesian optimization to unravel the solution processing of
the hybrid organic-inorganic perovskite (HOIP) combinatorial
space.’” More nuanced applications have also arisen such as the
use of deep transfer learning for materials property prediction,"®
the necessity for multi-objective optimization in the case of
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durable antifogging superomniphobic supertransmissive nano-
structured glass development,'’ the use of a support vector
machine (SVM) to efficiently identify potential antimicrobial
peptides,'? the development of a novel molecular reaction finger-
print for the study of redox reactions,” the use of genetic
algorithms to estimate parameters in large kinetic models,"* the
use of a variety of these methods to explore the organic photo-
voltaic (OPV) space,"™® the use of Gaussian process regression
(GPR) to model quasar emission spectra for the detection of Ly «
absorbers,"”” and a novel neural network design for encoding-
decoding molecules to/from continuous space.'®

Although such studies, and many others, are demonstrating
the breadth of applicability of ML to materials sciences, they
invariably use a single source of data/information, which we
will designate as an information source (ZS). It is clear that
improvements in speed and cost could be made by learning
information from a cost-effective source and limiting predic-
tions from other, more expensive, sources. Ultimately, using
multiple information sources could lead to more robust pre-
dictions of materials’ choices and/or properties, not to mention
the potential for lowering the cost (in time and resources) if a
cheaper information source can be used in place of a more
expensive one. For materials studies, information sources
could be provided by experimental data, continuum modeling
predictions, molecular dynamics (MD) simulations, quantum
mechanically derived density functional theory (DFT) calculations,
various ML models - neural networks (NN), Gaussian processes
(GPs), random forests, etc. — or even an intuitive rule of thumb.
Each information source has its own inherent accuracy and cost.
In this paper, we will show how to use a combination of sources of
information within a Bayesian optimization framework to signifi-
cantly accelerate materials discovery for common, important
calculations in the computational sciences.

Bayesian optimization, from a high-level point of view,
involves the process of using Bayes rule to optimize a function.
To understand why this is relevant, we must first contemplate
the problem of optimizing a continuous, black-box, noisy
function, g(x). If we have no way of appreciating the function,
our search is blind. However, what if we can devise a function, f;
that, given our observations from D = g(x), allows us to make
more accurate predictions on g(x)? In essence, can we find
f(x|D) ~ g(x)? If so, we can then use f(x|D) to determine what
candidate points x we should sample to maximize (or mini-
mize) g(x). This can be accomplished using Bayes rule (eqn (1)).

Piso) = 2O
. . )
. likelihood x prior
posterior =

marginal likelihood

In Bayesian optimization, we call this underlying model the
surrogate model; it is frequently chosen to be a GPR. The choice
of x from our surrogate model to sample next (where “sample”
means calling our black-box function) is determined by some
suitable acquisition function. For a more in-depth background
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Fig. 1 Illustration depicting how one ZS (shown as the top, more coarsely
defined contour plot) can be used to learn about another more finely
defined contour plot (shown as the bottom plot). Samples can be taken
from either the coarse ZS (green dots) or the fine ZS (gold dots) source. If
the ZSs correlate well, samples taken on the top can be used to learn
about the bottom, demonstrated here as transparent gold dots.

into Bayesian optimization, we direct the reader to a succinct
review by Peter Frazier."®

One approach used to consider several information sources
at a time is known as cokriging.’® > This approach uses either
spatial proximity (a cross-variogram) or correlation (cross-
covariance) to define a matrix, called a coregionalization
matrix, to interpolate one ZS from data in another 7S.*?*
This is illustrated in Fig. 1, in which a prediction made from a
coarse ZS is used to glean information on a finer ZS. Kriging is
perhaps best known as a geostatistics term for interpolation
using a GP, while cokriging is simply the extension of this
interpolation to multiple, highly correlated, data sets.>’ Cokriging
has been used to study a wide range of geological systems, from
predicting surface temperatures from elevation® to capturing the
correlation of rainfall measurements from radar to standard rain
gauges.”

In what follows, we will use an ZS index number to denote
the “accuracy” of the source (with accuracy being subjective
and based on the user’s viewpoint). We denote ZS, to be more
accurate than ZS;, and so on.

