Lab on a Chip

View Article Online

CORRECTION

Check for updates

Cite this: Lab Chip, 2020, 20, 3473

Correction: An acoustofluidic device for efficient mixing over a wide range of flow rates

Hunter Bachman,^a Chuyi Chen,^a Joseph Rufo,^a Shuaiguo Zhao,^a Shujie Yang,^a Zhenhua Tian,^b Nitesh Nama,^c Po-Hsun Huang^{*a} and Tony Jun Huang^{*a}

DOI: 10.1039/d0lc90094j

rsc.li/loc

Correction for 'An acoustofluidic device for efficient mixing over a wide range of flow rates' by Hunter Bachman *et al., Lab Chip*, 2020, **20**, 1238–1248, DOI: 10.1039/C9LC01171D.

A relevant conflict of interest was not disclosed in the original article. The corrected conflict of interest statement for this article is shown below.

Conflicts of interest

T. J. H. has co-founded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA. E-mail: phhuang73@gmail.com, tony.huang@duke.edu; Tel: +1 919 684 5728

^b Department of Aerospace Engineering, Mississippi State University, Starkville, MS 39762, USA

^c Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA