Lab on a Chip

View Article Online

CORRECTION

() Check for updates

Cite this: Lab Chip, 2020, 20, 3470

Correction: High-throughput cell focusing and separation *via* acoustofluidic tweezers

Mengxi Wu,^{ab} Kejie Chen,^b Shujie Yang,^a Zeyu Wang,^a Po-Hsun Huang,^a John Mai,^c Zeng-Yao Li^d and Tony Jun Huang^{*a}

DOI: 10.1039/d0lc90091e

rsc.li/loc

Correction for 'High-throughput cell focusing and separation *via* acoustofluidic tweezers' by Mengxi Wu *et al., Lab Chip,* 2018, **18**, 3003–3010, DOI: 10.1039/C8LC00434J.

A relevant conflict of interest statement was not disclosed in the original article. The corrected conflict of interest statement for this article is shown below.

Conflicts of interest

T. J. H. has co-founded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustofluidics and acoustic tweezers.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA. E-mail: tony.huang@duke.edu

^b Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA

^c Alfred Mann Institute for Biomedical Engineering, University of Southern California, Los AngelesCA 90007, USA

^d School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China