An alternative approach to handling data from several
information sources was recently published as a method
employing multi-information source optimization with a
Knowledge Gradient (misoKG). In that work, a cost-sensitive
Knowledge Gradient (csKG) acquisition function was used with
a standard multivariate Gaussian process regression (MGP)
surrogate model.”® These two components, an acquisition function
and a surrogate model, are the building blocks of an optimization
algorithm. Hence, consideration of the choices of these two
components will figure prominently in the discussions below.
Multi-information source optimization (MISO) works by sampling
in such a way that the cost is minimized, while the accuracy of the
predicted (optimal) result is maximized. The underlying csKG

This journal is © The Royal Society of Chemistry 2020
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acquisition function allows for this by determining which point,
and which source of information, to sample next. If the underlying
GPR indicates no (or poor) correlation between the sources of
information, then the model defaults to the well-known Knowledge
Gradient (KG). At this point, we draw the reader’s attention to the
difference between MISO and multi-fidelity optimization: MISO can
be seen as a generalization of multi-fidelity approaches from cost-
effective approximations to encompass any correlated source of
information.

Each approach used here builds from an underlying Gaus-
sian process, meaning that the code will need to learn empirical
fitting parameters. These parameters, called hyperparameters,
can vary depending on the choice of surrogate model. With
more hyperparameters, it is possible to obtain a better regres-
sion; however, this comes at a cost. To fit hyperparameters,
it is common to use an approach such as the Maximum
Likelihood Estimation (MLE) or Maximum A Posteriori (MAP)
estimation.’® The larger the hyperparameter space, the noisier
the landscape, and the more difficult it becomes to adequately
learn the hyperparameters. Assuming the same model for each
information source, the number of hyperparameters in MGP
scales linearly with the number of information sources. Cor-
egionalization, on the other hand, will add at most M
hyperparameters, being the components of a lower triangular
matrix, where m is the number of information sources. This
provides a strong impetus to consider coregionalization as a
surrogate model.

In this work, we present a ‘“‘coregionalized csKG approach,
using the c¢sKG acquisition function with Bayesian optimization
methods based on the intrinsic coregionalization model (ICM).””
Unlike the original multivariate Gaussian process regression
(MGP) surrogate model, where the number of hyperparameters
effectively scales with the number of information sources, we
show it is possible to define the coregionalization matrix using
significantly fewer hyperparameters. Further, we introduce an
entirely new approach capable of generating the necessary
coregionalization matrix, based on Pearson-r correlation
coefficients,*® which has the considerable advantage of removing
the need for additional hyperparameters altogether. We call this
surrogate model the Pearson-r coregionalization model (PCM). As
a “proof of concept,” we apply a unique combination of the csKG
acquisition function and the new PCM surrogate model to explore
complex compositional landscapes involved in the solution
processing of a novel class of solar cell materials, known as hybrid
organic-inorganic perovskites (HOIPs), and other common
computational materials applications.

2 Nomenclature

To merge the naming conventions between the ML and DFT
communities, we present two approaches to identify the
models used in this paper. Within the ML community, it is
common practice to identify an acquisition function/surrogate
model pair by a single name. This can be seen in the case
of the commonly used efficient global optimization (EGO)

This journal is © The Royal Society of Chemistry 2020
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algorithm,”® which merges expected improvement (EI) with
GPR (or, in the case of the original paper, this is referred to
as “kriging”’). Similarly, the misoKG algorithm uses a csKG
acquisition function with an MGP surrogate model. To main-
tain this naming convention, we will then define “PearsonKG”
to mean pairing the c¢sKG acquisition function with the PCM
surrogate model. In regards to the csKG with the ICM surrogate
model, we note that a similar formulation exists with an
alternative acquisition function: entropy search. This algorithm
was dubbed multi-task Bayesian optimization (MTBO)*® and, as
such, leads to our choice of its name as ‘“MultiTaskKG.”

This naming scheme has the benefit of recognizing an
algorithm by name; however, it does not allow readers to easily
parse the details of the constituent models. Within the DFT
literature, the solution for naming the choices of functional
and basis-set that define the overall approach is to list the two
separated by a forward slash. In the spirit of the DFT naming
convention, we express the specific names favored by the ML
community by a combination of the underlying acquisition
function and surrogate model. As a result, we identify the
aforementioned combinations as follows:

e EGO = EI/GPR

e misoKG = csKG/MGP

e MultiTaskKG = csKG/ICM

e PearsonKG = csKG/PCM

Within this paper, we will refer to the algorithm name itself;
however, we define the above in an effort to consolidate naming
conventions within the ML and DFT literature. This extensible
approach allows new researchers in the field to readily under-
stand the taxonomy of algorithmic names in this area of
machine learning.

3 Results

We benchmark three MISO surrogate models - PCM, ICM, and
MGP - against a standard EGO approach using the Rosenbrock
function as a first test case.*! The Rosenbrock function, with its
long, narrow and very flat parabolic basin, is a difficult opti-
mization problem that is commonly used for benchmark
purposes. This test case also has probative value since it
allows us to benchmark against the original misoKG paper by
Poloczek et al.*® As a second test case, we study the effects of
differing DFT functionals/basis sets as sources of information
for the geometry optimization of carbon monoxide. Finally, we
revisit the HOIP work® and assess the benefits of using MISO
approaches, in which different levels of theory within DFT are
deployed as a set of information sources, as well as differing
molecular systems.

Running a MISO approach does not guarantee that one
information source will be sampled over another. As such,
given that sampling from ZS, does not necessarily have the
same cost as sampling from ZS;, we end up with a hetero-
geneous data set where cost varies between replications. This
can be conceptualized by considering two experiments in which
we run a MISO approach using two sources, ZS, and IS,
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whose costs we estimate to be 1000 and 1, respectively. If, on
the first experiment, we sampled ZS, 4 times and ZS; 2 times,
versus on the second experiment where we sampled ZS 6 times,
our 6th data point will be at a cumulative cost of either 4002 or
6000, depending on the experiment. As we replicate our evalua-
tions several times for statistical significance, it is no longer
possible to simply ‘“‘average across all replications.” Thus,
we must homogenize the sampling domain so as to average
the value that first exceeds a given cost. We then plot the x
associated with the maximum (or minimum, depending on the
problem) posterior mean of the ZS; model. The “best” model
is identified as the model that achieves global maximization
with the least cost.

Hyperparameter optimization can be achieved in at least
three different ways: (1) with data sampled across all ZS (i.e., x,
if x is sampled for all ZS;, mathematically shown as
{x|x € Z§,Vi}), (2) with data sampled only within ZS, - the
most expensive information source - or (3) with all sampled
data. In order, we will call these ZSinersections ZSCostly, and
ZSFui- Additional benchmarks are shown in the ESI.{ In this
work, we learn the hyperparameters from the data we sampled

—456.3 = misoKG
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initially, and then keep them fixed for the remainder of the
optimization. As such, we only concern ourselves with
ISInlerseclion and ISO~

Finally, as the Bayesian optimization is performed for a
combinatorial problem, we discretize the domains we wish to
optimize over. The larger the discretized domain, the more
complex the problem, and the harder it is to find the global
extrema. This class of problem is seen as ‘“combinatorial
optimization” for ‘“large discrete domains.” In the case of
the Rosenbrock function, we illustrate below three different
discretized domains as a way to illustrate the benefit of using
MISO over that of using EGO, especially as the complexity of the
problem increases.

3.1 The Rosenbrock function

Fig. 2 shows the results from a variety of MISO approaches in
which 7S, was the standard 2D Rosenbrock function (see
eqn (5)), and a slightly noisier alternative was chosen as ZS;
(in which the amplitude of the sine noise, v, was set to 0.1).
To achieve better statistical significance, we ran 200 replications
of each and plotted with +2 standard error of the mean (SE).
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Fig. 2 A comparison of MISO approaches to a standard EGO approach to find the minimum of the Rosenbrock function (eqn (5)). In all cases, the three
MISO approaches (misoKG,2® MultiTaskKG, and PearsonKG) significantly outperform EGO (shown in blue) by converging to the global minimum of
—456.3 at the least cost. This improvement is even more noticeable for the larger discretized domains of 1000 and 500 samples, which constitute a more
difficult optimization problem. This figure illustrates the advantage of a MISO approach when a well-correlated alternative information source is chosen.
Shaded regions indicate two standard errors of the mean obtained from up to 200 replications.
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The value of a MISO approach in all panels of Fig. 2 can clearly be
seen in comparison to a more standard Bayesian optimization
approach like EGO, which is shown as a control. Candidate (x,y)
data were sampled from [—2,2]* in increments of 0.016, 0.008, or
0.004 (for a sampled discrete domain size of 250, 500, or 1000,
respectively). This comparison of domain complexity is illustrated
in Fig. 2a-c, where the superiority of MISO approaches becomes
increasingly apparent. In contrast, Fig. 2d shows results from
MISO approaches in which 7S, was the standard Rosenbrock
function (see eqn (5)), but a significantly noisier alternative was
chosen as 7S, (in which the amplitude of the sine noise, v, was set
to 10.0). Corresponding numerical results are shown in Table 1.

3.2 DFT information sources for geometry optimization in CO

We studied the ability of the same four statistical models to
minimize the total energy of a carbon monoxide (CO) molecule.
This effectively performs a geometry optimization, a common
task using DFT, via Bayesian optimization. Information sources
were taken as being either a single-point SCF calculation from a
double-hybrid method, with a triple-{ basis set (B2PLYP and
Def2-TZVP),>*** which is an accurate and expensive option,
or a simple (inexpensive) Hartree-Fock approach with “three
corrections”®* in which (1) a geometrical counterpoise correc-
tion to remove basis set superposition error,>>” (2) the D3BJ
dispersion correction,*® and (3) the MINIX basis set.>® Note that

View Article Online
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these information sources correlate well, with a Pearson-r
correlation coefficient of 0.999. As we will show, this strong
correlation is an important consideration. The results are
shown in Table 2, where the ICM and PCM surrogate models
perform the best (i.e., have the lowest mean cost). What is more
strikingly apparent though is the improvement to the 99.9th
percentile, where PearsonKG shows a 76% improvement com-
pared to that of EGO.

3.3 Physical analytics pipeLine test case for HOIP materials

A major difficulty associated with studying hybrid organic-
inorganic perovskites (HOIPs) computationally lies in the fact
that (1) possible candidate materials differ in composition,
(2) the compositional space represents a large combinatorial
problem, and (3) no MD force field exists that is suitable to use
in cost-effective simulations for HOIPs candidates. As a result,
computational research on HOIPs formation and growth is
currently restricted largely to expensive DFT calculations.

Our previous work® showed the benefits of using Bayesian
optimization to tame this complexity, and developed a prob-
abilistic model for HOIP-solvent intermolecular binding energies.
Here, we investigate the benefits of using multiple information
source optimization approaches. The alternate ZS in this case
consist of data sources in which we varied (1) the number of
solvents considered to be bound to the lead salt and (2) differing

Table 1 Benchmarking the performance of three MISO statistical models for the minimization of the Rosenbrock function. This table shows the
significant advantage of using the PearsonKG approach over other MISO approaches, most readily apparent in the 99.9th%-tile. Values reported in this
table indicate the cost taken to be below —455.3, the lowest function evaluation across all methods (with the global minimum occurring at —456.3).
All values in this table have been rounded to the nearest 1000 (the cost of ZS,) and then scaled by 1000 to be more easily compared

Algorithm Acquisition function Surrogate model O training set Mean STD 99.9th%-tile
EGO EI GPR ZSCostly 25 21 100
misoKG csKG MGP ZScostly 13 13 81
MultiTaskKG ¢sKG ICM ZScostly 13 13 81
PearsonKG csKG PCM ZScostly 5 1 5
misoKG csKG MGP T Sintersection 5 2 12
MultiTaskKG csKG ICM Z Sintersection 5 1 7
PearsonKG csKG PCM Z Sintersection 5 1 5
misoKG csKG MGP* T Sintersection 6 3 28
MultiTaskKG csKG IcM* Z Stntersection 7 5 47
PearsonKG csKG PCM“ T Sintersection 5 2 16

“ Results using the same three statistical models, but for an extremely noisy Rosenbrock function.

Table 2 Benchmarking four statistical models to minimize the total energy of a CO molecule. Values indicate the cost taken to be within 0.6 kcal mol™*
of the lowest function evaluation across all methods. The cost ratio used was approximately 11.5 to 3.5 (based on average computational time, in
seconds, for each single point DFT calculation with the respective levels of theory), and as such can be seen as the total time to geometry optimization.
All values in this table have been rounded to the nearest 10 and then scaled by 10 so as to be more easily compared. It is clear that the PearsonKG and
MultiTaskKG approaches converge to the ground state geometry in significantly less time than the “industry standard” EGO

Algorithm Acquisition function Surrogate model A IS8, Mean STD 99.9th%-tile
EGO EI GPR B2PLYP/def2-TZVP — 31 24 156
misoKG csKG MGP B2PLYP/def2-TZVP HF-3c 28 18 87
MultiTaskKG csKG ICM B2PLYP/def2-TZVP HF-3c 15 9 46
PearsonKG csKG PCM B2PLYP/def2-TZVP HF-3c 15 8 38

This journal is © The Royal Society of Chemistry 2020 Mater. Horiz., 2020, 7, 2113-2123 | 2117
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Fig. 3 Comparison of the impact of different information sources for HOIP materials in the performance of MISO methods versus a standard EGO
approach. The results show that EGO performs as well as, and at times better than, MISO methods in cases (Fig. 4b and c) where the information sources
are poorly correlated. MISO methods fall back to EGO-like performance in such cases (with the exception of the x-offset due to the initial sampling).

DFT levels of theory (defined as differing functionals and basis
sets), which can vary considerably in expense of calculation.
As semi-empirical force fields for HOIPs become available in the
future, these could also be used within a MISO approach.
Results of these tests are shown in Fig. 3. As the MISO
surrogate models require an initial sampling from all the
information sources prior to running the optimizer, this pro-
duces a systematic offset on the x-axis in Fig. 3a-c (and most
readily observable in Fig. 3c) indicative of this additional
training cost. In contrast, EGO starts optimizing sooner since
its initial training is solely against the expensive ZS,. The
largest benefits to using MISO approaches can be seen in
Fig. 3a, in a test case in which the two information sources
are both DFT functionals (inexpensive GGA and expensive
hybrid approaches). In contrast, in Fig. 3b and c, the two
different information sources concern information garnered
from the number of solvent molecules bound to the lead salt
(one solvent molecule vs. three solvent molecules in Fig. 3b,
and three solvent molecules vs. five solvent molecules in
Fig. 3c). Here, the advantage of using a MISO approach is far
less apparent. The origin of this change is, we believe, a
function of how noisy the energy landscape becomes as the

2118 | Mater. Horiz., 2020, 7, 2113-2123

number of solvent molecules increases which, in turn, necessi-
tates a growing importance of adequate sampling.

To assess the noise in the energy landscapes, we generate a
cross-correlation table of possible HOIP-solvent information
sources (Table 3). The various information sources are distin-
guished by the level of theory (GGA vs. hybrid) and the number
of solvents (1, 3, or 5). The generalised gradient approximation
(GGA) level of theory used was B97-D3 with a triple-( basis
set;**** while the hybrid functional was PW6B95 with a triple-
basis set.>®*' The naming convention used was either GGA or
hybrid followed by N, where N was 1, 3, or 5 (signifying the
number of solvents). Results for all the information sources are

Table 3 The cross-correlation matrix of all HOIP information sources.
Correlation is calculated only on data that exists across both information
sources

Hybrid-1 GGA-1 GGA-3 GGA-5
Hybrid-1 1.00 0.83 0.77 0.76
GGA-1 0.83 1.00 0.83 0.83
GGA-3 0.77 0.83 1.00 0.83
GGA-5 0.76 0.83 0.83 1.00

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Comparison of all the HOIP information sources sorted such that
the results using the cheap GGA-1 function is monotonically increasing.
Data from GGA-1 and the expensive Hybrid-1 functional (where the “-1"
indicates a single solvent) can be seen to correlate well. In contrast
however, information sources that involved more solvents (GGA-3 and
GGA-5 for 3 and 5 solvent molecules, respectively) show poor correlation.
Color code as given in the inset.

plotted in Fig. 4. We find that GGA-1 correlates best with other
ZS (i.e., it consistently has a correlation factor over 0.8).

4 Discussion

As we explore the ability of machine learning to tackle grand
challenges in computational materials science, it is natural to
want to take advantage of information from a variety of sources
and to combine them in such a way that we can make predic-
tions of materials properties or optimal materials discovery in
the most cost-effective way possible. In this paper, we use a
newly proposed acquisition function, ¢sKG,?® in concert with
several surrogate models, including a new model proposed
here, that can harness multiple information sources for cost-
effective predictions. This is the first application of a MISO
approach to conduct common computational materials science
calculations.

Our first study involved using the Rosenbrock function as a
test of our optimization methods, since it is a challenging non-
linear, shallow-basin problem. The Rosenbrock benchmarks
shown in Fig. 2 and Table 1 indicate: (1) the considerable
benefits of using MISO approaches over a standard EGO
approach; (2) the importance of adequate hyperparameter
training in respective models; and (3) the benefits of the new
PCM surrogate model, developed in this paper, over either a
multivariate Gaussian process regression model (MGP) or an
intrinsic coregionalization model (ICM).

For the Rosenbrock test, the improvement over EGO was
80% for each of the three MISO models we tested. In regards to
hyperparameter optimization, we find that when the model
includes hyperparameters that capture the interplay between
information sources (as in the case of MGP and ICM), it is
necessary to include data across all information sources to

This journal is © The Royal Society of Chemistry 2020
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adequately learn these parameters. The main improvement of
our new model, PCM, over that of ICM and MGP can be seen in
the results for the 99.9th percentile. This improvement also
comes with the considerable advantage that we no longer
need additional inter-ZS hyperparameters in this approach.
As Bayesian approaches are known to be capable of optimizing
noisy functions, we find that when the information sources
correlate well but are inherently noisy, MISO approaches con-
tinue to outperform EGO, with the PCM surrogate model
remaining the best. Finally, looking at Fig. 2, when we consider
a large combinatorial space for the optimization, the MISO
models perform markedly better (over EGO) than when we
consider a smaller combinatorial space.

Turning towards applications of this approach to computa-
tional materials sciences, our aim is to understand the effects
of including different information sources on cost-effectiveness.
Performing a geometry optimization of CO using Bayesian
optimization is a prime example of a common computational
chemistry calculation. Here, our information sources were
different DFT functionals and basis sets. This is a representa-
tive real-life issue since these sources differ greatly in cost
(certainly by over an order of magnitude). Finding that we
have a close-to-unity Pearson correlation coefficient between
these information sources, we anticipated that the various
MISO methods would perform better than EGO. And, indeed,
Table 2 shows that both the MISO surrogate models (ICM and
PCM) outperform a standard EGO approach by, on average,
52% in cost. Further, in the case of the 99.9th percentile,
MultiTaskKG and PearsonKG outperform EGO by 71% and
76%, respectively. Commonly, local optimizers are used when
performing DFT geometry optimizations; however, at times, the
desire to find optimal molecular conformations/packing is
desired instead. This is a global optimization problem which
involves considerations of optimally packing molecules via
translational and rotational changes, subsequently followed
by a geometry optimization. This work shows that it is possible
to use MISO methods to deploy cheap sources of information
for this search space (such as Hartree-Fock) with more expen-
sive/accurate functionals for the final calculations, greatly
reducing the overall time required to find this optimal packing.

Finally, in a challenging application related to the selection
of solar cell materials, hybrid organic-inorganic perovskites, we
looked at the cost-effectiveness of combining different infor-
mation sources within our PAL code base. For these perovskite
materials, it becomes even more apparent that the reliability of
the cheaper information sources, i.e., ZS; - ¢, to represent the
most trusted source, ZS,, comes under scrutiny. The results in
Fig. 3a show a slight benefit in using PearsonKG, corroborated
in Table 4 by the reduced mean cost to reach an optimal
solution. However, this benefit is rapidly reduced as the infor-
mation source changes to noisier alternatives. We find the
nature of the information sources is an important factor when
considering a MISO approach. This effect is clear in Fig. 4,
which compares information sources that choose different
ways to represent both the solvation of the lead salt and the
level of DFT theory used. Choices like Hybrid-1 and GGA-1,
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Table 4 Benchmarking MISO surrogate models (ICM and PCM) against EGO for the minimization of the HOIP objectives. Values reported in the table
indicate the cost, taken to be within 0.6 kcal mol™ of the lowest function evaluation across all methods. Lower cost indicates better performing models.
All values in this table have been rounded to the nearest 10 and then scaled by 10 so as to be more easily compared

Algorithm Acquisition function Surrogate model 8o A Mean STD 99.9th%-tile
EGO EI GPR Hybrid-1 — 80 30 198
MultiTaskKG csKG ICM Hybrid-1 GGA-1 81 41 244
PearsonKG csKG PCM Hybrid-1 GGA-1 70 35 216
EGO EI GPR GGA-3 — 36 29 124
MultiTaskKG ¢sKG ICM GGA-3 GGA-1 33 32 187
PearsonKG csKG PCM GGA-3 GGA-1 32 23 185
EGO EI GPR GGA-5 — 70 59 300
MultiTaskKG csKG ICM GGA-5 GGA-3 87 62 300
PearsonKG csKG PCM GGA-5 GGA-3 105 70 300

which share a common number of solvent molecules (=1) model
one another much better (i.e., are better correlated) than the alter-
natives (GGA-3 and GGA-5) in which the number of solvent mole-
cules (and hence the inherent noise) varies. In the latter situation,
we find no benefit to using a MISO approach (Fig. 3b and c).

In summary, we have developed a new surrogate model,
PCM, and shown how it performs at least as well, and often
better, than ICM (where ICM can be seen as the common
“go to” model when it comes to coregionalization) for several
archetypal test cases in the computational materials sciences.
Importantly, the new PCM model does not involve any addi-
tional hyperparameters. Further, we show how the acquisition
function, csKG, can be implemented in combination with these
surrogate models. This combination opens the door for com-
putational studies to incorporate any number of data streams
of varying expense in a cost-effective way. This method allows
the user to exploit the availability of less accurate, lower cost,
alternative sources of information. We find that the best
approach to take depends heavily on the correlation between
information sources and the surrogate model that defines the
potential. When an information source possesses the same
GPR kernel (K,) with similar/identical hyperparameters, as in
the Rosenbrock benchmark, CO geometry optimization, and
the HOIP benchmark comparing Hybrid-1 versus GGA-1, using
csKG with the PCM surrogate method converges significantly
faster towards a global optimum. In cases where the hyperpara-
meters differ greatly, as exemplified by GGA-5 versus GGA-3, the
best course of action appears to reside in using a traditional EGO
approach. Finally, we have discovered that, when it is desirable to
maximize an objective with an expensive DFT functional, a MISO
approach using the PCM surrogate model and a more cost-
effective functional can greatly reduce the total cost.

5 Methods

5.1 The intrinsic coregionalization model

There are many methods of coregionalization, several of which
are outlined in a review article by Alvarez et al.*” The intrinsic
coregionalization model (ICM) approach defines a coregionalization
matrix (Ks) such that K = K; ® K, (Where ® is the Kronecker

2120 | Mater. Horiz., 2020, 7, 2113-2123

product and K, is a user-defined kernel).*> The problem then arises
how best to define K;. One method involves simply allowing K; = I,
in which the hyperparameters of K,, parameterized against all ZS,
will capture the correlation between ZS.**** Another method
ensures a PSD matrix by having K, = ESTSE in which E is a diagonal
matrix of scalars with dimension M (the number of ZS), and S is an
upper triangular matrix.*> It should be noted that there exists an
equivalent expression, K, = ELL'E, in which L is a lower triangular
matrix. In general, the scalar matrix is not particularly common and,
in most literature sources, we simply find that K is written as LL".>!

5.2 The Pearson-r coregionalization model

The Pearson-r coregionalization model (PCM) was developed
based on the idea that the coregionalization matrix should
capture the correlation between ZS.>* From this, the coregio-
nalization matrix was not learned, but dynamically generated
from the Pearson-r correlation coefficients (p) of sampled
data.?® Specifically, each component of the coregionalization
matrix was made using eqn (2), to which eqn (3) was calculated
(p was only calculated for data that had been sampled at all ZS
using the python package, SciPy).*® This approach eradicates
the need for additional hyperparameters (ontop of those in K,),
allowing for a more scalable model.

> (x — MX)(}’ - m}’)

p= . = (2)
\/Z (x —my)* (v — my)
1 p(0,1) p(0,2) p(0, M) |
p(],O) 1 p(1,2) p(17M)
K =
L o(M,0) pMM—1) 1
(3)

51.3 Analytical model

The Rosenbrock function, also known as the “banana function,”
is a well known, well studied and challenging test case for global
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optimization.*' Further, a noisy alternate form has already been
developed by Lam et al.*’ As this function was used by Poloczek
et al.*® to benchmark misoKG and MGP, we use it here to compare
our new approach to Poloczek’s misoKG. The function itself is
shown in eqn (4), where a, b, ¢ € R.

fil)=(a—x)*>+blx, — x.2) +c¢ (4)

In order to use the Rosenbrock function with MISO surro-
gate models, we need several ZS. Accordingly, we define two ZS
as the Rosenbrock function, plus some additional varied term.
The two ZS used are shown in eqn (5):

ISy = —fi(x) +u-e

(5)

IS8, = —fi(x)+v-sin(10-x; +5-x2)

We can replicate the work shown in Poloczek et al.®® by
setting a = 1.0, b = 100.0, ¢ = —456.3, u = 0, v = 0.1, and a cost
ratio of 1000 : 1. The domain for x € D is given by D; € R?|i < N
and bounded within the origin-centered-square of [—2,2]>. N,
the number of discrete points of our domain D, was chosen to
be either 250, 500, or 1000, in order to capture the effects of the
search-space on the models. To probe the limits of our model,
we expanded upon this benchmark by considering a significantly
noisier secondary information source and allowing v = 10.0. Note
that the global minimum of the Rosenbrock function (offset
from 0) is set to c, in this case —456.3.

5.4 CO model

In order to model the CO molecule using multiple 7S, a simple
5 , . .

zero-mean, 3 Matérn kernel was chosen.*® From this, the expensive

source, ZS), was chosen to be a double-hybrid approach using the
B2PLYP functional®® and Def2-TZVP basis set.>* The cheaper source,
TS, was taken to be a corrected Hartree-Fock approach.> All DFT
calculations were performed using the Orca software.”® Since CO
consists of only two atoms, x was taken as the interatomic distance
(in A), bound between [0.5, 2.0], in intervals of 0.001 A. Five random
sampled points were taken to initially train hyperparameters.

5.5 HOIP model

The probabilistic model for the HOIP system is the same as that
outlined in Herbol et al.® This is illustrated in eqn (6), with the
mean given in eqn (7) and the covariance matrix in eqn (8).

V(X?) = Z oX; + ﬁ(x) +{ +f(x87 xp) (6)
i=1
ﬂg. = g“% + e )

Zg._x, = Cov(Vy, Vy)

(8)
+ O'ﬁzlm + O'ngm + ZO(S,\"7 SX’)

= O-ocz‘xl:n><x1:n/
5 ,
For X(S,,Sy) we chose the well known = Matérn kernel,

which provides the covariance between measurements made at
any two points.*®
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In the original PAL work, data points were generated to
represent the intermolecular binding energy of three solvent
molecules to a HOIP lead salt modeled using an ab initio GGA
DFT functional. It would also be possible to generate DFT data
corresponding to other situations in which a different number
of solvent molecules was considered, given that a full shell
surrounding the lead salt involves around 25 molecules.>
Moreover, we can use various choices of level of DFT theory
which may differ significantly in accuracy and cost. Overall
sampling of the solvents around the salt were performed using
Packmol,”> LAMMPS,>* and the OPLS-AA force field.>® Final
geometry optimizations and energy calculations were made
using Orca.*’

We define information sources, for example, as GGA-3,
where N3 indicates the case in which three solvent molecules
are considered to be bound to the lead salt, and R2 represents
the level of theory indexed within the PAL codebase (the label
“2” corresponding to the GGA functional B97-D3 with a triple-{
basis set). Simply changing the number of solvents bound to
the lead salt, or the level of theory used, will give rise to
a different 7S label. In that regard, we have explored the
following information sources for benchmarking purposes:

e GGA-5 - intermolecular binding energy of five solvent
molecules to a perovskite lead salt using the GGA functional
B97-D3 (179 data points).

e GGA-3 - intermolecular binding energy of three solvent
molecules to a perovskite lead salt using the GGA functional
B97-D3 (240 data points).

e GGA-1 - intermolecular binding energy of one solvent
molecule to a perovskite lead salt using the GGA functional
B97-D3 (480 data points).

e Hybrid-1 - intermolecular binding energy of one solvent
molecule to a perovskite lead salt using the hybrid functional
PW6B95 (480 data points).

When using multiple information sources from among
these options, we chose only those that exist across all ZS.
Thus, when we used two information sources as a test case,
labeling them ZS, and ZS;, we chose Hybrid-1 and GGA-1, for
which a total of 480 data points exist. However, when ZS, and
IS8, are GGA-3 and GGA-1, respectively, only the 240 intersecting
points in the data sets would be used.
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